Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 1 of 63

UNITED STATES DISTRICT COURT
DISTRICT OF MASSACHUSETTS

)
Singular Computing LLC, )
) Civil Action No. 1:19-cv-12551
)
Plaintiff, )
)
V. )
)
Google LLC, )
)
Defendant. ) JURY TRIAL DEMANDED
)

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff, Singular Computing LLC (“Singular”), for its complaint against Defendant,
Google LLC, (“Google”), alleges as follows:

THE PARTIES

1. Singular is a Delaware limited liability company having its principal places of
business at 10 Regent Street, Newton, MA 02465 and The Cambridge Innovation Center, 1
Broadway, Cambridge, MA 02142.

2. Google is a Delaware limited liability company and has regular and established
places of business in this District, including a major office complex in Cambridge,
Massachusetts with over 1,500 employees. Google may be served with process through its

registered agent, Corporation Service Company, 84 State Street, Boston, MA 02109.

3357500.v1
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JURISDICTION

3. This is a civil action for patent infringement under the patent laws of the United
States, 35 U.S.C. § 271, et seq. This Court has subject matter jurisdiction under 28 U.S.C.

8§ 1331 and 1338(a).

4. This Court has general personal jurisdiction over Google because Google is
engaged in substantial activity, which is not isolated, at its regular and established places of
business within this judicial district. This Court has specific jurisdiction over Google because
Google has committed acts of infringement within this judicial district giving rise to this action,
and has established more than minimum contacts within this judicial district, such that the
exercise of jurisdiction over Google in this Court would not offend traditional notions of fair
play and substantial justice.

5. Venue is proper in this judicial district pursuant to 28 U.S.C. 8§ 1391(b)-(c) and
1400(b) because Google maintains regular and established places of business and has committed
acts of patent infringement within this judicial district.

FACTUAL BACKGROUND

6. Singular was founded by Dr. Joseph Bates to, inter alia, design, develop, and
produce computers having new architectures, including the patented computer architectures at
issue in this case. Dr. Bates is the President and CEO of Singular. Since 2009, Singular has
continuously operated out of the Boston area.

7. Dr. Bates’ interest in computer science dates back to at least 1969, when, as a
thirteen-year-old youth, he was admitted to Johns Hopkins University. His success at this
university sparked a pilot program for exceptionally gifted youths, which program went on to

become the widely recognized Johns Hopkins Center for Talented Youth (also known as “CTY”’;



Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 3 of 63

see https://cty.jhu.edu ) that developed the talents of over 165,000 academically advanced pre-

college students, including those of Google’s co-founders (Sergei Brin and Larry Page). By age
seventeen, Dr. Bates had earned a bachelors and master’s degree in computer science from Johns
Hopkins. He earned a computer science doctoral degree from Cornell University at age twenty-
three. Dr. Bates’ research and teaching interests have centered around several cutting-edge
computer science topics, including the design of computer programming languages, and artificial
intelligence (Al) software programs (i.e., software programs that see, hear, or understand).

8. During his career working at the vanguard of computer science, Dr. Bates realized
that although the theoretical computing power inside computers (as represented by the number of
transistors inside a computer) was growing exponentially under a phenomenon popularly known
as Moore’s Law, the vast majority of that increase in computing power was not being made
available to users. Under then existing computer architectures, even computers containing over a
billion transistors were architected so as to typically perform only a handful of operations per
unit of time (“period”’) when using CPUs. Such conventional computers typically performed
only a few hundred operations per period when using GPUs.

9. The new, novel and improved computer architectures developed by Dr. Bates,
provide for the inclusion within computer processors, of processing elements designed to
perform low precision and high dynamic range (LPHDR) arithmetic operations. Dr. Bates’
patented architectures, allow for, inter alia, more efficient use of a computer’s transistors and
have revolutionized the way Al training and inference are accomplished.

10. For example, a multiplication operation requested by many software programs
requires on the order of a million transistors per multiplication operation when using a

conventional computer architecture. Implementing Dr. Bates’ LPHDR architecture on the other


https://cty.jhu.edu/
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hand can require a far smaller number of transistors per multiplication operation, as specified in
his patents. That vast difference in the required number of transistors per multiplication
operation creates the opportunity to pack into a computer having a normal number of transistors
(e.g., several billion transistors, for a personal computer) a very large number of LPHDR
processing elements that can each perform an operation per period. Such a large number of
LPHDR processing elements can collectively perform a number of operations per period that is
on the order of a hundred times larger than the number of operations per period performed by a
conventional computer having the same number of transistors. A computer utilizing Dr. Bates’
novel architecture achieves this advantage—executing a far larger number of operations per
period than a conventional computer—while supporting software programs that require
operations to be performed on numbers having high dynamic range.

11.  Dr. Bates’ architectures accomplish the foregoing even though the constituent
LPHDR processing elements frequently generate, in response to requests to perform arithmetic
operations, results that materially differ from the exact results of those operations. Singular
LPHDR processing elements used in an Al software program, for example, can generate results
in response to requested arithmetic operations that differ by at least 0.2% from their respective
exact results, for at least 10% of all such requested operations, and yet still enable that Al
software program to function correctly. It was not obvious and was in fact counterintuitive to
those skilled in the art as of 2009 to make a computer from a very large number of LPHDR
processing elements that each frequently generate such materially inexact results, knowing that
such a computer was going to be used by software programs to execute numerous tasks that each

required hundreds, thousands or even millions of sequential arithmetic operations that could
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accumulate errors. Dr. Bates, however, conceived and made such a computer utilizing his novel
and patented computer architectures.

12. In some embodiments of Singular’s patented computer architectures, LPHDR
processing elements can be deployed within a computer in massively parallel configurations to
further amplify their relatively higher efficiency. In still other exemplary configurations, massive
numbers of these LPHDR processing elements can be deployed in conjunction with far smaller
numbers of higher precision processing elements found within conventional computer
architectures, to extend the range of software programs that can benefit from Singular’s high-
efficiency computing architecture.

13.  Singular’s revolutionary approach to computer architecture is described in a
provisional patent application entitled “Massively Parallel Processing with Compact Arithmetic
Element” that was filed in June of 2009 and made public in June of 2010.

14.  After filing this seminal patent application, Singular under the direction of Dr.
Bates built a computer incorporating its novel architecture. The Singular prototype was able to
execute a software program that performed conventional neural network image classification, for
example, at a rate 30 times faster than a conventional computer having comparable physical
characteristics in terms of its number of transistors, its semiconductor fabrication process and
power draw.

15.  As Singular was designing and building prototypes of its new computer, Google
was belatedly recognizing the limitations of its conventional computer architectures in providing
users with computer-based services such as Translate, Photos, Search, Assistant, and
Gmail. According to Google, it was hurtling towards a “scary and daunting” situation. The

situation arose as Google was starting to improve these services by running Al software
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programs on its computers, and as those services consequently became more popular. According
to Google, it was “scary and daunting” because the new Al software programs being run on the
computers in its data centers required far more computer operations per period than the software
programs Google was previously executing. For example, by its own estimation, Google would
have to at least double its computing footprint just to keep up with the increased computer
requirements being driven by improved Al-based speech recognition services alone. Google
realized it needed Dr. Bates’ computer architectures to solve this “daunting” situation.

16. Google’s infringement of U.S. Patents 8,407,273 and 9,218,156 is willful.

17. Less than 2 years after the filing of the provisional application, Dr. Bates and
Google executed a non-disclosure agreement (NDA) prepared by Google.

18.  After the filing of the provisional patent application, Dr. Bates met with
representatives from Google more than three times prior to early 2017.

19. During the course of these meetings, Dr. Bates disclosed his computer
architectures and prototype. Dr. Bates also advised Google such was patent-protected.

20.  Google knew or should have known of the *273 and 156 patents prior to the

launch of the accused Cloud Tensor Processing Unit Version 2 (TPUv2 Device) in May 2017.

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

Host VM

"TPU board" = 8 TPU cores

Network

’
=3 One TPU
Your VM core

Runs data feed code Runs training code
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TPU versions

Each TPU version defines the specific hardware characteristics of a TPU device. The TPU version
defines the architecture for each TPU core, the amount of high-bandwidth memory (HBM) for each
TPU core, the interconnects between the cores on each TPU device, and the networking interfaces
available for inter-device communication.

21.  Prior to the launch of the accused TPUv2 Device and Cloud Tensor Processing
Unit Version 3 (TPUv3 Device), Google knew or should have known that the accused devices
infringed the *273 and ’156 patents or was willfully blind to such infringement.

22. Following disclosure to Google by Dr. Bates of his invention, Google copied and
adopted Dr. Bates’ patented invention, incorporating such into the accused TPUv2 and TPUv3
Devices and more generally into its data centers. This is apparent from a comparison of Dr.
Bates’ patented architecture and that of the accused TPUv2 and TPUv3 Devices. It is also
apparent from an exemplary comparison of the disclosures made in writing by Dr. Bates to
Google from 2010-2014 with the properties and features that Google later adopted in its TPUv2

and TPUv3 Devices in 2017-2018. For example:

Singular Presentations Made to Google / Google Documents
Jeff Dean (2010-2014)

APPLICATIONS / MARKETS | SINGULAR COMPUTING Google Publication of TPUV2 (2017) and
Lol TPUvV3 (2018)

JOE BATES

SINGULAR COMPUTING LLC
MIT MEDIA LAB é
or ICARNEGIE MELLON COMPUTER SCIENCE DEPT

Machine Learning for Systems
and
Systems for Machine Learning

MULTI-MILLION-CORE PROCESSORS ] MANY-MILLION CORE PROCESSORS
AND THEIR APPLICATIONS AND THEIR APPLICATIONS

Jeff Dean
Google Brain team
g.co/brain

Presenting the work of many people at Google




Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 8 of 63

Singular Presentations Made to Google /

Jeff Dean (2010-2014)

Google Documents

(SINGULAR’S)

APPROXIMATE COMPUTING

A traditional massively parallel machine,
with floating point arithmetic

that is “99% correct”

(e.g. 1.0+1.0=1.98...2.02)

* Surprise £1: Arithmetic circuit can be unexpectedly small

~100x smaller

Standard FPU \ standard deterministic
~500,000 o digital cmos
transistors / i
+ - * | sqrt

one cycle per op

Special computation properties

about 1.2 1.21
xsbout06 NOT  Dgfia?
about 0.7 07583543

handful of I
specific X = Il
operations

“We started to look at what
we could do for these kinds of
deep learning models that
could be more
computationally efficient and
there are two really nice
properties that deep learning
models have. First, they are
very tolerant of reduced
precision... you don’t need 6
or 7 digits of precision like
you would in floating point
computations or even more in
double computations... you
can build hardware that is
only designed to accelerate
low precision linear algebra,
you’re golden, and that
enables you then really tailor
the hardware to do only that,”

OTHER PROMISING DOMAINS
(IN PROGRESS - INITIAL EVIDENCE)
* Vision: segmenting smooth objects (weak features, Hartmut/Joe intuition)
* Molecular dynamics, Protein folding (all-atom energy)

* Genomics (eg Smith-Waterman dynamic programming)

* Machine learr (neural n

local graphical models, simulated ling)

genetic algorithms with local crossover,

* Speech recognition (HMMSs, many concurrent voice streams, Dragon CTO)

* Neocortex sim (~human, faster than realtime, supercomputer $)

Machine Learning for Systems
and
Systems for Machine Learning
Jeff Dean

Google Brain team
g.co/brain

Presenting the work of many people at Google

Combine FPU with 200 words memory. Build 2D grid, |

Inva

M

Seconciry
Storage
{DAAN)

Confidential Proswerty of irgular Compating Jurwe 2011

“Around the time of maybe 2011,
2012, when the Google Brain
project that | co-founded was just
getting started, we started to
collaborate with . . . the speech
recognition team [at Google] . . .
and so we could tell that as speech
recognition gets better people are
going to use it more and more . . .
and at the time, we had [sic] lots
and lots of CPUs in our data center
and if you look at how much
computation that would be
required if a hundred million of
our users started to do that, that
was actually kind of daunting and
scary, we would have essentially
double the computing footprint of
Google just to support like a
slightly better speech recognition
model.

