
PREPRINT: Can the OpenSSF Scorecard be used to measure the
security posture of npm and PyPI?

Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, Laurie Williams
North Carolina State University, USA

[nzahan,pkanaki,bthamble,sshohan,lawilli3]@ncsu.edu

ABSTRACT
The OpenSSF Scorecard project is an automated tool to monitor the
security health of open-source software. We used the tool to under-
stand the security practices and gaps in npm and PyPI ecosystems
and to confirm the applicability of the Scorecard tool.

1 INTRODUCTION
Recent high-profile supply chain attacks, such as Solarwinds and
Codecov, made headlines and directed attention towards the impor-
tance of software supply chain security. Therefore, practitioners are
increasingly concerned with whether their projects’ open-source
components are secure.

Though standards, such as the NIST Secure Software Develop-
ment Framework (SSDF) [1] and OWASP Software Component
Verification Standard (SCVS) [2], provide exhaustive lists of secu-
rity practices, a lack of consensus is observed regarding the imple-
mentation, validation, and verification of these practices towards
a unified and consistent baseline measurement. Research is being
conducted towards the development of different security metrics.
However, establishing a baseline measurement is not straightfor-
ward since it involves exploring various sources of information,
including source code repositories, vulnerability tracking systems,
continuous integration/ continuous deployment (CI/CD) pipelines,
license(s) validity, package release history, and other metrics to
develop standards for adoption. Additional challenges arise during
the security assessment of packages in a software supply chain,
particularly when the packages come from different sources and
have different functionality. Then the practitioners have to decide
whether or not packages meet the baseline standards based on
evidence. Also, practitioners must continue to monitor the open-
source-software (OSS) “health” to identify and manage any future
risks of the software supply chain breaking down. Therefore, prac-
titioners are now more interested than ever in identifying healthy
open-source components and determining the security practices
compared to other components within the ecosystem. Towards this
end, the goal of this study is to aid practitioners in producing
more secure software products and make informed decisions
on the security practices of candidate dependencies by depict-
ing the current security practices and gaps across ecosystems
via an empirical study of the OpenSSF Scorecard project.

The OpenSSF Scorecard project [3] is an automated tool to moni-
tor the security health of the OSS supply chain. The primary goal of
this project is to auto-generate a “security score” for OSS projects,
using a list of security metrics that can be used to assess the security
health of potential dependencies.While projects like Scorecard exist
to perform heuristic-based checks of a package’s security practices
to aid dependency selection, little research has been done to under-
stand the viability of using Scorecard security metrics to identify

existing security gaps and practices in an entire ecosystem rather
than just a single package. Observing the pattern of these security
measures across one or more ecosystems can assist practitioners in
determining how they are performing within the ecosystem, what
they can do to improve security standards. Practitioners can also
assist in the evaluation of whether a specific security check is effec-
tive within that ecosystem. In this work, we studied the Scorecard
tool to analyze what security practice patterns are observed in both
ecosystems.

2 OPENSSF SCORECARD
The Open Source Security Foundation (OpenSSF) is a cross-industry
collaboration with a mission to improve OSS’s security. Since the
inception on August 3, 2020, OpenSSF has grown to include mem-
bers from over 75 organizations, including GitHub, Google, IBM,
Intel, Microsoft, Red Hat, the OWASP Foundation, and others.

OpenSSF launched the Scorecard project [3] in November 2020 to
provide an automated security tool that gives a “security score" for
OSS and reduces the manual effort required to analyze a package’s
security. These results are made available via a BigQuery public
dataset, and OSI site.

At the time of the study, Scorecard evaluates 18 security practices
(“checks") and assigns a score between 0 to 10 to each. Each check
has one of four risk levels: “Critical" risk-weight 10; “High” risk-
weight 7.5; “Medium” risk-weight 5; and “Low” risk-weight 2.5.
An aggregate confidence score is also returned, which is a weighted
average of the individual check scores weighted by risk. The table
1 discusses the 18 Scorecard checks.

3 OTHER COMMUNITY EFFORTS
Guidelines and Standards: The OWASP Software Component
Verification Standard (SCVS) [2] is a framework to develop a
common set of activities, controls, and security practices that can
help in identifying and reducing risk in a software supply chain.
There are 6 control families that contain 87 controls for different
aspects of security verification or processes. The SCVS has three
verification levels, where higher levels include additional controls.

In response to Section 4 of the President’s Executive Order (EO)
on “Improving the Nation’s Cybersecurity (14028)” [5], the U.S. Na-
tional Institute of Standards and Technology (NIST) updated the Se-
cure Software Development Framework (SSDF) [1] to integrate
the framework into each SDLC implementation. The framework
comprises four groups containing high-level security practices and
tasks based on established secure software development models.
Each group has a number of practices, which are further split into
different tasks. These four groups are-

• Prepare the Organization (PO): Practices-5, Tasks-13
• Protect the Software (PS): Practices-3, Tasks-4



, ,
N. Zahan et al.

