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Abstract
CPU vulnerabilities undermine the security guarantees pro-
vided by software- and hardware-security improvements.
While the discovery of transient-execution attacks increased
the interest in CPU vulnerabilities on a microarchitectural
level, architectural CPU vulnerabilities are still understudied.

In this paper, we systematically analyze existing CPU vul-
nerabilities showing that CPUs suffer from vulnerabilities
whose root causes match with those in complex software. We
show that transient-execution attacks and architectural vulner-
abilities often arise from the same type of bug and identify
the blank spots. Investigating the blank spots, we focus on
architecturally improperly initialized data locations.

We discover ÆPIC Leak, the first architectural CPU bug
that leaks stale data from the microarchitecture without us-
ing a side channel. ÆPIC Leak works on all recent Sunny-
Cove-based Intel CPUs (i.e., Ice Lake and Alder Lake). It
architecturally leaks stale data incorrectly returned by reading
undefined APIC-register ranges. ÆPIC Leak samples data
transferred between the L2 and last-level cache, including
SGX enclave data, from the superqueue. We target data in
use, e.g., register values and memory loads, as well as data at
rest, e.g., SGX-enclave data pages. Our end-to-end attack ex-
tracts AES-NI, RSA, and even the Intel SGX attestation keys
from enclaves within a few seconds. We discuss mitigations
and conclude that the only short-term mitigations for ÆPIC
Leak are to disable APIC MMIO or not rely on SGX.

1 Introduction

In recent years, a lot of research has been conducted to im-
prove software security, both on the application layer as well
as on the operating-system (OS) layer [35, 68]. The types of
software vulnerabilities are well known and, e.g., categorized
with the Common Weakness Enumeration (CWE) [70]. In
addition to manual security analysis, there are several tech-
niques to discover software vulnerabilities in automated and
semi-automated ways, e.g., fuzzing [16, 85], or static and dy-
namic analysis [9, 58]. However, more recent works have

shown that next to software vulnerabilities, there are software-
exploitable hardware vulnerabilities, such as Meltdown [48]
or Spectre [39]. These vulnerabilities can undermine software
security which always assumes bug-free and secure hard-
ware. The discovery of transient-execution attacks [4, 39, 48]
showed that CPUs by virtually all vendors, including Intel,
AMD, and ARM, are affected by these software-exploitable
hardware vulnerabilities. However, as these vulnerabilities
are architecturally not visible, transient-execution attacks use
side channels to observe and exploit them architecturally.

Following Meltdown and Spectre, a multitude of transient-
execution attacks has been discovered in this class of vulnera-
bilities [4, 38, 41, 63, 72, 78, 83]. All of these attacks leak data,
Meltdown-type attacks even across security boundaries, in-
cluding trusted execution environments (TEEs). Hence, they
pose a severe threat to the system security and resulted in
numerous ad-hoc mitigations on the operating-system and
firmware level [3, 24]. Despite the significant amount of re-
search on transient-execution attacks, they are not the only
CPU vulnerabilities. Architectural bugs have been known
for much longer, with infamous examples such as the Pen-
tium FDIV bug [5] or the Pentium F00F bug [6]. These vul-
nerabilities are intuitively easier to observe as they do not
require additional side channels. However, recent work has
highlighted the difficulty of adequately testing CPU design
for such vulnerabilities [11].

In this paper, we systematically analyze both architectural
and transient-execution vulnerabilities, showing that the un-
derlying type of vulnerability is often the same. While the
CWE recently introduced categories for such hardware vul-
nerabilities, we show that the root cause of hardware vulnera-
bilities can also be classified using the existing vulnerability
types for software. As CPUs are also written in (hardware)
programming languages, it is indeed not surprising that vul-
nerabilities known from software are also present in hardware.
However, we mainly see complex vulnerabilities in the hard-
ware, such as race conditions or use after free.

Based on our systematic analysis, we investigate categories
in which transient-execution attacks are known, but no archi-



tectural equivalent is known. Specifically, we systematically
inspect CPUs for improperly initialized storage locations that
return (parts of) stale data. We focus on data loads where the
structure that holds the data is larger than the effective loaded
data. Not initializing the whole structure may leave stale data
in the region not overridden by the effective data. This is, e.g.,
the case in the I/O address space, where memory-mapped
devices often have strict limitations, such as only allowing
aligned 32-bit loads to specific addresses [28].

Discovering architectural leaks. The scan of the I/O address
space on Intel CPUs based on the Sunny Cove microarchitec-
ture revealed that the memory-mapped registers of the local
Advanced Programmable Interrupt Controller (APIC) are not
properly initialized. As a result, architecturally reading these
registers returns stale data from the microarchitecture. Any
data transferred between the L2 and the last-level cache can
be read via these registers. This vulnerability, named ÆPIC
Leak, affects the 10th generation mobile Ice Lake CPUs, the
newest, 12th generation, Alder Lake CPUs, and the current
3rd generation of Xeon scalable server CPUs (Ice Lake SP).

As the I/O address space is only accessible to privileged
software, ÆPIC Leak targets Intel’s TEE, SGX. ÆPIC Leak
can leak data from SGX enclaves that run on the same phys-
ical core. While ÆPIC Leak would represent an immense
threat in virtualized environments, hypervisors typically do
not expose the local APIC registers to virtual machines, elimi-
nating the threat in cloud-based scenarios. Similar to previous
transient-execution attacks targeting SGX [63, 72, 77–79],
ÆPIC Leak is most effective when running in parallel to the
enclave on the sibling hyperthread. However, ÆPIC Leak
does not require hyperthreading and can also leak enclave
data if hyperthreading is unavailable or disabled.