HEM
BGE

XU MXU
126x128 126x128

23.  Priorto 2017, Google knew that its demand for Al-based user services far
exceeded its computing capabilities. Google recognized that, but for its inclusion of the
technology covered by Dr. Bates’ patents inside its computers, it would have had to at least
double its computing footprint to accommodate such demand for delivering increased speech
recognition services alone.

24.  Asof 2017, Google housed its service-providing computers in the United States

in at least eight data centers. As of 2017, the approximate cost to build each data center was at

8
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least 1.25 billion dollars. As recognized by Google, but for the incorporation of the technology
covered by Dr. Bates’ patented invention, Google would have to at least double the number of
data centers in the U.S. at a cost of at least 10 billion dollars to accommodate increased demand.

25.  Google uses the accused TPUv2 and TPUv3 Devices to provide Al capabilities
that enhance the performance and efficacy of its Ads platform (e.g. determining which ads to
serve to which users to maximize revenue to Google), as well as its Translate, Photos, Search,
Assistant, Cloud and Gmail services. Google provides Translate, Photos, Search, Assistant,
Cloud, and Gmail services to the public and leverages public engagement with these services to
enhance its Ads platform. As a result, Google services generate at least tens of billions of dollars
per year in profit.

26.  Google now operates at least eleven data centers in the USA. On information and
belief, Google’s infringing TPUv2 and TPUv3 Devices are installed at and operate in each of
these data centers. These include Google’s USA-based data centers at: Berkeley County, South
Carolina; Council Bluffs, lowa; The Dalles, Oregon; Douglas County, Georgia; Henderson,
Nevada; Jackson County, Alabama; Lenior, North Carolina; Loudoun County, Virginia; Mayes
County, Oklahoma; Midlothian, Texas; and Montgomery County, Tennessee.

THE PATENTS-IN-SUIT

27.  On March 26, 2013, the USPTO issued United States Patent No. 8,407,273 (“the
’273 patent”), titled PROCESSING WITH COMPACT ARITHMETIC PROCESSING
ELEMENT. On December 22, 2015, the USPTO issued United States Patent No. 9,218,156
(“the *156 patent”), titled PROCESSING WITH COMPACT ARITHMETIC PROCESSING
ELEMENT. On September 17, 2019, the USPTO issued United States Patent No. 10,416,961

(“the *961 patent”), titled PROCESSING WITH COMPACT ARITHMETIC PROCESSING
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ELEMENT. The 273 patent, 156 patent, and *961 patent (collectively the “patents-in-suit”) are
each valid and enforceable.

28.  Singular is the owner and assignee of all rights, title and interest in and to the
patents-in-suit, and holds all substantial rights therein, including the right to grant licenses, to
exclude others, and to enforce and recover past damages for infringement. The assignment of
rights for the 156 patent was duly recorded at the USPTO on March 25, 2013. The assignment
of rights for the 273 patent was duly recorded at the USPTO on February 17, 2012. The
assignment of rights for the *961 patent was duly recorded at the USPTO on October 30, 2018.

29.  The application for the patents-in-suit was first filed by inventor Dr. Bates as a
provisional patent application (Application No. 61/218,691) on June 19, 2009.

COUNT I
(Google’s Infringement of United States Patent No. 8,407,273)

30.  Paragraphs [1-29] are reincorporated by reference as if fully set forth herein.

31.  The 273 patent addresses, inter alia, the aforementioned technological problem
of a computer making inefficient use of its transistors.

32.  The *273 patent teaches a technological solution to this problem in the form of
novel, unconventional and counterintuitive computer architectures that include, inter alia, the
following:

Q) at least one LPHDR execution unit (e.g., a processing element) that

a. accepts input signals representing numerical values, that each have a dynamic
range that is at least as wide as from 1,000,000 to 1/1,000,000, and
b. produces output signals representing numerical values, in response to

requested arithmetic operations, that differ by at least 0.05% from their

10
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respective exact results for at least 5% of all possible valid such requested
operations; and,

(i) anumber of LPHDR execution units that exceeds by at least 100 the number of

higher precision (e.g., 32 bit) floating point multiplication processing elements.
Dr. Bates’ patented architectures solve the aforementioned problem of inefficient transistor use.
Dr. Bates” LPHDR processing elements utilize a far smaller number of transistors per operation
than the high-precision processing elements of conventional computer architectures. This
difference in the required number of transistors per operation creates the opportunity to pack into
a computer having a normal number of transistors (e.g., several billion transistors) a very large
number of LPHDR processing elements that can collectively perform a number of multiplication
operations per period that is many multiples larger than the number of multiplication operations
per period provided by a conventionally architected computer having similar physical
characteristics (i.e., in terms of its number of transistors, its semiconductor fabrication process,
power draw, etc.). A computer utilizing Dr. Bates’ novel architecture achieves the advantage of
executing a larger number of operations per period than a conventional computer while
supporting software programs that require operations to be performed on numbers having high
dynamic range.

33.  Dr. Bates’ architectural solution to the aforementioned problem of inefficient
transistor usage represented a fundamentally new, unconventional and novel approach to
computer architecture. Dr. Bates’ patented architectural solutions were not obvious, or
conventional to one of ordinary skill in the art at the time of the invention. Conventional
computer architectures, for example, even when intended for execution of Al software programs,

did not include the concept of a computer based on a large number of low precision high

11
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dynamic range (LPHDR) processing elements. Prior to Dr. Bates’ invention, such a computer
did not exist.

34. Computer architects as of 2009 taught away from Dr. Bates’ invention. Dr.
Bates” LPHDR processing elements frequently generate, in response to requests to perform
arithmetic operations on high dynamic range numbers, results that materially differ from the
exact results of those operations. For example, the *273 patent teaches an LPHDR processing
element that can generate results in response to requested arithmetic operations that differ by at
least 0.05% from their respective exact results, for at least 5% of all possible valid such
requested operations. It would have been counterintuitive to those in the art as of 2009, to
architect a computer from even one such frequently inexact LPHDR processing element, let
alone a large number of LPHDR processing elements that were all frequently generating such
materially inexact results for a given software program. It was counterintuitive to architect a
computer comprising numerous LPHDR processing elements that each were frequently
generating materially inexact results, knowing that such a computer was going to be used by
software programs to execute many tasks that each required hundreds, thousands or even
millions of sequential arithmetic operations that could accumulate errors. Dr. Bates nonetheless
conceived, made and patented a working computer utilizing such LPHDR processing elements.

35.  The 273 patent ushered in a revolutionary increase in computer efficiency
through improved computer architectures. Its claims specify architectural features pertaining to a
computer design, including LPHDR processing elements, and heterogeneous computers based on
particular ratios of LPHDR processing elements to conventional higher precision processing

elements.

12
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36.

Google has directly infringed, and continues to directly infringe, literally and/or

by the doctrine of equivalents, at least claims 17, 18, 52 and 53 of the *273 patent by making,

using, testing, selling, offering for sale and/or importing into the United States its TPUv2 and

TPUvV3 Devices alone or in combination with its existing data servers. Google’s computer

systems that infringe the ’273 patent include the TPUv2 and TPUv3 Devices. The infringing

TPUvV2 and TPUvV3 Devices, in Google’s own words, power at least Google Translate, Photos,

Search, Assistant, and Gmail, as published by Google:

37.

Empowering businesses
with Google Cloud Al

Machine learning has produced business and research
breakthroughs ranging from network security to medical
diagnoses. We built the Tenseor Processing Unit (TPU) in
order to make it possible for anyone to achieve similar
breakthroughs. Cloud TPU is the custom-designed
machine learning ASIC that powers Google products like
Translate, Photos, Search, Assistant, and Gmail. Herg's
how you can put the TPU and machine learning to work

accelerating your company’s success, especially at scale.

Claim 53 of the *273 patent is reproduced below:

A device:

comprising at least one first low precision high-dynamic range

(LPHDR) execution unit adapted to execute a first operation on a first input
signal representing a first numerical value to produce a first output signal
representing a second numerical value,

wherein the dynamic range of the possible valid inputs to the first operation is at
least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the
possible valid inputs to the first operation, the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the
possible valid inputs to the first operation, of the numerical values represented by
the first output signal of the LPHDR unit executing the first operation on that
input differs by at least Y=0.05% from the result of an exact mathematical
calculation of the first operation on the numerical values of that same input;
wherein the number of LPHDR execution units in the device exceeds by at least
one hundred the non-negative integer number of execution units in the device

13
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adapted to execute at least the operation of multiplication on floating point
numbers that are at least 32 bits wide.

38. A TPUv2 and a TPUv3 Device are examples of a “device,” as claimed by the *273

patent. As published by Google:

TPU versions

Each TPU version defines the specific hardware characteristics of a TPU device. The TPU version
defines the architecture for each TPU core, the amount of high-bandwidth memory (HBM) for each
TPU core, the interconnects between the cores on each TPU device, and the networking interfaces
available for inter-device communication.