Table 1: Scorecard Security Metrics and the mapping to the SSDF Framework

Metrics Name (Risk
Label)

Security Checks Description Mapping to SSDF
Practices

Dangerous-
Workflow (Critical)

Determines if there are dangerous patterns in the package’s GitHub workflows due to misconfigured
GitHub Actions. Different events with GitHub contexts can trigger workflows. A list of event context
data, such as GitHub issues or pull requests, can be controlled by users and, if exploited, may lead to
malicious injection.

Vulnerabilities
(High)

Tracks the presence of unfixed vulnerabilities of a package in the Open Source Vulnerabilities (OSV) [4]
database.

PW.4, RV.1

Binary-Artifacts
(High)

Verifies the presence of executable (binary) artifacts in the repository. Since binary artifacts cannot be
reviewed, it is possible to maliciously subvert the executable.

Token-
Permissions (High)

Determines whether the package’s automated workflow tokens are set to read-only. This is important
because attackers might inject malicious code into the project using a compromised token with write
access. If the permission’s definitions in each workflow’s yaml file are set as read-only at the top level,
and the required write permissions are declared at the run-level, the project gets the highest score.

PO.5, PS.1

Code-Review
(High)

Evaluates if the package conducts code reviews prior to merging a PR. Code-Reviews may be able to
detect malicious code insertion attempts by an attacker. The first step of the check is to see if Branch-
Protection is activated with at least one required reviewer. If this fails, the check looks to see if the last
30 commits are Prow, Gerrit, Github-approved reviews or if the merger differs from the committer.

PW.7, RV.1

Maintained (High) Evaluates if the package is actively maintained and obtains the score based on activities on commits and
issues from collaborators, members, or project owners. For example, if a project has at least one commit
per week for the preceding 90 days for the latest 30 commits and issues, it will receive the highest score.
Inactive projects run the risk of having unpatched code and insecure dependencies.

PW.4

Branch-Protection
(High)

Monitors whether GitHub’s branch protection settings have been applied to a package’s branches. This
check enables maintainers to set guidelines to enforce specific workflows, such as requiring reviews
or passing particular status checks before acceptance into the main branch. The check is scored on a
five-tiered scale. Each tier has multiple checks and must be fully satisfied to gain points at the next tier.

PS.1

Dependency-
Update-Tool (High)

Determines whether the repository has enabled dependabot or renovatebot dependency update tool
to automate the process of updating outdated dependencies by opening a pull request. Out-of-date
dependencies are prone to attacks.

PO.3, PW.4

Signed-Releases
(High)

Determines whether the project signed the release artifacts in GitHub by looking for the following
filenames in the project’s last five releases: *.minisig, *.asc (pgp), *.sig, *.sign. Signed-
Releases attest to the provenance of the artifact.

PS.1, PS.2, PS.3

Pinned-
Dependencies
(Medium)

Looks for unpinned dependencies in Dockerfiles, shell scripts, and GitHub workflows to verify
the project’s locked dependencies. Unpinned-Dependency allows auto-updating a dependency to a new
version without reviewing the differences between the two versions, which may include an insecure
component.

Security-Policy
(Medium)

Looks for a file entitled SECURITY.md(case-insensitive) in directories like the top-level or the .github
of a repository to see if the package has published a security policy. Users can learn what constitutes a
vulnerability and how to report it securely via a security policy.

RV.1

Packaging
(Medium)

Detects language-specific GitHub Actions that upload the package to a related hub and determines if
the package is published by GitHub packaging workflows. Packaging makes it easy for users to receive
security patches as updates.

Fuzzing (Medium) Determines if the project uses fuzzing by checking the repository name in the OSS-Fuzz project list.
Fuzzing is important to detect exploitable vulnerabilities.

PW.8

Static Application
Security Testing
(SAST) (Medium)

Determines if the project uses SAST. These tools can prevent bugs from being inadvertently introduced
in the codebase. The checks look for known Github apps such as CodeQL, LGTM, and SonarCloud in
the recent merged PRs, or the use of “GitHub/codeql-action" in a GitHub workflow.

PW.7, PW.8

License (Low) Verifies if the project has published a license by looking for any combination of the following names and
extensions in the top-level directory: LICENSE, LICENCE, COPYING, COPYRIGHT and .html,.txt,.md.
Scorecard can also detect these files in the LICENSES directory. The lack of a license will hinder any
security review and create a legal risk for potential users.

CII-Best-Practices
(Low)

Verifies whether the package has a CII Best Practices Badge, which certifies that it follows a set of
security-oriented best practices such as vulnerability reporting policy, automatic process to rebuild the
software, SAST, and so on.

PS.1, PS.2 RV.1,
PW.5, PW.8

CI-Tests (Low) Determines if the project runs tests before PRs are merged by looking for a set of CI-system names in
GitHub CheckRuns and Statuses in recent 30 commits. CI-Tests enable developers to identify problems
early in the pipeline.

RV.1

Contributors (Low) determines if the project has contributors from multiple organizations by looking at the company field
on the GitHub user profile to identify trusted code reviewers. The project must have had contributors
from at least three organizations in the last 30 commits to receive the highest score.



PREPRINT: Can the OpenSSF Scorecard be used to measure the security posture of npm and PyPI?
, ,

• Produce Well-Secured Software (PW): Practices-9, Tasks-
16

• Respond to Vulnerabilities (RV): Practices-3, Tasks-9).
Automating these practices is essential to implementing security

practices at scale. The Scorecard tool allows us to automate the
measurement of security practice metrics at scale. We investigated
whether the 18 security practices defined by Scorecard [3] com-
plement the Executive Order (EO) and SSDF framework as part of
secure SDLC practices for organizations. To that end, two authors
individually mapped each metric to SSDF practices and compared
the findings. We found that out of the 18 Scorecard security met-
rics, 13 can be mapped to the SSDF framework’s practices. Table
1 showed the mapping between each Scorecard metric and SSDF
practices. Note that each SSDF practice consists of a number of
tasks, hence, a practice can be linked to more than one Scorecard
metrics.

Tools: Open Source Insights (OSI) [6] is a Google-developed
and hosted tool to aid practitioners in grabbing information about
the source code location, package metadata, licenses, releases, and
vulnerabilities of open-source products. OSI scans millions of open-
source packages from different ecosystems, constructs dependency
graphs, and annotates the metadata in a dashboard. Apart from the
package’s metadata, the OSI dashboard also shows statistics about
a package’s direct or transitive dependencies. On the OSI website,
users can view the vulnerability mapping of a package as well as the
vulnerability mapping with associated dependencies. In addition to
the package metadata, OSI has also incorporated Scorecard security
metrics to help understand package security practices.

4 METHODS
This section discusses the data sourcing and generation process of
this study. We compiled a package list and relevant metadata from
the npm and PyPI ecosystems to collect the security score for those
packages from Scorecard tool.

4.1 Ecosystem Package Metadata

Package Name: To begin, we collected a list of all package names
available in both ecosystems. We sourced the list of npm packages
names (1,494,105) from study [7] and the list of PyPI package names
(3,65,450) was collected using PyPI API [8] in April 2022.

Dependents data: The number of dependents reflects the im-
portance of a project by quantifying how many other projects use
it. We collected dependent information from the OSI API [6]. In
this work, we collected dependent information to prioritize the
packages list for manual review.

4.2 OpenSSF Scorecard Score
The Scorecard tool only runs on source code hosted by GitHub.
Hence, to obtain the Scorecard scores for a given package, the
first step was to map the package to its respective source code
location. To retrieve the source code location for both ecosystems,
we use the OSI API [6]. We collected unique GitHub repositories of
767,389 npm and 191,158 PyPI packages. The package-to-repository
mapping is not always a 1:1 match. Multiple packages can be found
in a single repository. In total, we collected 947,936 npm packages

with 767,389 unique GitHub repositories and 211,088 PyPI packages
with 191,158 unique GitHub repositories.

Then, Scorecard runs a weekly scan of open-source packages to
generate the security score of those packages. However, we could
not directly utilize this data for both ecosystems because, at the time
of this study, Scorecard scores were only generated on 760k of 947K
npm and 10K of 211K PyPI packages. Therefore, we submitted a pull
request to the Scorecard repository, adding the GitHub repositories
of missing packages to collect the scores from both ecosystems. The
weekly Scorecard scan was able to run on those GitHub repositories
after the Scorecard team successfully merged the PR.

Out of the 947,936 npm packages and 211,088 PyPI packages,
we collected the generated score of 832,422 npm packages and
191,483 PyPI packages. We reviewed 50 randomly-chosen packages
where the Scorecard failed to generate scores and found that we
did not have access to those GitHub repositories. We collected the
Scorecard score on May 09, 2022.

For each package, we could obtain 15 out of 18 Scorecard security
metrics and their aggregate score, with the missing 3 metrics being
the CI-Test, SAST, and CONTRIBUTOR checks. The Scorecard team
took out these three checks to scale the weekly job since computing
these metrics is API intensive, and GitHub rate limiting can be a
bottleneck for the weekly run. As a result, we could not collect data
for these three metrics.

4.3 Ecosystem Security Practices
We observe each ecosystem’s security practices and patterns by
analyzing the Scorecard security checks and their assigned values.
We measure the frequency of packages with scores for the 15 secu-
rity practices, depicted in Figure 1 in npm and PyPI, respectively.
We consider each of the practices as a security check metric.