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

Host VM

"TPU board" = 8 TPU cores
CPUs ’ :

/o

Network PCl v3x 32

S

One TPU
Your VM R

Runs data feed code Runs training code

39. Each TPUv2 and TPUv3 Device infringes claim 53 of the 273 patent, by inter
alia, including over 100,000 matrix multiplication unit (MXU) arithmetic logic units (ALUSs) and
associated circuitry.

a. Each TPUv2 Device has 8 MXUs (one MXU per TPU core, 2 TPU cores per

chip, and 4 chips per TPUv2 Device), and each TPUv3 Device has 16 MXUs (two
MXUs per TPU core, 2 TPU cores per chip, and 4 chips per TPUv3 Device). As

published by Google:

14
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o TPUVZ:
* 8GiB of HBM for each TPU core
* One MXU for each TPU core
* Upto 512 total TPU cores and 4 TiB of total memory in a TPU Pod
o TPUV3:
* 16 GiB of HBM for each TPU core
» Two MXUs for each TPU core
« Up to 2048 total TPU cores and 32 TiB of total memory in a TPU Pod

Core Core
| scalars vector [ scaters vector |
it l S
[eanoaooa | Loouooan o ‘Illl.lll' ama Ll
—11—11 R A GEEENENN | ENSNAEEE
g: i Ea:mm:ﬁﬂ{ oCnEnomng | P> gce
COnnonon onooo=ag | |
rrnrlnr,nn‘ oonencuBa
[Ssi=lals[=isTE] S00ECang
E20gEE00 | SoEEeEog
[S==TlE==1R] oneEEae g
MXY MXU
128x128 1280128

b.

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips. 2 cores per chip

Each MXU contains a systolic array having 128 X 128 MXU ALU:s (i.e., 16,384
ALUs). A TPUv2 Device has 131,072 MXU ALUs and a TPUv3 Device has
262,144 MXU ALUs. As published by Google:

Cloud TPU v2 and Cloud TPU w3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

15
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C. Each of those one-hundred-thousand-plus ALUs is adapted to execute a
multiplication operation on a value that was converted to a “bfloat16” format after
being taken as input in 32-bit floating point format (“FP32 format” or “float32”).
The circuitry for taking a float32 input signal, converting it to a bfloat16 value,
and then multiplying the value, is hereinafter an “MXU Reduced Precision
Multiply Cell.” An MXU Reduced Precision Multiply Cell comprises the part of
an MXU ALU that performs a multiplication operation, and circuitry for taking a
float32 input signal and converting it to a bfloat16 value. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,

multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

S'}'stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

40.  Over 100,000 individual MXU Reduced Precision Multiply Cells are in each
TPUv2 and TPUv3 Device. Each individual MXU Reduced Precision Multiply Cell is a “low
precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a
first input signal representing a first numerical value to produce a first output signal
representing a second numerical value.” The “first operation” executed by each individual

MXU Reduced Precision Multiply Cell is a multiplication operation that is (i) performed on two

16
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input signals each representing a float32 numerical value, but (ii) carried out at “reduced
bfloat16 precision.” Such an operation (e.g., “X[2,0]*W[0,0]” in the example equation for
Y[2,0] that Google provides below) is a part of a larger float32 matrix multiplication operation
(e.g., Y=X*W in the example Google provides below) being performed at “reduced bfloat16
precision” by the MXU as a whole. As published by Google:

Cloud TPU vZ and Cloud TPU w3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can parform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Systolic array

The MXU implements matrix multiplications in hardware using a so-called “systolic array” architecture in which data
elemants flow through an array of hardware computation units. {In medicine, "systolic” refars to heart contractions and
blood flow, here to the flow of data.)

Thie basic element of a matrix multiplication is a dot product between a line from ane matrix and a column from the other
matrix {see illustration at the top of this section). For a matrix multiplication Y=X*W. one element of the result would be:

Y[2,8] = X[2,8]=W[0,0] + X[2,1]=W[1,08] + X[2,2]*W[2,0] + ... + X[2,n]*H[n,8]
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lllustration: a dense neural network layer as a matrix mudtiplication, with a batch of eight images processed
through the newral network at once. Please run through one line x column muitiplication to verify that it is indeed
doing aweighted sum of all the pixels values of an image. Comvolutional layers can e represented as matrix
multiplications.

é&stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

41.  The “first input signal” for each individual MXU Reduced Precision Multiply
Cell is the signal representing a float32 value from inside either matrix that is being multiplied
by the MXU. In the illustration below taken from a Google animation, such input signals are
depicted using the red dots moving rightwards into the left of the MXU and its Reduced
Precision Multiply Cells. Such input signals are also depicted in the same Google animation
using the black/grey dots moving upwards into the bottom of the MXU and its Reduced
Precision Multiply Cells. The “first output signal” produced by an MXU Reduced Precision

Multiply Cell is the result of the float32 multiplication operation it performs at reduced bfloat16

18



Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 19 of 63

precision. Such a “first output signal” flows from the multiplier “x” to the adjacent adder “+” in
one of the Google illustrations below and is described as a result. In Google’s own words, “as
each multiplication is executed, the result will be passed to the next multipliers while taking

summation at the same time.” As published by Google:

Cloud TRPU w2 and Cloud TPU w3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

é:j}s"tem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

On a GPU, one would program this dot product into a GPU “core” and then execute it on as many "cores” as are available
in parallel to try and compute every value of the resulting matrix at once. If the resulting matrix is 128x128 large, that
would require 128x128=16K "cores” to be available which is typically not possible. The largest GPUs have around 4000
cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU: just bfloatl6 x
bfloatlé => float32 multiply-accumulators, nothing else. These are so small that a TPU can implement 16K of
them in a 128x128 MXU and process this matrix multiplication in one go.
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lllustration: the MXU systolic array. The compute elements are multiply-accumulators. The values of one matrix are loaded
into the array (red dots). Values of the other matrix flow through the array (grey dots). Vertical lines propagate the values up.
Horizontal lines propagate partial sums. It is left as an exercise to the user to verify that as the data flows through the array,
you get the result of the matrix multiplication coming out of the right side.
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Let's see how a systolic array executes the neural network calculations. At first, the TPU loads the parameters from
memory into the matrix of multipliers and adders.
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Then, the TPU loads data from memory. As each multiplication is executed, the result will be passed to the next
multipliers while taking the summation at the same time. So the output will be the summation of all multiplication results

between data and parameters. During the whole process of massive calculations and data passing, no memory access is
required at all.
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42.  The “first numerical value” represented by the “first input signal,” and the
“second numerical value” represented by the “first output signal,” are all float32 numbers.

Float32 numbers are “numerical values.” As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication unit
(MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and multiple TPU
chips per Cloud TPU system. Collectively, these MXUs deliver the majority of the total
system FLOPS. Each MXU takes inputs in FP32 format but then automatically converts
them to bfloat16 before calculation. (A TPU can perform FP32 multiplications via multiple
iterations of the MXU.) Inside the MXU, multiplications are performed in bfloat16 format,
while accumulations are performed in full FP32 precision.

20



Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 21 of 63

3
{

Dooooooo

MxU
128x128

é{/s‘tem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

Let's see how a systolic array executes the neural network calculations. At first, the TPU loads the parameters from
memory into the matrix of multipliers and adders.

ouTPUT

e . . . . .

Then, the TPU loads data from memory. As each multiplication is executed, the result will be passed to the next
multipliers while taking the summation at the same time. So the output will be the summation of all multiplication results
between data and parameters. During the whole process of massive calculations and data passing, no memory access is
required =t all.

Single-precision floating-point format

From Wikipedia, the free encyclopedia

Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer
memory; it represents a wide dynamic range of numeric values by using a floating radix point.

A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at

43. Each MXU Reduced Precision Multiply Cell is an “LPHDR execution unit.”
Specifically:
e For each MXU Reduced Precision Multiply Cell, “the dynamic range of the possible
valid inputs to the first operation is at least as wide as from 1/1,000,000 through

1,000,000.” As shown above, each MXU Reduced Precision Multiply Cell performs a

21



As Figure 1 shows, bfloat16 has a greater dynamic

We ned a wide range of deep learning
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float32 multiplication operation at “reduced bfloat16 precision” on valid input signals
representing numerical values having a float32 format. A float32 numerical value, whose
format is shown below, has the following dynamic range:

Minimum: 27126 = 1.175494351 x 10~

Maximum: (2 - 2723 x 2127 = 3.402823466 x 103

As published by Google:
(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e"** to ~3¢™
Exponent 8 bts Mantisss (Sgreicand) 23 bis

Blcococococotococ MM UM MMM MMM MY MY MMM

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96e™ 10 65504

Exponent S bty Manissa (Sonficand). 10 bis

Bleocococ v v N

(c) bfloat16: Brain Floating Point Format Range: ~1e** to ~3¢™
Exponset 8 bas Mantisss (Sgrificand) 7 bis

B c@uvunum

range—i.e, number of exponent
than FP16. In fact, the dynamic range ¢ 16 is identical to that of FP32

Is, and in our experience, the

bfloat16 format w well as the FP32 format while delivering increased

] memory usage

For each MXU Reduced Precision Multiply Cell, “for at least X=5% of the possible valid
inputs to the first operation... the numerical values represented by the first output signal
of the LPHDR unit executing the first operation on that input differs by at least Y=0.05%
from the result of an exact mathematical calculation of the first operation on the
numerical values of that same input.” Specifically, each TPUv2 and TPUv3 MXU
Reduced Precision Multiply Cell performs a float32 multiplication operation but does so
in Google’s own words at “reduced bfloat16 precision.” Each MXU Reduced Precision
Multiply Cell takes the following steps: (i) receives as input two signals that each

represent a float32 numerical value, (ii) converts each of the received float32 numerical
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values to a bfloat16 numerical value, (i) multiplies the resulting pair of bfloat16
numerical values with each other, and (iv) adjusts the format of the result of the bfloat16
multiplication generated in step (iii), if needed, to produce an output signal that

represents a float32 numerical value to be accumulated. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXLU), a 128 x 128 systolic array. There are two MxUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU_} Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Sy'stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

When the float32 numerical values produced by the TPU’s float32 multiplication
operation (which, as shown above, is performed at “reduced bfloat16 precision”), for a
mathematically representative sample of all possible valid pairs of inputted float32
numerical values, are compared to the numerical values produced by the exact full
precision multiplication operations for those same respective valid pairs of inputted
float32 numerical values, the TPU’s float32 numerical values differ, for at least 5% of
those multiplied pairs, from the respective exact full precision values, by at least 0.05%.

This is illustrated by the Singular test results shown below.
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bfl6
% of valid > 1.00% 4.65%
% of valid > 0.50% 55.39%
% of valid > 0.20% 92.69%
% of valid > 0.10% 98.15%
% of valid > 0.05% 99.52%

e For each MXU Reduced Precision Multiply Cell, “the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the
possible valid inputs to the first operation, of the numerical values represented by the
first output signal of the LPHDR unit executing the first operation on that input, ” will
simply equal the numerical value represented by the output signal produced when the
MXU Reduced Precision Multiply Cell (i.e., an LPHDR unit) executes an operation on
input signals. Each MXU Reduced Precision Multiply Cell is part of a TPUv2 Device or
a TPUv3 Device, which are deterministic in their designs (i.e., an operation repeatedly
performed by a TPUv2 or a TPUv3 Device on a given set of inputs signals will always

yield the same output signal). As published by Google:

Because general-purpose processors such as CPUs and GPUs must
provide good performance across a wide range of applications, they have
evolved myriad sophisticated, performance-oriented mechanisms. As a
side effect, the behavior of those processors can be difficult to predict,
which makes it hard to guarantee a certain latency limit on neural
network inference. In contrast, TPU design is strictly minimal and
deterministic as it has to run only one task at a time: neural network
prediction. You can see its simplicity in the floor plan of the TPU die.