The notation −1 in Figure 1 indicates that Scorecard could not
get conclusive evidence of implementing practices, or perhaps an
internal error occurred due to a runtime error in Scorecard. The
inconclusive outcome is graded as −1 instead of 0. Since a value
of 0 will affect the package’s aggregate score, Scorecard assigned
a value of −1 to avoid the penalty of failing a check. Seven of the
15 security checks had packages with a score of −1. The notation
“1-10" denotes the percentage of packages achieving scores ranging
from 1 to 10. A higher % (green cell in Figure 1) shows that most
packages implement the practice. A lower % (red cell) indicates a
higher % of packages failed the practice and received a score of 0.
For example, in PyPI, the Fuzzing check had 0.1% packages scored
between 1-10 and 18% package scored −1, hence, 81.9% packages
scored 0 and have not implemented the practice yet. The mean
and standard deviation are measured to understand an ecosystem’s
central tendency and spread of score distribution.

To learn why a check passed or failed, we manually reviewed 25
sample GitHub repositories from each ecosystem for each practice.
We ranked each metric by the highest number of dependents and
selected the top 25 packages. One author reviewed 50 GitHub repos-
itories (25 from each ecosystem) totaling 750 repositories for the 15
checks. A second reviewer then verified the findings by selecting
100 repositories at random. We used the Cohen Kappa statistic to
test the inter-rater reliability and achieved a score of 0.961. We
resolved our disagreement after discussing our findings, and the



, ,
N. Zahan et al.

Figure 1: npm and PyPI Ecosystems Security Practices measured by Scorecard Tool

first reviewer cross-reviewed other repositories to make changes
if required. Then, we needed to examine more packages to under-
stand a given score for Vulnerabilities and Code-Review metrics.
We again chose further packages by highest dependent order.

In the following subsection, we discuss each security check for
both ecosystems and the frequency statistics.

4.3.1 Dangerous-Workflow: This check detects the following
two patterns in workflows: untrusted code checkout; and script
injection with untrusted context variables. More than 99% packages
passed the check. However, we observed 1,938 npm packages and
508 PyPI packages where Scorecard found vulnerable code patterns.
Out of 50 repositories used for manual analysis, we had 8 packages
with −1, all of which were the outcome of internal errors, and 11
packages with vulnerable code patterns in workflows, hence, scored
0. Among them, 3 npm packages had untrusted code checkout
patterns, and 5 PyPI and 2 npm packages had warnings about
script injection.At the end of this section, we provide a case study
explaining how an attacker can exploit such patterns in workflows.

4.3.2 Pinned-Dependencies: In both ecosystems, more than
99% of packages had a practice of using at least one pinned depen-
dency. Among these, 81% npm packages and 66% PyPI packages
got a score of 10, indicating that they do not have any unpinned
dependencies in listed directories. The score, however, may not
reflect an accurate statistics. We observed that the tool does not
check package.json and package-lock.json files in a npm pack-
age repository. A package.json is a JSON file that exists at the
root of npm packages, containing the metadata relevant to the
project to manage the project’s dependencies, scripts, versions. We
found packages could achieve a score of 10 even if the package
had multiple unpinned dependencies in the JavaScript package’s
package.json file, indicating Scorecard findings do not depict the
accurate status of pinned dependencies in an ecosystem.We also ob-
served that Scorecard does not verify the presence of Dockerfiles,
shell scripts, and GitHub workflows files in a repository. If a
repository did not have any files of those types, a package would
receive a score of 10 for not having an unpinned dependency on
those missing files.



PREPRINT: Can the OpenSSF Scorecard be used to measure the security posture of npm and PyPI?
, ,

4.3.3 Vulnerabilities: More than 99% packages did not have any
open vulnerabilities in the OSV database. Hence, they scored 10.
Scorecard found 7 npm packages and 5 PyPI packages with un-
fixed vulnerabilities. In addition, 2,703 npm packages and 322 PyPI
packages got a score of −1 for inconclusive results. Our manual
repository review selected repositories where the package had in-
conclusive scores or open vulnerabilities, ranked by number of
dependents. Note that, we did not review packages with scores
of 10 since, these packages did not have any open vulnerabilities
reported in the OSV database. The reason behind the negative score
(-1) was that those repositories were empty. In total, we found
39/50 empty repositories. One package had 10 open vulnerabilities
with a score of 0, and 9 packages had 1 vulnerability open with a
score of 9.