44, In each TPUv2 and each TPUv3 Device, “the number of LPHDR execution
units in the device exceeds by at least one hundred the non-negative integer number of execution
units in the device adapted to execute at least the operation of multiplication on floating point

numbers that are at least 32 bits wide.” AS shown above, a TPUv2 Device has 8 MXUs, a
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TPUvV3 has 16 MXUs, and each MXU has 16,384 MXU Reduced Precision Multiply Cells. As
also shown above, each MXU Reduced Precision Multiply Cell is an LPHDR execution unit that
performs a float32 multiplication operation at “reduced bfloat16 precision.” Therefore, each
TPUV2 Device has at least 131,072 MXU Reduced Precision Multiply Cells that are each
LPHDR execution units, and each TPUv3 has at least 262,144 MXU Reduced Precision Multiply
Cells that are each LPHDR execution units. By contrast, there are far fewer execution units
adapted to execute the operation of multiplication on floating point numbers that are at least 32
bits wide, on TPUv2 or TPUv3 Devices, since:

e the MXU delivers the “bulk” of a TPU Device’s overall arithmetic computation

capability. As published by Google:

Sylstem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the |IEEE half-precision representation.

e the MXU Reduced Precision Multiply Cells, in performing float32 multiplication
operations at “reduced bfloat16 precision,” do not “execute the operation of
multiplication on floating point numbers that are at least 32 bits wide.” Arithmetic
(including multiplication) on floating point numbers that are at least 32 bits wide is
defined in Singular’s patents as “high dynamic range arithmetic of traditional precision.”

The float32 multiplication operation of an MXU Reduced Precision Multiply Cell is

performed at “reduced bfloat16 precision,” which entails performing multiplication on

floating point numbers that are 16 bits wide. Therefore, the MXU Reduced Precision

Multiply Cells themselves do not “execute the operation of multiplication on floating

point numbers that are at least 32 bits wide.” As published by Google:
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around 4000 cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU:
just bfloatle x bfloatlé => float32 multiply-accumulators, nothing else. These are so small that a TPU can
implement 16K of them in a 128x128 MXU and process this matrix multiplication in one go.

Cloud TPU w2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

\E'S"‘Qst-em Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the |IEEE half-precision representation.

As affirmed by Dr. Patterson of Google at a lecture presented at the MIT Computer
Science and Artificial Intelligence Lab on October 16, 2019, there is roughly a 10:1 ratio
of multipliers in MXU versus VPU. The number of MXU Reduced Precision Multiply
Cells (i.e., LPHDR execution units, as shown above) in each TPUv2 Device and TPUv3
Device (i.e., 131,072 for a TPUv2 Device or 262,144 for a TPUv3 Device) far exceeds
the number of execution units in those same TPUv2 and TPUv3 Devices adapted to
execute multiplication on floating point numbers that are at least 32 bits wide (roughly
13,107 for a TPUV2 Device, and roughly 26,214 for a TPUv3 Device). As published by

Google:

MXU and VPU

ATPU v2 core is made of a Matrix Multiply Unit (MXU) which runs matrix multiplications and a Vector Processing Unit
(VPU) for all other tasks such as activations, softmax, etc. The VPU handles float32 and int32 computations. The MXU on
the other hand operates in a mixed precision 16-32 bit floating point format.
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TPUv2 Block Diagram

TensorCore

e Vector Processing Unit (VPU)
32 2D Vector registers Vregs +

Core Sequencer
o e R 2D Vector memorv Vmem (16MiB)
Pioos S BRI T (B nag U pag o =1/10th performance MXU
b § | i e Core Sequencer fetches instructions
: : from Instruction Memory Imem
e Inter-Core Interconnect (ICl) sends
e A128x128 systolic Matrix MUltiply Unit messages between TensorCores
(MXU) performs Nx128x128 matrix e High Bandwidth Memory (HBM)
multiplications (peak: 32K ops/clock) interposer with 2 HBM stacks / TC
e Transpose Reduction Permute Unit o 32 64-bit busses (20x TPUv1)
(TRP) on 128x128 matricies e Connects to host CPU via PCle Gen3

x16 bus using Host DMA Queues

45, In knowingly adopting Dr. Bates’ patented computer architectures, Google reaps
the very same benefits that were predicted by Dr. Bates in his patent application more than 10

years ago. As published by Google and predicted by Dr. Bates in his patent application:

Choosing bfloat1é

Our hardware teams chose bfloat16 for Cloud TPUs to improve hardware efficiency
while maintaining the ability to train accurate deep learning models, all with minimal
switching costs from FP32. The physical size of a hardware multiplier scales with

the square of the mantissa width. With fewer mantissa bits than FP16, the bfloat16
multipliers are about half the size in silicon of a typical FP16 multiplier, and they are

~

eight times smaller than an FP32 multiplier!

PEs implemented according to certain embodiments of the
present invention may be relatively small for PEs that can do
arithmetic. This means that there are many PEs per unit of
resource (e.g., transistor, area, volume), which in turn means 4
that there is a large amount of arithmetic computational
power per unit of resource. This enables larger problems to be
solved with a given amount of resource than does traditional
computer designs. For instance, a digital embodiment of the
present invention built as a large silicon chip fabricated with 4
current state of the art technology might perform tens of
thousand of arithmetic operations per cycle, as opposed to
hundreds in a conventional GPU or a handful in a conven-
tional multicore CPU. These ratios reflect an architectural
advantage of embodiments of the present invention that
should persist as fabrication technology continues to
improve, even as we reach nanotechnology or other imple-
mentations for digital and analog computing.

wn

46.  Asaresult of Google’s infringement of the *273 patent, Singular has suffered

damages in an amount to be determined at trial.
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COUNT NI
(Google’s Infringement of United States Patent No. 9,218,156)

47.  Paragraphs [1-46] are reincorporated by reference as if fully set forth herein.

48.  The *156 patent addresses, inter alia, the aforementioned technological problem
of a computer making inefficient use of its transistors.

49.  The *156 patent teaches a technological solution to this problem in the form of
novel, unconventional and counterintuitive computer architectures that include, inter alia, the
following:

Q) At least one LPHDR execution unit (e.g., a processing element) that:

a. accepts input signals representing numerical values, that each have a dynamic
range that is at least as wide as from 1,000,000 to 1/1,000,000, and

b. produces output signals representing numerical values, in response to
requested arithmetic operations, which differ by at least 0.05% different from
their respective exact results for at least 5% of all possible valid such
requested operations;

(i) acomputing device adapted to control the operation of the one or more LPHDR

execution units; and,

(iii)  anumber of LPHDR execution units that exceeds by at least 100 the number of

higher precision (e.g., 32 bit) floating point multiplication processing elements.
Dr. Bates’ patented architectures solve the aforementioned problem of inefficient transistor use.
Dr. Bates” LPHDR processing elements utilize a far smaller number of transistors per operation
than the high-precision processing elements of conventional computer architectures. This
difference in the required number of transistors per operation creates the opportunity to pack into

a computer having a normal number of transistors (e.g., several billion transistors) a very large
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number of LPHDR processing elements that can collectively perform a number of multiplication
operations per period that is many multiples larger than the number of multiplication operations
per period provided by a conventionally architected computer having similar physical
characteristics (i.e., in terms of its number of transistors, its semiconductor fabrication process,
power draw, etc.). A computer utilizing Dr. Bates’ novel architecture achieves the advantage of
executing a far larger number of operations per period than a conventional computer while
supporting software programs that require operations to be performed on numbers having high
dynamic range.

50. Dr. Bates’ architectural solution to the aforementioned problem of inefficient
transistor usage represented a fundamentally new and unconventional approach to computer
architecture. Dr. Bates’ patented architecture was not obvious, or conventional to one of
ordinary skill in the art at the time of the invention. Conventional computer architectures, for
example, even when intended for execution of Al software programs, did not include the concept
of a computer based on low precision high dynamic range (LPHDR) processing elements.
Computer architects even taught away from this concept. Prior to Dr. Bates’ invention, such a
computer did not exist.

51.  Computer architects as of 2009 taught away from Dr. Bates’ invention. Dr.
Bates” LPHDR processing elements frequently generate, in response to requests to perform
arithmetic operations on high dynamic range numbers, results that materially differ from the
exact results of those operations. For example, the 156 patent teaches an LPHDR processing
element that can generate results in response to requested arithmetic operations that differ by at
least 0.05% from their respective exact results, for at least 5% of all possible valid such

requested operations. It would have been counterintuitive to those in the art as of 2009, to
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architect a computer from even one such frequently inexact LPHDR processing element, let
alone a large number of LPHDR processing elements that were all frequently generating such
materially inexact results for a given software program. It was counterintuitive to architect a
computer comprising numerous LPHDR processing elements that each frequently generate
inexact results, knowing that such a computer was going to be used by software programs to
execute many tasks that each required hundreds, thousands or even millions of sequential
arithmetic operations that could accumulate errors. Dr. Bates nonetheless conceived, made and
patented a working computer utilizing such LPHDR processing elements.

52.  The 156 patent ushered in a revolutionary increase in computer efficiency
through improved computer architectures. Its claims specify architectural features pertaining to a
computer design, including LPHDR processing elements, a computing device that is adapted to
control the operation of the LPHDR execution units, and heterogeneous computers based on
particular ratios of LPHDR processing elements to conventional higher precision processing
elements.

53.  Google has directly infringed, and continues to directly infringe, literally and/or
by the doctrine of equivalents, at least claims 6, 7, 21 and 22 of the *156 patent by making, using,
testing, selling, offering for sale and/or importing into the United States its TPUv2 and TPUv3
Devices alone or in combination with its existing data servers. Google’s computer systems that
infringe the *156 patent include the TPUv2 and TPUv3 Devices. The infringing TPUv2 and
TPUV3 Devices, in Google’s own words, “powers” at least Google Translate, Photos, Search,

Assistant, and Gmail. As published by Google:
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Empowering businesses
with Google Cloud Al

Machine learning has produced business and research
breakthroughs ranging from network security to medical
diagnoses. We built the Tensor Processing Unit (TPU) in
order to make it possible for anyone to achieve similar
breakthroughs. Cloud TPU is the custom-designed
machine learning ASIC that powers Google products like
Translate, Photos, Search, Assistant, and Gmail. Here's
how you can put the TPU and machine learning to work
accelerating your company’s success, especially at scale.

54.  Claim 7 of the *156 patent is reproduced below:

A device comprising:

at least one first low precision high-dynamic range (LPHDR) execution

unit adapted to execute a first operation on a first input signal representing a first
numerical value to produce a first output signal representing a second numerical
value,

wherein the dynamic range of the possible valid inputs to the first operation is at
least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the
possible valid inputs to the first operation, the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the
possible valid inputs to the first operation, of the numerical values represented by
the first output signal of the LPHDR unit executing the first operation on that
input differs by at least Y=0.05% from the result of an exact mathematical
calculation of the first operation on the numerical values of that same input; and
at least one first computing device adapted to control the operation of the at least
one first LPHDR execution unit

wherein the at least one first computing device comprises at least one of a central
processing unit (CPU), a graphics processing unit (GPU), a field programmable
gate array (FPGA), a microcode-based processor, a hardware sequencer, and a
state machine; and,

wherein the number of LPHDR execution units in the device exceeds by at least
one hundred the non-negative integer number of execution units in the device
adapted to execute at least the operation of multiplication on floating point
numbers that are at least 32 bits wide.

55. A TPUvV2 or a TPUv3 Device are examples of a “device,” as claimed by the 156

patent. As published by Google:
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TPU versions

Each TPU version defines the specific hardware characteristics of a TPU device. The TPU version
defines the architecture for each TPU core, the amount of high-bandwidth memory (HBM) for each
TPU core, the interconnects between the cores on each TPU device, and the networking interfaces
available for inter-device communication.

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

Host VM

"TPU board” = 8 TPU cores

Network PCIv3x32

o
== '
h -;-,' :
Cne TPU
You r ‘I' M core
Runs data feed code Runs training code

Illustration: your VM with a network-attached "Cloud TPU" accelerator. "The Cloud TPU" itself is made of a VM with a PCI-
attached TPU board with four dual-core TPU chips on it.

56. Each TPUv2 Device and TPUv3 Device infringes claim 7 of the 156 patent by,
inter alia, including over 100,000 matrix multiplication unit (MXU) ALUs and associated
circuitry.

a. Each TPUv2 Device has 8 MXUs (one MXU per TPU core, 2 TPU cores per

chip, and 4 chips per TPUv2 Device), and each TPUv3 Device has 16 MXUs (two
MXUs per TPU core, 2 TPU cores per chip, and 4 chips per TPUv3 Device). As

published by Google:
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e TPUV2:

* 8 GiB of HBM for each TPU core

* One MXU for each TPU core

* Upto 512total TPU cores and 4 TiB of total memory in a TPU Pod
o TPUV3:

* 16 GiB of HBM for each TPU core

* Two MXUs for each TPU core

* Upto 2048 total TPU cores and 32 TiB of total memory in a TPU Pod

Core Core
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TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips. 2 cores per chip

b. Each MXU contains a systolic array having 128 X 128 MXU ALU:s (i.e., 16,384
ALUs). Therefore, a TPUv2 Device has 131,072 MXU ALUs and a TPUv3

Device has 262,144 MXU ALUs. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MiXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU ) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

C. Each of those one-hundred-thousand-plus ALUs is adapted to execute a

multiplication operation on a value that was converted to a “bfloat16” format after
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being taken as input in 32-bit floating point format (“FP32 format” or “float32”).
The circuitry for taking a float32 input signal, converting it to a bfloat16 value,
and then multiplying the value, is hereinafter an “MXU Reduced Precision
Multiply Cell.” An MXU Reduced Precision Multiply Cell comprises the part of
an MXU ALU that performs a multiplication operation, and circuitry for taking a

float32 input signal and converting it to a bfloat16 value. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
autormnatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Sy'stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

57.  Over 100,000 individual MXU Reduced Precision Multiply Cells are in each
TPUvV2 and TPUv3 Device. Each individual MXU Reduced Precision Multiply Cell is a “low
precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a
first input signal representing a first numerical value to produce a first output signal
representing a second numerical value.” The “first operation” executed by each individual
MXU Reduced Precision Multiply Cell is a multiplication operation that is (i) performed on two
input signals each representing a float32 numerical value, but (i1) carried out at “reduced
bfloat16 precision.” Such an operation (e.g., “X[2,0]*W[0,0]” in the example equation for

Y[2,0] that Google provides below) is a part of a larger float32 matrix multiplication operation
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(e.g., Y= X*W in the example Google provides below) being performed at “reduced bfloat16

precision” by the MXU as a whole. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUV3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Systolic array

The MXU implements matrix multiplications in hardware using a so-called "systalic array” architecture in which data
elemants flow through an array of hardware computation units. (In medicine, "systolic” refers to heart contractions and
blaod flow, here 1o the flow of data )

The basic element of a matrix multiplication is a dot product between a line from one matrix and a column from the other
matrix (e illustration at the top of this section). For a matrix multiplication Y=X*W, ane elemant of the result would be:

Y[2;8] = X[2,8]=W[0,0] + X[2,1]=W[1,0] + X[2,2]=W[2,0] + ... + X[2,n]*W[n,0]
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lllustration: a dense neural network layer as a matrix multiplication, with a baich of eight images processed
through the newral network at once. Please run through one iine x column muitiplication to verify that it is indeed
doing aweighted sum of all the pixels values of an image. Convolutional layers can be represented as matrix

multiplications.
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S';/stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
trainina and model accuracy than the |EEE half-precision representation.

58.  The “first input signal” for each individual MXU Reduced Precision Multiply
Cell is the signal representing a float32 value from inside either matrix that is being multiplied
by the MXU. In the illustration below taken from a Google animation, such input signals are
depicted using the red dots moving rightwards into the left of the MXU and its Reduced
Precision Multiply Cells. Such input signals are also depicted in the same Google animation
using the black/grey dots moving upwards into the bottom of the MXU and its Reduced
Precision Multiply Cells. The “first output signal” produced by an MXU Reduced Precision
Multiply Cell is the result of the float32 multiplication operation it performs at reduced bfloat16
precision. Such a “first output signal” flows from the multiplier “x” to the adjacent adder “+” in
the illustration below, and 1s described as a “result” in Google’s own words: “As each
multiplication is executed, the result will be passed to the next multipliers while taking

summation at the same time.” As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can parform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

System Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.
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On a GPU, one would program this dot product into a GPU "core” and then execute it on as many "cores” as are available
in parallel to try and compute every value of the resulting matrix at once. If the resulting matrix is 128x128 large, that
would require 128x128=16K "cores” to be available which is typically not possible. The largest GPUs have around 4000
cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU: just bfloat16 x
bfloatl6 => float32 multiply-accumulators, nothing else. These are so small that a TPU can implement 16K of
them in a 128x128 MXU and process this matrix multiplication in one go.
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lllustration: the MXU systolic array. The compute elements are multiply-accumulators. The values of one matrix are loaded
into the array (red dots). Values of the other matrix flow through the array (grey dots). Vertical lines propagate the values up.
Horizontal lines propagate partial sums. It is left as an exercise to the user to verify that as the data flows through the array,
you get the result of the matrix multiplication coming out of the right side.

How TPU works & Google Cloud

MULTIPLY & ADD

Let's see how a systolic array executes the neural network calculations. At first, the TPU loads the parameters from
memory into the matrix of multipliers and adders
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Then, the TPU loads data from memory. As each multiplication is executed, the result will be passed fo the next
multipliers while taking the summation at the same time. So the ocutput will be the summation of all multiplication results
between data and parameters. During the whole precess of massive calculations and data passing, no memory access is
required at all.

37



Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 38 of 63

59.  The “first numerical value” represented by the “first input signal,” and the

“second numerical value” represented by the “first output signal,” are all float32 numbers.
Float32 numbers are “numerical values.” As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication unit
(MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and multiple TPU
chips per Cloud TPU system. Collectively, these MXUs deliver the majority of the total
system FLOPS. Each MXU takes inputs in FP32 format but then automatically converts
them to bfloat16 before calculation. (A TPU can perform FP32 multiplications via multiple
iterations of the MXU.) Inside the MXU, multiplications are performed in bfloat16 format,
while accumulations are performed in full FP32 precision.

Cloud TPU
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System Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better

training and model accuracy than the IEEE half-precision representation.

Let's see how a systolic array executes the neural network calculations. At first, the TPU loads the parameters from
memory into the matrix of multipliers and adders.
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Then, the TPU loads data from memory. As each multiplication is executed, the result will be passad to the next

multipliers while taking the summation at the same time. So the output will be the summation of all multiplication results
between data and parameters. During the whole process of massive calculations and data passing, ne memory access is

required at all.
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Single-precision floating-point format

From Wikipedia, the free encyclopedia

Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer
memory; it represents a wide dynamic range of numeric values by using a floating radix point.

Afloating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at

60. Each MXU Reduced Precision Multiply Cell is an “LPHDR execution unit.”

Specifically:

For each MXU Reduced Precision Multiply Cell, “the dynamic range of the possible
valid inputs to the first operation is at least as wide as from 1/1,000,000 through
1,000,000.” As shown above, each MXU Reduced Precision Multiply Cell performs a
float32 multiplication operation at “reduced bfloat16 precision” on valid input signals
representing numerical values having a float32 format. A float32 numerical value, whose
format is shown below, has the following dynamic range:

Minimum: 2712 = 1.175494351 x 1073

Maximum: (2 - 2723) x 21?7 =~ 3,402823466 x 103

As published by Google:

(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e™* to ~3¢™

Exponent. § bits Mantisss (Sigreficand) 23 bits
.z::c(r::-uuu--luuuuuuunu-unn-uu

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢7 10 65504

Exponent § Dt Maniissa (Sgnficand). 10 bis
Blceovofocov MWW NN

Range: ~Te " 10 ~3e™

(c) bfloat16: Brain Floating Point Format
Exponsat § bas Mantisss (Sgrificana) 7 bgs
B s
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e For each MXU Reduced Precision Multiply Cell, “for at least X=5% of the possible valid
inputs to the first operation... the numerical values represented by the first output signal
of the LPHDR unit executing the first operation on that input differs by at least Y=0.05%
from the result of an exact mathematical calculation of the first operation on the
numerical values of that same input.” Specifically, each TPUv2 and TPUv3 MXU
Reduced Precision Multiply Cell performs a float32 multiplication operation but does so
in Google’s own words at “reduced bfloat16 precision.” Each MXU Reduced Precision
Multiply Cell takes the following steps: (i) receives as input two signals that each
represent a float32 numerical value, (ii) converts each of the received float32 numerical
values to a bfloat16 numerical value, (iii) multiplies the resulting pair of bfloat16
numerical values with each other, and (iv) adjusts the format of the result of the bfloat16
multiplication generated in step (iii), if needed, to produce an output signal that

represents a float32 numerical value to be accumulated. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat1é before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Sy'stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

When the float32 numerical values produced by the TPU’s float32 multiplication
operation (which, as shown above, is performed at “reduced bfloat16 precision”), for a

mathematically representative sample of all possible valid pairs of inputted float32
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numerical values, are compared to the numerical values produced by the exact full
precision multiplication operations for those same respective valid pairs of inputted
float32 numerical values, the TPU’s float32 numerical values differ, for at least 5% of
those multiplied pairs, from the respective exact full precision values, by at least 0.05%.