4.3.4 Binary-Artifacts: More than 99% packages had a score
greater than 0. The manual review of 50 repositories found eight
packages with a score of 0 and noticed that these packages had
more than nine binary artifacts with a mean and standard deviation
of 78.25 and 87.17, respectively. These packages were umbrella
projects encompassing a variety of tools and libraries. Clients are
forced to use these binary artifacts directly with the inability to
inspect those files for dangerous behaviors. Another 32 packages
in manual review were given a score from 1 to 10 based on the
number of binary artifacts ranging from 0 to 9. A score of 10 means
no binaries, a score of 9 means the presence of one binary, and
the scores continue to decrease toward 1 as the number of binary
artifacts increased towards 9. We also found a false positive in one
npm package repository, where Scorecard identified 108 binaries,
two of which were .txt files.

4.3.5 Token-Permissions: In this check, npm yielded a more
promising result: nearly 84% of packages have read and write per-
missions declared in workflows, compared to 71% of PyPI packages.
Ourmanual review found similar patterns as we observed in Pinned-
Dependencies. Fourteen (14) packages did not have any GitHub
Actions specified in the repository, but Scorecard assigned 10 to
those packages for Token-Permissions. Here, the score was 10 be-
cause the tool does not check the presence of workflows in the
repository.

4.3.6 License: We observed that 68% of npm packages and 88%
of PyPI packages had published licenses in GitHub repository, indi-
cating, npm has a higher tendency to avoid licensing in the reposi-
tory. Our manual review revealed that 4 npm packages and 8 PyPI
packages had a license mentioned in the repository, specifically
in Readme.md and setup.py files. However, Scorecard could not
identify them. We found the following unique file names and exten-
sions from our review: GPL-2.0, LICENSE, LICENCE, LICENSE.txt,
LICENSE.rst, LICENSE.PSF, LICENSE.APACHE, LICENSE.BSD, LI-
CENSE.md, LICENSE-MIT.

4.3.7 Code-Review: 30% of npm packages and 34% of PyPI pack-
ages had code review practices in their repository. One reason
behind failing this check would be that the check is not applicable
if the package has one maintainer. The trait is expected in the case
of npm because most packages in npm are small and maintained
by one maintainer. Study [7] reveals that, in 2021, 1.5 million npm
packages had an average of 1.7 maintainers. However, our manual

review found otherwise, 9 packages scored 0 and had no code re-
view practices even though they had more than one contributor
in GitHub repositories. We also had −1 in 5 sample repositories
where the repos were empty. To verify this pattern, we reviewed an
additional 10 repositories with −1. These repositories were empty
on GitHub. Hence, indicating why Scorecard assigned −1 as an
inconclusive result. In total, we found 2,695 npm and 321 PyPI
empty repositories with −1 where the other four checks Vulnerabil-
ities, Branch-Protection, Packaging, and Signed-Releases including
Code-Review had −1.

4.3.8 Maintained: Our findings show that more than 85% pack-
ages in npm and 75% PyPI packages were unmaintained in GitHub.
What is more crucial is that for npm, unmaintained packages may
have a more extended period than 90 days, as study [7] revealed
that in 2021, more than 58% of packages in the npm registry were
unmaintained over two years. Our manual inspections were consis-
tent with Scorecard data where 9/50 packages were inactive in a
range of 1 year to 7 years.

4.3.9 Branch-Protection: Only 10% of packages passed this check
in each ecosystem, indicating these repos had at least one tier of
branch protection applied. Hence, 90% npm and PyPI packages had
branch protection disabled in the repository. The numbers are con-
siderably high, indicating that a large number of packages in both
ecosystems did not create a branch protection rule in repositories.
Out of five tiers of scoring- “Enabling branch protection”, “inhibits
force to push, and branch deletion” are tier 1 check. Then, the pres-
ence of at least one reviewer(tier 2), enabling status checks(tier 3),
the presence of a second reviewer(tier 4), and admin dismisses the
stale review (tier 5) are the other tiers. When Scorecard is run with-
out an administrative access token, the requirements that require
admin privileges are ignored to avoid penalizing a package score.

Our manual review found that Scorecard checks the default
branch and any branch that was used for creating a release and
uses GraphQL API to verify the protection. However, we verified
the branch-protection by looking into the GitHub branches api [9].
We found 13/50 packages had a score of −1 due to internal error
because Scorecard: a) looked for the incorrect branch name that
did not exist in the repository; b) could not locate the branch even
though it existed; c) the main branch had a different name than the
“main" or “master"; and d) branch protections were disabled in main
and release branch.

4.3.10 Dependency-Update-Tool: 94% of npm packages and
97% of PyPI packages failed this check because dependabot and
renovatebot were not used as dependency update tools. A project
that uses other tools or manually updates dependencies, will obtain
a score of 0 on this check, just like other packages with outdated de-
pendencies. This check can only confirm if the dependency update
tool is enabled; it can not confirm if the dependency-update-tool is
running or if the tool’s pull requests are merged.