This is illustrated by the Singular test results shown below.

bf16
% of valid > 1.00% 4.65%
% of valid > 0.50% 55.39%
% of valid > 0.20% 92.69%
% of valid > 0.10% 98.15%
% of valid > 0.05% 99.52%

For each MXU Reduced Precision Multiply Cell, “the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the
possible valid inputs to the first operation, of the numerical values represented by the
first output signal of the LPHDR unit executing the first operation on that input, ” will
simply equal the numerical value represented by the output signal produced when the
MXU Reduced Precision Multiply Cell (i.e., an LPHDR unit) executes an operation on
input signals. Each MXU Reduced Precision Multiply Cell is part of a TPUv2 Device or
a TPUv3 Device, which are deterministic in their designs (i.e., an operation repeatedly
performed by a TPUv2 or a TPUv3 Device on a given set of inputs signals will always

yield the same output signal). As published by Google:

41



Case 1:19-cv-12551-FDS Document 1 Filed 12/20/19 Page 42 of 63

Because general-purpose processors such as CPUs and GPUs must
provide good performance across a wide range of applications, they have
evolved myriad sophisticated, performance-oriented mechanisms. As a
side effect, the behavior of those processors can be difficult to predict,
which makes it hard to guarantee a certain latency limit on neural
networl inference. In contrast, TPU design is strictly minimal and
deterministic as it has to run only one task at a time: neural network
prediction. You can see its simplicity in the floor plan of the TPU die.

61. Each TPUv2 and TPUv3 Device has “a computing device adapted to control the
operation of the at least one first LPHDR execution unit,” and that computing device “comprises
at least ... a central processing unit (CPU).” The computing device is the CPU running the Host

VM, which is the “master” VM that runs the controlling software program (e.g., as set out below,

9 ¢¢

“your Python code,” “your training job”, or “machine learning workloads). The controlling

software program “drives the TensorFlow server” (i.e., a TPU VM) which runs on a “TPU
worker,” or “TPU accelerator,” which is a TPUv2 or TPUv3 Device. As explained above, a

TPUV2 or TPUv3 Device includes LPHDR execution units. As published by Google:

A TPU training job runs on a two-VM configuration. One VM (the master) runs your Python code. The
master drives the TensorFlow server running on a TPU worker.

To use a TPU with Al Platform, configure your training job to access a TPU-enabled machine in one of
three ways:
* Usethe BASIC_TPU scale tier. You can use this method to access TPU v2 accelerators.

* Usea cloud_tpu worker and a legacy machine type for the master VM. You can use this
method to access TPU v2 accelerators.

* Usea cloud_tpu worker and a Compute Engine machine type for the master VM. You can use
this method to access TPU v2 or TPU v3 accelerators. TPU v3 accelerators are available in beta.

Basic TPU-enabled machine

Set the scale tier to BASIC_TPU to get a master VM and a TPU VM including one TPU with eight TPU
v2 cores, as you did when running the previous sample.
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Cloud Tensor Processing Units (TPUs)

Tensor Processing Units (TPUs) are Google’s custom-developed application-specific integrated
circuits (ASICs) used to accelerate machine learning workloads. TPUs are designed from the ground
up with the benefit of Google’s deep experience and leadership in machine learning.

Cloud TPU enables you to run your machine learning workloads on Google's TPU accelerator
hardware using Tensorflow [£. Cloud TPU is designed for maximum performance and flexibility to
help researchers, developers, and businesses to build TensorFlow compute clusters that can leverage
CPUs, GPUs, and TPUs. High-level Tensorflow APIs help you to get models running on the Cloud TPU
hardware,

Advantages of TPUs

Cloud TPU resources accelerate the performance of linear algebra computation, which is used heavily
in machine learning applications. TPUs minimize the time-to-accuracy when you train large, complex
neural network models. Models that previously took weeks to train on other hardware platforms can
converge In hours on TPUs

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

Host VM "TPU board” = 8 TPU c?res

CPUs e | o

Network

E 3

=3 One TPU
Your VM e

Runs data feed code Runs training code

62.  Ineach TPUv2 and each TPUV3 Device, “the number of LPHDR execution
units in the device exceeds by at least one hundred the non-negative integer number of execution
units in the device adapted to execute at least the operation of multiplication on floating point
numbers that are at least 32 bits wide.” As shown above, a TPUv2 Device has 8 MXUs, a
TPUV3 has 16 MXUs, and each MXU has 16,384 MXU Reduced Precision Multiply Cells. As
also shown above, each MXU Reduced Precision Multiply Cell is an LPHDR execution unit that
performs a float32 multiplication operation at “reduced bfloat16 precision.” Therefore, each
TPUV2 Device has at least 131,072 MXU Reduced Precision Multiply Cells that are each

LPHDR execution units, and each TPUV3 has at least 262,144 MXU Reduced Precision Multiply
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Cells that are each LPHDR execution units. By contrast, there are far fewer execution units
adapted to execute the operation of multiplication on floating point numbers that are at least 32
bits wide, on TPUv2 or TPUv3 Devices, since:

e the MXU delivers the “bulk” of a TPU Device’s overall arithmetic computation

capability. As published by Google:

Sy'stem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

e the MXU Reduced Precision Multiply Cells, in performing float32 multiplication
operations at “reduced bfloat16 precision,” do not “execute the operation of
multiplication on floating point numbers that are at least 32 bits wide.” Arithmetic
(including multiplication) on floating point numbers that are at least 32 bits wide is
defined in Singular’s patents as “high dynamic range arithmetic of traditional precision.”
The float32 multiplication operation of an MXU Reduced Precision Multiply Cell is
performed at “reduced bfloat16 precision,” which entails performing multiplication on
floating point numbers that are 16 bits wide. Therefore, the MXU Reduced Precision
Multiply Cells themselves do not “execute the operation of multiplication on floating

point numbers that are at least 32 bits wide.” As published by Google:

around 4000 cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU:
just bfloatl6é x bfloatls => float32 multiply-accumulators, nothing else. These are so small thata TPU can

implement 16K of them in a 128x128 MXU and process this matrix multiplication in one go.
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Cloud TPU w2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

é;ysfem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the |IEEE half-precision representation.

As affirmed by Dr. Patterson of Google at a lecture presented at the MIT Computer
Science and Artificial Intelligence Lab on October 16, 2019, there is roughly a 10:1 ratio
of multipliers in MXU versus VPU. The number of MXU Reduced Precision Multiply
Cells (i.e., LPHDR execution units, as shown above) in each TPUv2 Device and TPUv3
Device (i.e., 131,072 for a TPUv2 Device or 262,144 for a TPUv3 Device) far exceeds
the number of execution units in those same TPUv2 and TPUv3 Devices adapted to
execute multiplication on floating point numbers that are at least 32 bits wide (roughly
13,107 for a TPUV2 Device, and roughly 26,214 for a TPUv3 Device). As published by

Google:

MXU and VPU

ATPU v2 core is made of a Matrix Multiply Unit (MXU) which runs matrix multiplications and a Vector Processing Unit
(VPU) for all other tasks such as activations, softmax, etc. The VPU handles float32 and int32 computations. The MXU on
the other hand operates in a mixed precision 16-32 bit floating point format.
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TPUv2 Block Diagram
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63.  In knowingly adopting Dr. Bates’ patented computer architectures, Google reaps
the very same benefits that were predicted by Dr. Bates in his patent application more than 10

years ago. As published by Google and predicted by Dr. Bates in his patent application:

Choosing bfloat1é

Our hardware teams chose bfloat16 for Cloud TPUs to improve hardware efficiency
while maintaining the ability to train accurate deep learning models, all with minimal
switching costs from FP32. The physical size of a hardware multiplier scales with
the square of the mantissa width. With fewer mantissa bits than FP16, the bfloat16
multipliers are about half the size in silicon of a typical FP16 multiplier, and they are
eight times smaller than an FP32 multiplier!

PEs implemented according to certain embodiments of the
present invention may be relatively small for PEs that can do
arithmetic. This means that there are many PEs per unit of
resource (e.g., transistor, area, volume), which in turn means 4
that there is a large amount of arithmetic computational
power per unit of resource. This enables larger problems to be
solved with a given amount of resource than does traditional
computer designs. For instance, a digital embodiment of the
present invention built as a large silicon chip fabricated with 4
current state of the art technology might perform tens of
thousand of arithmetic operations per cycle, as opposed to
hundreds in a conventional GPU or a handful in a conven-
tional multicore CPU. These ratios reflect an architectural
advantage of embodiments of the present invention that s
should persist as fabrication technology continues to
improve, even as we reach nanotechnology or other imple-
mentations for digital and analog computing.

64.  Asaresult of Google’s infringement of the 156 patent, Singular has suffered

damages in an amount to be determined at trial.
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COUNT 111
(Google’s Infringement of United States Patent No. 10,416,961)

65.  Paragraphs [1-64] are reincorporated by reference as if fully set forth herein.

66.  The *961 patent addresses, inter alia, the aforementioned technological problem
of a computer making inefficient use of its transistors.

67.  The ’961 patent teaches a technological solution to this problem in the form of
novel, unconventional and counterintuitive computer architectures that include, inter alia, the
following:

Q) At least one LPHDR execution unit (e.g., a processing element) that:

a. accepts input signals representing numerical values, that each have a dynamic
range that is at least as wide as from 1,000,000 to 1/1,000,000, and

b. produces output signals representing numerical values, in response to
requested arithmetic operations, which differ by at least 0.2% from their
respective exact results for at least 10% of all possible valid such requested
operations; and,

(i) acomputing device adapted to control the operation of the one or more LPHDR

execution units.
Dr. Bates’ patented architectures solve the aforementioned problem of inefficient transistor use.
Dr. Bates” LPHDR processing elements utilize a far smaller number of transistors per operation
than the high-precision processing elements of conventional computer architectures. This
difference in the required number of transistors per operation creates the opportunity to pack into
a computer having a normal number of transistors (e.g., several billion transistors) a very large
number of LPHDR processing elements that can collectively perform a number of multiplication

operations per period that is many multiples larger than the number of multiplication operations
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per period provided by a conventionally architected computer having similar physical
characteristics (i.e., in terms of its number of transistors, its semiconductor fabrication process,
power draw, etc.). A computer utilizing Dr. Bates’ novel architecture achieves the advantage of
executing a far larger number of operations per period than a conventional computer while
supporting software programs that require operations to be performed on numbers having high
dynamic range.