4.3.11 Security-Policy: Only 3.2% npm and 2.5% PyPI packages
have a security.md file. After looking into 50 sample packages,
we observed that: a) 25 packages do not adhere to standard security
policies; and b) 11 packages have a different reporting procedure
for vulnerabilities. Users can, for example, submit bugs in other
places such as GitHub issues, specific email addresses, and different



, ,
N. Zahan et al.

bug databases outside of GitHub, or use a different security policy
reporting file security.rst.

4.3.12 Packaging: Only 1% of npm packages and 5.8% of PyPI
items passed the packaging check. Since the software can be pack-
aged in multiple ways, the challenges of coordinating several pack-
age release protocols may prohibit developers from releasing pack-
ages on GitHub Actions, which can be one reason for the limited
number of packaging in the GitHub packaging workflows. At the
time of this study, Scorecard could not query the package registries
directly. Hence, packages that do not use GitHub actions get −1
instead of 0. Note that a package’s aggregate score will be penalized
if it has a score of 0 and inconclusive or −1, have no effect on the
aggregate score. Our manual inspection identified only 2 npm pack-
ages and 6 PyPI packages used GitHub packaging workflow, while
47/50 packages had releases on GitHub. Additionally, the Scorecard
failed to detect four packages (2 from each ecosystem) that had a
publishing GitHub workflow. The names of these files are [publish,
ci, release].yml.

4.3.13 CII-Best-Practices: Scorecard found the CII Best Prac-
tices Badge in just 1,665 (0.2%) npm and 341(0.1%) PyPI packages.
The CII Best Practices program is a way for Free/Libre and Open
Source Software (FLOSS) projects to demonstrate that they follow
best practices. Projects can voluntarily self-certify to report how
they follow each best practice. According to the CII Best Practice
Program website only 4,766 FLOSS projects have reported their se-
curity policies and received different degrees of badges, indicating
why both ecosystems fell short on this check.

4.3.14 Signed-Releases: Only 578 (0.1%) npm and 936 (0.5%) PyPI
packages had signed releases. Moreover, almost 100% packages
failed this check. The low number of Signed-Releases in GitHub
repositories are expected behavior for both ecosystems, as package
developers release versions to the package registry (npmjs.org or
pypi.org) rather than code hosting platforms like (github.com).
Additionally, we observed that Github, PyPI, and npm each has
different regulations to control package release to a registry. To
publish in both registries, one must take additional steps to confirm
the release, which can be incompatible with their workflow [10].
For instance, the GitHub registry accepts only scoped packages.
Therefore, if a JavaScript package is currently named X, it must be
renamed @username/X to publish in GitHub.

Scorecard assigns −1 instead of 0 if the tool can not detect the
signed release. In addition, our manual review revealed that Score-
card often verifies older signed versions rather than checking for
signatures on the new five releases. For example, one package re-
ceived an 8/10 score, meaning 4/5 of recent releases of that package
had signed artifacts. However, we found the signed artifacts that
were from older versions, which contradicts the defined rules of
Scorecard. Then we also observed repositories tagged commits as a
release rather than creating a release on GitHub. However, none of
the commits were GitHub verified, and Scorecard does not identify
tagged releases.

4.3.15 Fuzzing: Both ecosystems fell short on this check. Score-
card validates fuzzing exclusively through the tracking of packages
in OSS-Fuzz project. OSS-Fuzz has been tested only in 650 open-
source packages as of July 2022 and a package that uses fuzzing with

other tools would fail the check similar to Dependency-Update-
Tool check, indicating why the npm and PyPI ecosystems failed
this check. Out of 650 open-source packages that use OSS-Fuzz, we
found 50 npm packages and 104 PyPI packages. Despite the fact
that this check was passed by only a few packages, PyPI has more
fuzzing practice (50 percent more) than npm. One reason why npm
packages do not use fuzzing could be that fuzzing JavaScript(JS)
engines is tricky and requires expertise. Instead of processing user-
supplied seeds, JS engines scan and interpret user seeds into an
abstract syntax tree (AST) [11] which impacts the performance
of fuzzers. Our manual analysis yielded no different results from
what we expected. Only two PyPI packages used OSS-Fuzz, and 48
other packages had no fuzzer. Then, Fuzzing had most of the −1
after Signed-Releases and Packaging, but in our manual analysis
re-running 12 packages with −1, scored 0 in new run, indicating
run time error occurred during the first run.

4.4 Deep Dive on Dangerous Workflow Check:
The only metric with a “Critical” risk level was Dangerous Work-
flow which checks for dangerous coding patterns in the code files
of GitHub Actions. Potentially dangerous misuse of the GitHub
workflows may lead to malicious authors (i.e. attackers) being able
to perform data theft and data integrity breaches. The usage of an
injection attack in the issue title and issue comment is a simple
demonstration of such an attack vector, allowing the attacker to
break the action environment and launch a process on the runner
environment.

We explored if Scorecard can accurately detect these patterns
in a GitHub repository. Instead of attacking existing repositories
that failed this check, we executed the Scorecard tool on a dummy
GitHub repository where we build a workflowwith an intentionally-
vulnerable issue action, inspired by [12]. Our vulnerable workflow
(Figure 2) is executed on a GitHub runner whenever a new issue
is created by anyone. For our attack, we crafted a malicious issue
title in the dummy repository as malicious author to open a reverse
shell connection in our local machine.

For reverse shell, we created the following issue in the dummy
repository from a different GitHub account user- New malicious
issue title" && bash -i >& /dev/tcp/4.tcp.ngrok.io/ngrok
endpoint 0>&1 && echo". Here, we used ngrok service on local
machine to expose local server ports to the Internet. Whenever the
issue is created on the dummy repository, GitHub workflows will
print the issue details to the log, and label it as “New Issue” using a
PAT (Personal Access Token). Here, the line 14 in step 1 of Figure
2 "ISSUE TITLE: {{github.event.issue.title}}" is vulnera-
ble to command injection because the hosted runners replaces the
macros {{ ... }} blindly and echo "{{github.event.issue.title}}"
becomes echo "{{New malicious issue title}}", thus, giving
an attacker to run a reverse shell inside the hosted runner as part
of the arbitrary code execution capabilities. An attacker can read
sensitive files like .credential from the runner folder.

We tested our dummy repository with the Scorecard tool to
verify whether the Scorecard identifies the vulnerable pattern in
our workflow, and step 2 in Figure 2 shows that the Scorecard
was able to identify the vulnerable pattern, referring to the exact
line number. This case study is an example of how the dangerous



PREPRINT: Can the OpenSSF Scorecard be used to measure the security posture of npm and PyPI?
, ,

Figure 2: Case study on Dangerous Workflow to detect vulnerable code pattern

workflow check can help to identify vulnerable code patterns. We
found 2,446 npm (1,938) and PyPI (508) packages that might be
vulnerable to similar malicious attacks.

5 DISCUSSION:
Our work is an effort to utilize the OpenSSF Scorecard framework
and tool to understand and measure cross-ecosystem package secu-
rity practices and gaps. The Scorecard project seeks to provide a
head start for everyone, including expert and non-expert decision-
makers. The tool can be used to understand how a package per-
forms against other OSS packages in an ecosystem and how one
can identify the gap in security practices and improve the security
posture. For example, if a package has a set of dependencies, then
the package owner can assess all these candidate dependencies by
using Scorecard tool to understand the standard security practices.
Suppose one of the dependencies has open vulnerabilities with no
maintained or code review status. In that case, the project owner
can decide whether to accept these risks or work with the relevant
stakeholders to improve the package security.

We have also observed and been told that the Scorecard team
welcomes new security metrics and discussions that indicate the
Scorecard is evolving with time. Scorecard adoption at the commu-
nity level will help with increasing package security, identifying
Scorecard’s existing issues, and determining how Scorecard may
evolve and improve in response to diverse ecosystem particularities.

5.1 Security Check Metrics Evaluation
The metrics in the Scorecard are of different levels of usefulness:
some are abstract, whereas others are concrete. A deliberate degree
of freedom is necessary to calculate the aggregate score. For ex-
ample, CII-Best-Practices open up debate about whether they are
beneficial in some cases since it is a voluntary effort of maintainers.
The maintainers need to self-certify a report on how they follow
different security practices. Therefore, failing this check may not
necessarily always advocate package do not implement these secu-
rity practices. On the other hand, practitioners can use the Score-
card tool to measure the security practices of Dangerous-Workflow,
Vulnerabilities, Binary-Artifacts, Token-Permissions, License, Code-
Review, Maintained, Branch-Protection and Security-Policy met-
rics.

Then, the standards specified by the Scorecard tool for Dependency-
Update-Tool, Fuzzing, Signed-Releases and Packaging security checks,
were weakly adopted in npm and PyPI. At the time of the study,
Scorecard assigned −1 if they could not verify the evidence of
Signed-Releases and Packaging practices, hence −1 does not in-
fluence the aggregate score of a package. Scorecard intends to
integrate the package registry to improve these metrics measure-
ment. Dependency-Update-Tool, Fuzzing metrics can be measured
differently due to the possibility of using different tools. However,
no agreement on the list of the tools or how to verify whether a
package uses any of them can be found in OSS communities. For
better OSS security, the community needs to agree or standardize



, ,
N. Zahan et al.

these metrics so that Scorecard can integrate the standard practices.
We do acknowledge, however, such agreement could be challeng-
ing. In that case, Scorecard may separate these metrics from the
aggregate score calculation. If a package implements these practices,
the package may get a bonus point instead of directly impacting
the aggregate score. Steps like these will aid in depicting a more
accurate picture of ecosystem security best practices.