68. Dr. Bates’ architectural solution to the aforementioned problem of inefficient
transistor usage represented a fundamentally new and unconventional approach to computer
architecture. Dr. Bates’ patented architecture was not obvious, or conventional to one of
ordinary skill in the art at the time of the invention. Conventional computer architectures, for
example, even when intended for execution of Al software programs, did not include the concept
of a computer based on low precision high dynamic range (LPHDR) processing elements.
Computer architects even taught away from this concept. Prior to Dr. Bates’ invention, such a
computer did not exist.

69. Computer architects as of 2009 taught away from Dr. Bates’ invention. Dr.
Bates” LPHDR processing elements frequently generate, in response to requests to perform
arithmetic operations on high dynamic range numbers, results that materially differ from the
exact results of those operations. For example, the 961 patent teaches an LPHDR processing
element that can generate results in response to requested arithmetic operations that differ by at
least 0.2% from their respective exact results, for at least 10% of all possible valid such
requested operations. It would have been counterintuitive to those in the art as of 2009, to
architect a computer from even one such frequently inexact LPHDR processing element, let

alone a large number of LPHDR processing elements that were all frequently generating such
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materially inexact results for a given software program. It was counterintuitive to architect a
computer comprising numerous LPHDR processing elements that each frequently generate
inexact results, knowing that such a computer was going to be used by software programs to
execute many tasks that each required hundreds, thousands or even millions of sequential
arithmetic operations that could accumulate errors. Dr. Bates nonetheless conceived, made and
patented a working computer utilizing such LPHDR processing elements.

70.  The 961 patent ushered in a revolutionary increase in computer efficiency
through improved computer architectures. Its claims specify architectural features pertaining to
a computer design, including LPHDR processing elements, and a computing device that is
adapted to control the operation of the LPHDR execution units.

71.  Google has directly infringed, and continues to directly infringe, literally and/or
by the doctrine of equivalents, at least claims 1-5, 10, 13, 14 and 15 of the 961 patent by
making, using, testing, selling, offering for sale and/or importing into the United States its
TPUv2 and TPUvV3 Devices alone or in combination with its existing data servers. Google’s
computer systems that infringe the *961 patent include the TPUv2 and TPUv3 Devices. The
infringing TPUv2 and TPUv3 Devices, in Google’s own words, “powers” at least Google

Translate, Photos, Search, Assistant, and Gmail. As published by Google:

Empowering businesses
with Google Cloud Al

Machine learning has produced business and research
breakthroughs ranging from network security to medical
diagnoses. We built the Tensor Processing Unit (TPU) in
order to make it possible for anyone to achieve similar
breakthroughs. Cloud TPU is the custom-designed
machine learning ASIC that powers Google products like
Translate, Photos, Search, Assistant, and Gmail. Here's
how you can put the TPU and machine learning to work

accelerating your company’s success, especially at scale.
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72.  Claim 4 of the *961 patent is reproduced below:

A device comprising:

at least one first low precision high-dynamic range (LPHDR) execution

unit adapted to execute a first operation on a first input signal representing a first
numerical value to produce a first output signal representing a second numerical
value,

wherein the dynamic range of the possible valid inputs to the first operation is at
least as wide as from 1/1,000,000 through 1,000,000 and for at least X=10% of
the possible valid inputs to the first operation, the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the
possible valid inputs to the first operation, of the numerical values represented by
the first output signal of the LPHDR unit executing the first operation on that
input differs by at least Y=0.2% from the result of an exact mathematical
calculation of the first operation on the numerical values of that same input;

at least one first computing device adapted to control the operation of the at least
one first LPHDR execution unit;

73. A TPUvV2 or a TPUV3 Device are examples of a “device,” as claimed by the *961

patent. As published by Google:

TPU versions

Each TPU version defines the specific hardware characteristics of a TPU device. The TPU version
defines the architecture for each TPU core, the amount of high-bandwidth memory (HBM) for each
TPU core, the interconnects between the cores on each TPU device, and the networking interfaces
available for inter-device communication.

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

Host VM

"TPU board” = 8 TPU cores

Network PCI v3x 32

og

3

=] One TPU
Your VM core

Runs data feed code Runs training code

Illustration: your VM with a network-attached "Cloud TPU" accelerator. "The Cloud TPU" itself is made of a VM with a PCI-
attached TPU board with four dual-core TPU chips on it.
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74. Each TPUv2 Device and TPUv3 Device infringes claim 4 of the *961 patent, by
inter alia, including multiple matrix multiplication unit (MXU) ALUs and associated circuitry.
a. Each TPUv2 Device has 8 MXUs (one MXU per TPU core, 2 TPU cores per
chip, and 4 chips per TPUv2 Device), and each TPUv3 Device has 16 MXUs (two
MXUs per TPU core, 2 TPU cores per chip, and 4 chips per TPUv3 Device). As
published by Google:

e TPUV2:
* 8 GiB of HBM for each TPU core
* One MXU for each TPU core
* Upto 512 total TPU cores and 4 TiB of total memory in a TPU Pod
e TPUV3:
* 16 GiB of HBM for each TPU core
s Two MXUs for each TPU core
* Up to 2048 total TPU cores and 32 TiB of total memory in a TPU Pod

Core Core Core
scalr/ vector SCaar scalar/
i) vectorunits | vector urits
YA YA YA YA
o |amm H e
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16Ga :: . -H R ]
o am|
(1] = N IENEEEan
[ 1] i T
ANEENEEN aNGNEEEN IIIIIIII‘ sTEEEEEaN
MXU XU MXU XU
1285126 128x128 1285128 128¢128

b. Each MXU contains a systolic array having 128 X 128 MXU ALU:s (i.e., 16,384
ALUs). Therefore, a TPUv2 Device has 131,072 MXU ALUs and a TPUv3

Device has 262,144 MXU ALUs. As published by Google:
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Cloud TPU w2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUV3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

C. Each of those one-hundred-thousand-plus ALUs is adapted to execute a
multiplication operation on a value that was converted to a “bfloat16” format after
being taken as input in 32-bit floating point format (“FP32 format” or “float32”).
The circuitry for taking a float32 input signal, converting it to a bfloat16 value,
and then multiplying the value, is hereinafter an “MXU Reduced Precision
Multiply Cell.” An MXU Reduced Precision Multiply Cell comprises the part of
an MXU ALU that performs a multiplication operation, and circuitry for taking a

float32 input signal and converting it to a bfloat16 value. As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU systam. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Sﬁ/sfem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

75. Over 100,000 individual MXU Reduced Precision Multiply Cells are in each
TPUvV2 and TPUv3 Device. Each individual MXU Reduced Precision Multiply Cell is a “low

precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a
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first input signal representing a first numerical value to produce a first output signal
representing a second numerical value.” The “first operation” executed by each individual
MXU Reduced Precision Multiply Cell is a multiplication operation that is (i) performed on two
input signals each representing a float32 numerical value, but (ii) carried out at “reduced
bfloat16 precision.” Such an operation (e.g., “X[2,0]*W[0,0]” in the example equation for
Y[2,0] that Google provides below) is a part of a larger float32 matrix multiplication operation
(e.g., Y= X*W in the example Google provides below) being performed at “reduced bfloat16

precision” by the MXU as a whole. As published by Google:

Cloud TPU w2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

Systolic array

The MXU implements matrix multiplications in hardware using a so-called "systolic array” architecture in which data
elements flow through an array of hardware computation units. (In medicine, "systolic” refers to heart contractions and
bloed flow, here to the flow of data )

The basic element of a matrix multiplication is a dot product between a line from one matrix and a column from the other
matrix (see illustration at the top of this section). For a matrix multiplication Y=X*W. one element of the result would be:

Y[2,8] = X[2,8]=W[0,08] + X[2,1]~W[1,0] + X[2,2]+W[2,0] + ... + X[2,n]*W[n,8]
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lllustration: a dense neural network layer az a matrix multiplication, with a baich of eight images processed
through the newral network at once. Please run through one iine x column muitiplication to verify that it is indeed
doing aweighted sum of all the pixels values of an image. Convolutional layers can be represented as matrix
multiplications

‘Sg/st.em Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

76.  The “first input signal” for each individual MXU Reduced Precision Multiply
Cell is the signal representing a float32 value from inside either matrix that is being multiplied
by the MXU. In the illustration below taken from a Google animation, such input signals are
depicted using the red dots moving rightwards into the left of the MXU and its Reduced
Precision Multiply Cells. Such input signals are also depicted in the same Google animation
using the black/grey dots moving upwards into the bottom of the MXU and its Reduced
Precision Multiply Cells. The “first output signal” produced by an MXU Reduced Precision
Multiply Cell is the result of the float32 multiplication operation it performs at reduced bfloat16
precision. Such a “first output signal” flows from the multiplier “x” to the adjacent adder “+” in

the illustration below, and is described as a “result” in Google’s own words: “As each
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multiplication is executed, the result will be passed to the next multipliers while taking

summation at the same time.” As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloatl6 format, while accumulations are
performed in full FP32 precision.

;SYSfem Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

On a GPU, one would program this dot product into a GPU “core” and then execute it on as many "cores” as are available
in parallel to try and compute every value of the resulting matrix at once. If the resulting matrix is 128x128 large, that
would require 128x128=16K "cores” to be available which is typically not possible. The largest GPUs have around 4000
cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU: just bfloatl6 x
bfloatlé => float32 multiply-accumulators, nothing else. These are so small that a TPU can implement 16K of
them in a 128x128 MXU and process this matrix multiplication in one go.
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lllustration: the MXU systolic array. The compute elements are multiply-accumulators. The values of one matrix are loaded
into the array (red dots). Values of the other matrix flow through the array (grey dots). Vertical lines propagate the values up.
Horizontal lines propagate partial sums. It is left as an exercise to the user to verify that as the data flows through the array,
you get the result of the matrix multiplication coming out of the right side.
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77.  The “first numerical value” represented by the “first input signal,” and the
“second numerical value” represented by the “first output signal,” are all float32 numbers.

Float32 numbers are “numerical values.” As published by Google:

Cloud TPU v2 and Cloud TPU v3 primarily use bfloat16 in the matrix multiplication
unit (MXU), & 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloatl6 format, while accumulations are
performed in full FP32 precision.

é&s{em Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.
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On a GPU, one would program this dot product into a GPU "core” and then execute it on as many "cores” as are available
in parallel to try and compute every value of the resulting matrix at once. If the resulting matrix is 128x128 large, that
would require 128x128=16K "cores” to be available which is typically not possible. The largest GPUs have around 4000
cores. A TPU on the other hand uses the bare minimum of hardware for the compute units in the MXU: just bfloatl6 x
bfloatl6 => float32 multiply-accumulators, nothing else. These are so small that a TPU can implement 16K of
them in a 128x128 MXU and process this matrix multiplication in one go.
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Illustration: the MXU systolic array. The compute elements are multiply-accumulators. The values of one matrix are loaded
into the array (red dots). Values of the other matrix flow through the array (grey dots). Vertical lines propagate the values up.
Horizontal lines propagate partial sums. It is left as an exercise to the user to verify that as the data flows through the array,
you get the result of the matrix multiplication coming out of the right side.