The Pinned-Dependencies check requires revision based on dif-
ferent ecosystems. For example Pinned-Dependencies do not check
the package.json and package-lock.json files for the depen-
dency version. Then Signed-Releases, and License matrices can
be improved. Signed-Releases, for example, ignore the tagged re-
lease commit and do not search the package registry directly for
the releases. Then, enhancing the list of keywords can help boost
the License stats. For better ecosystem evaluation, we should filter
out packages with empty repositories, but Scorecard generated
aggregated scores for those repos because metrics like Dangerous-
Workflow, Binary-Artifacts, Pinned-Dependencies, and Token-Permissions
looked for the existence of specific properties in GitHub, which
empty repositories did not contain. Hence, Scorecard assigned a
score of 10 instead of 0, and −1, whereas the other 11 metrics values
were between 0,−1. These metrics open up debate about whether
Scorecard should check for the existence of GitHub repositories
or GitHub workflows first, before verifying the good or bad prac-
tices. For example, if a package has no GitHub workflows, the tool
will score 10 in Dangerous-Workflow and Token-Permissions met-
rics. However, it does not actually verify that the package follows
good workflow patterns. After reporting our findings, the Score-
card team acknowledged and agreed to improve Scorecard to enable
automated testing more efficiently.

The Scorecard tool gives us a way to measure package security
practices. However, practitioners have to adopt these practices to
improve package security. Both ecosystems have a gap in practicing
Code-Review, Maintained, License Branch-Protection and Security-
Policy practices in the GitHub repository. In terms of License and
Maintained, PyPI outperformed the npm ecosystem. Only 68% npm
packages had a published license in the repository, compared to over
88% of PyPI packages. Only 13% npm and 24% PyPI packages were
actively maintained. Additionally, 90% packages in both ecosystems
did not have default branch protection enabled in their repositories.
Practitioners should improve the security practices measured by
these metrics.

6 CONCLUSION:
This research attempts to abstract from the GitHub repository level
and bring security check metrics to the ecosystem level for baseline
measurement. However, finding complete baseline measurements
is often challenging because projects within one ecosystem use
different tools and regulations and have wildly varying activity
levels. The Scorecard provides a way to measure security practices
to establish a baseline for OSS security measurement. Even if some
metrics are not functional for all packages, knowing about them
will inspire and direct practitioners on what to do if they want to
adopt these practices or identify the gap that is preventing them
from doing so.

7 ACKNOWLEDGMENTS
This work was supported and funded by Cisco. We thank the
OpenSSF Scorecard Team for their valuable feedback and assistance
in generating Scorecard data for such a vast number of repositories.

REFERENCES
[1] M. Souppaya et al., “Secure software development framework (ssdf) version 1.1,”

NIST Special Publication, vol. 800, p. 218, 2022.
[2] OWASP, “Software component verification standard (scvs),” https://owasp-

scvs.gitbook.io/scvs/, 2020.
[3] Scorecard, “Security scorecards for open source projects,”

https://github.com/ossf/scorecard, 2021.
[4] Google, “Open source vulnerability database,” https://osv.dev/, 2021.
[5] D. The White House, “Executive order on improving the nation’s cybersecu-

rity,” https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-
the-nations-cybersecurity, 2021.

[6] OSI, “Open source insight(osi),” https://deps.dev/, 2022.
[7] N. Zahan et al., “What are weak links in the npm supply chain?” in 2022 IEEE/ACM

44th ICSE-SEIP. IEEE, 2022, pp. 331–340.
[8] PyPI, “Pypi api for package name,” https://pypi.org/simple/, 2022.
[9] GitHub, “The github branches api,” api.github.com/repos/OWNER/REPO/branches/branch-

name, 2022.
[10] D. Wermke et al., “Committed to trust: A qualitative study on security & trust in

open source software projects,” in 2022 IEEE Symposium on Security and Privacy
(SP).

[11] S. T. Dinh et al., “Favocado: Fuzzing the binding code of javascript engines using
semantically correct test cases,” in Proceedings 2021 Network and Distributed
System Security Symposium, Virtual, 2021.

[12] N. Dotam, “Vulnerable github actions workflows,”
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability,
2022.


	Abstract
	1 Introduction
	2 OpenSSF Scorecard
	3 Other Community Efforts
	4 Methods
	4.1 Ecosystem Package Metadata
	4.2 OpenSSF Scorecard Score
	4.3 Ecosystem Security Practices
	4.4 Deep Dive on Dangerous Workflow Check: 

	5 Discussion:
	5.1 Security Check Metrics Evaluation

	6 Conclusion:
	7 ACKNOWLEDGMENTS
	References