Single-precision floating-point format

From Wikipedia, the free encyclopedia

Single-precision floating-point format is a computer number format, usually eccupying 32 bits in computer
memory; it represents a wide dynamic range of numeric values by using a floating radix point.

Afloating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at
78. Each MXU Reduced Precision Multiply Cell is an “LPHDR execution unit.”
Specifically:

e For each MXU Reduced Precision Multiply Cell, “the dynamic range of the possible
valid inputs to the first operation is at least as wide as from 1/1,000,000 through
1,000,000.” As shown above, each MXU Reduced Precision Multiply Cell performs a
float32 multiplication operation at “reduced bfloat16 precision” on valid input signals
representing numerical values having a float32 format. A float32 numerical value, whose
format is shown below, has the following dynamic range:

Minimum: 27126 = 1175494351 x 1073
Maximum: (2 - 272%) x 21?7 =~ 3,402823466 x 103

As published by Google:
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(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e"* to ~3¢™
Expooent. § bits Mantisss (Sigreficand) 23 bits

.!(((([K(-.U'-I-u‘..‘u.---.".-‘

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢™* to 65504

Exponent $ bis Mantissa (Sgrficand). 10 bs

Bleovococ c MWW

(c) bfloat16: Brain Floating Point Format Range: ~1e"* to ~3e™
Exponeat B bay Mantisss (Sgrificana) 7 bes
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For each MXU Reduced Precision Multiply Cell, “for at least X=10% of the possible
valid inputs to the first operation... the numerical values represented by the first output
signal of the LPHDR unit executing the first operation on that input differs by at least
Y=0.2% from the result of an exact mathematical calculation of the first operation on the
numerical values of that same input.” Specifically, each TPUv2 and TPUv3 MXU
Reduced Precision Multiply Cell performs a float32 multiplication operation but does so
in Google’s own words at “reduced bfloat16 precision.” Each MXU Reduced Precision
Multiply Cell takes the following steps: (i) receives as input two signals that each
represent a float32 numerical value, (ii) converts each of the received float32 numerical
values to a bfloat16 numerical value, (i) multiplies the resulting pair of bfloat16
numerical values with each other, and (iv) adjusts the format of the result of the bfloat16
multiplication generated in step (iii), if needed, to produce an output signal that

represents a float32 numerical value to be accumulated. As published by Google:
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Cloud TPU v2 and Cloud TPU w3 primarily use bfloat16 in the matrix multiplication
unit (MXU), a 128 x 128 systolic array. There are two MXUs per TPUv3 chip and
multiple TPU chips per Cloud TPU system. Collectively, these MXUs deliver the
majority of the total system FLOPS. Each MXU takes inputs in FP32 format but then
automatically converts them to bfloat16 before calculation. (A TRPU can perform
FP32 multiplications via multiple iterations of the MXU.) Inside the MXU,
multiplications are performed in bfloat16 format, while accumulations are
performed in full FP32 precision.

System Architecture

Each TPU core has scalar, vector, and matrix units (MXU). The MXU provides the bulk of the compute
power in a TPU chip. Each MXU is capable of performing 16K multiply-accumulate operations in each
cycle. While the MXU inputs and outputs are 32-bit floating point values, the MXU performs multiplies
at reduced bfloat16 precision. Bfloat16 is a 16-bit floating point representation that provides better
training and model accuracy than the IEEE half-precision representation.

When the float32 numerical values produced by the TPU’s float32 multiplication
operation (which, as shown above, is performed at “reduced bfloat16 precision”), for a
mathematically representative sample of all possible valid pairs of inputted float32
numerical values, are compared to the numerical values produced by the exact full
precision multiplication operations for those same respective valid pairs of inputted
float32 numerical values, the TPU’s float32 numerical values differ, for at least 10% of
those multiplied pairs, from the respective exact full precision values, by at least 0.2%.

This is illustrated by the Singular test results shown below.

bf16
% of valid > 1.00% 4.65%
% of valid > 0.50% 55.39%
% of valid > 0.20% 92.69%
% of valid > 0.10% 98.15%
% of valid > 0.05% 99.52%

e For each MXU Reduced Precision Multiply Cell, “the statistical mean, over repeated
execution of the first operation on each specific input from the at least X % of the

possible valid inputs to the first operation, of the numerical values represented by the
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first output signal of the LPHDR unit executing the first operation on that input, ” will
simply equal the numerical value represented by the output signal produced when the
MXU Reduced Precision Multiply Cell (i.e., an LPHDR unit) executes an operation on
input signals. Each MXU Reduced Precision Multiply Cell is part of a TPUv2 Device or
a TPUv3 Device, which are deterministic in their designs (i.e., an operation repeatedly
performed by a TPUv2 or a TPUv3 Device on a given set of inputs signals will always

yield the same output signal). As published by Google:

Because general-purpose processors such as CPUs and GPUs must
provide good performance across a wide range of applications, they have
evolved myriad sophisticated, performance-oriented mechanisms. As a
side effect, the behavior of those processors can be difficult to predict,
which makes it hard to guarantee a certain latency limit on neural
network inference. In contrast, TPU design is strictly minimal and
deterministic as it has to run only one task at a time: neural network
prediction. You can see its simplicity in the floor plan of the TPU die.

79. Each TPUv2 and TPUv3 Device has “a computing device adapted to control the
operation of the at least one first LPHDR execution unit.” The computing device is the CPU
running the Host VM, which is the “master” VM that runs the controlling software program

99 ¢

(e.g., as set out below, “your Python code,” “your training job”, or “machine learning
workloads”). The controlling software program “drives the TensorFlow server” (i.e., a TPU
VM) which runs on a “TPU worker,” or “TPU accelerator,” which is a TPUv2 or TPUv3 Device.
As explained above, a TPUv2 or TPUv3 Device includes LPHDR execution units. As published

by Google:
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A TPU training job runs on a two-VM configuration. One VM (the master) runs your Python code. The
master drives the TensorFlow server running on a TPU worker,

To use a TPU with Al Platform, configure your training job to access a TPU-enabled machine in one of
three ways:

+ Usethe BASIC_TPU scale tier. You can use this method to access TPU v2 accelerators.

* Usea cloud_tpu worker and a legacy machine type for the master VM. You can use this
method to access TPU v2 accelerators.

* Usea cloud_tpu worker and a Compute Engine machine type for the master VM. You can use
this method to access TPU v2 or TPU v3 accelerators. TPU v3 accelerators are available in beta.

Basic TPU-enabled machine

Set the scale tier to BASIC_TPU to get a master VM and a TPU VM including one TPU with eight TPU
v2 cores, as you did when running the previous sample.

Cloud Tensor Processing Units (TPUs)

Tensor Processing Units (TPUs) are Google’s custom-developed application-specific integrated
circuits (ASICs) used to accelerate machine learning workloads. TPUs are designed from the ground
up with the benefit of Google's deep experience and leadership in machine learning.

Cloud TPU enables you to run your machine learning workloads on Google's TPU accelerator
hardware using TensorfFlow (4. Cloud TPU is designed for maximum performance and flexibility to
help researchers, developers, and businesses to build TensorFlow compute clusters that can leverage
CPUs, GPUs, and TPUs. High-level Tensorflow APIs help you to get models running on the Cloud TPU
hardware.

Advantages of TPUs

Cloud TPU resources accelerate the performance of linear algebra computation, which is used heavily
in machine learning applications. TPUs minimize the time-to-accuracy when you train large, complex
neural network models. Models that previously took weeks to train on other hardware platforms can
converge in hours on TPUs.

Cloud TPU

When you request one "Cloud TPU v2" on Google Cloud Platform, you get a virtual machine (VM) which has a PCI-
attached TPU board. The TPU board has four dual-core TPU chips. Each TPU core features a VPU (Vector Processing
Unit) and a 128x128 MXU (MatriX multiply Unit). This "Cloud TPU" is then usually connected through the network to the
VM that requested it. So the full picture looks like this:

Cloud TPU

"TPU board™ = 8 TPU cores

Host VM
CPUs

Network PCI v3x 32

L
One TPU

Your VM o
Runs data feed code Runs training code

Illustration: your VM with a network-attached "Cloud TPU" accelerator. "The Cloud TPU" itself is made of a VM with a PCI-
attached TPU board with four dual-core TPU chips on it.
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80. In knowingly adopting Dr. Bates’ patented computer architectures, Google reaps

the very same benefits that were predicted by Dr. Bates in his patent application more than 10

years ago. As published by Google and predicted by Dr. Bates in his patent application:

Choosing bfloat16

PEs implemented according to certain embodiments of the
present invention may be relatively small for PEs that can do
arithmetic. This means that there are many PEs per unit of
resource (e.g., transistor, area, volume), which in turn means 4
that there is a large amount of arithmetic computational
power per unit of resource. This enables larger problems to be
solved with a given amount of resource than does traditional
computer designs. For instance, a digital embodiment of the
present invention built as a large silicon chip fabricated with 4
current state of the art technology might perform tens of
thousand of arithmetic operations per cycle, as opposed to
hundreds in a conventional GPU or a handful in a conven-
tional multicore CPU. These ratios reflect an architectural
advantage of embodiments of the present invention that 5
should persist as fabrication technology continues to
improve, even as we reach nanotechnology or other imple-
mentations for digital and analog computing.

81.  Asaresult of Google’s infringement of the 961 patent, Singular has suffered
damages in an amount to be determined at trial.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff prays that the Court:

A. enter judgment in favor of the Plaintiff on all counts of the Complaint;
B award Plaintiff damages as determined at trial;
C. award Plaintiff treble damages, costs and attorney’s fees as a result of Defendant’s

willful infringement;

D. enjoin Defendant’s infringement; and
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E. award Plaintiffs such other and further legal and equitable relief as the Court may
deem just and proper.

DEMAND FOR JURY TRIAL

Plaintiff demands a trial by jury on all counts of the complaint.

Dated: December 20, 2019 Respectfully submitted,

/s/ Paul J. Hayes

Paul J. Hayes (BBO #227000)
Matthew D. Vella (BBO #660171)
Kevin Gannon (BBO #640931)
Daniel McGonagle (BBO #690084)
Alex Breger (BBO #685537)
PRINCE LOBEL TYE LLP

One International Place, Suite 3700
Boston, MA 02110

Tel: (617) 456-8000

Email: phayes@princelobel.com
Email: mvella@princelobel.com
Email: kgannon@princelobel.com
Email: dmcgonagle@princelobel.com
Email: abreger@princelobel.com
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