We present two new techniques to leak data in use, i.e.,
values from enclave registers, and data at rest, i.e., data stored
in enclave memory. With Cache Line Freezing, we introduce
a technique putting targeted pressure on the cache hierarchy
without overwriting stale data. Cache Line Freezing exploits
the observation that Sunny Cove implements an optimiza-
tion for zero cache lines, i.e., cache lines filled only with ‘0’s.
These cache lines still appear to travel through the cache hier-
archy, but they do not overwrite stale data. With this targeted
pressure and enclave single-stepping [74], we leak register
values from cache lines in the secure state area (SSA). A
second technique, Enclave Shaking, exploits the capability of
the operating system to securely swap enclave pages. By alter-
natingly swapping enclave pages out and back in, the stored
data is forced through the cache hierarchy, allowing ÆPIC
Leak to leak the values without even continuing the execution
of the enclave. We exploit ÆPIC Leak in combination with
Cache Line Freezing and Enclave Shaking to extract AES-NI
keys and RSA keys from Intel’s IPP library and the Intel SGX
sealing and remote attestation keys. Our attack leaks memory
from enclaves with 334.8 B/s and a success rate of 92.2 %.

Although we provide software workarounds for specific
scenarios, such as AES-NI, we conclude that there is no short-
term workaround for protecting enclave data without dis-
abling the APIC memory-mapped range or disabling SGX.
On January 2022, Intel announced the deprecation of SGX
on the affected CPU generations [32] for client architectures,
which coincidentally reduces the risk of widespread exploita-
tion after our submission. However, while it is deprecated on
client CPUs, SGX is still available on server CPUs (i.e., 3rd

generation of Xeon scalable server CPUs). An attacker only
needs one up-to-date system to extract secrets from an enclave
(e.g., bypassing Signal private contact discovery [51], leaking
DRM secrets or attestation keys). Thus, if not mitigated, ex-
ploiting ÆPIC Leak is a significant threat to enclave security.
Disabling the APIC I/O memory via a microcode update, or
deprecating SGX are effective mitigations against the specific
vulnerability discovered. However, we argue that a generic
mitigation of the vulnerability class in future hardware is an
open research problem we identify with this work.
Contributions. The contributions of this work are:
1. We systematically analyze and categorize CPU vulner-

abilities, showing that they have the same types as for
software, and identifying blank spots.

2. In the blank spots, we discover ÆPIC Leak, an architec-
tural vulnerability in the local APIC leaking data from
SGX enclaves, including data in use and data at rest.

3. We design two complementary techniques that leverage
microarchitectural optimizations to control which cache
line ÆPIC Leak samples from the cache hierarchy.

4. We evaluate our techniques by leaking cryptographic keys,
including Intel’s official key from the quoting enclave.

Outline. Section 2 provides background. Section 3 analyzes
and categorizes CPU vulnerabilities, leading to blank spots
with potentially undiscovered vulnerabilities. Section 4 details
the ÆPIC Leak vulnerability and its threat model. In Section 5,
we show how ÆPIC Leak leaks data from SGX enclaves. We
discuss mitigations in Section 6 and conclude in Section 7.
Responsible Disclosure. We responsibly disclosed our find-
ings to Intel on December 8th, 2021. Intel acknowledged our
findings on December 22nd, 2021, assigned CVE-2022-21233
and is working on possible mitigations.
Code Access. Our proof of concept of the attacks is open-
sourced at https://github.com/IAIK/AEPIC.

2 Background

This section covers fundamental background for the reader to
understand the rest of the paper.

2.1 APIC
The Advanced Programmable Interrupt Controller (APIC)
manages and routes interrupts in modern CPUs. The APIC
is split into two different components: The Local APIC in-
tegrated into each logical core and the external I/O APIC
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in the Intel’s System Chip Set. The Local APIC manages
interprocessor interrupts (IPIs) and receives interrupts from
the processor interrupts pins, forwarding them to the core to
be handled, while the I/O APIC receives external interrupts
events and forwards them to the target local APICs [28].
Local APIC. A Local APIC can receive, generate, and for-
ward interrupts, both to its local core (through IPIs or local
interrupt sources, i.e., timer interrupts, performance moni-
toring counter interrupts, thermal sensor interrupts), to other
cores (through IPIs), and from external devices (through the
I/O APIC). Each Local APIC is made up of a set of APIC
registers to control its functionality or expose the state of the
interrupts in the system. A processor can generate IPIs or set
up local interrupts via APIC registers of its own Local APIC.
Local APIC Registers. By default, modern APICs operate
in xAPIC mode, which exposes Local APIC registers as a
memory-mapped 4 kB region in the physical address space.
The address of the region is set in the IA32_APIC_BASE MSR
and independent for each logical core [28]. At startup, the
region is set at physical address 0xFEE00000 but it can be
moved on a per-core basis by changing the value of the
IA32_APIC_BASE MSR. APIC registers are either 32, 64, or
256 bits, but they are mapped into the memory-mapped region
as 32-bit values, always aligned to 128-bit boundaries. Thus,
registers wider than 32 bits are split and mapped over multi-
ple 128-bit aligned regions in the memory-mapped area. This
means that bytes 4 to 15 in each 16-byte (128-bits) region
are never architecturally defined. Intel states that any access
that touches bytes 4 through 15 of an APIC register may
cause undefined behavior and must not be executed [28]. The
APIC can be set in x2APIC mode if supported, which extends
xAPIC mode with different improvements, like enhancing the
performance of interrupt delivery and providing MSR-based
access to APIC registers which disables the memory-mapped
interface. The OS can enable or disable x2APIC mode by
setting bit 10 of IA32_APIC_BASE MSR.

2.2 Memory Subsystem
CPUs rely on a hierarchical memory subsystem with data
cached over multiple levels. Lower level caches provide faster
memory with smaller storage capabilities for data frequently
accessed, while higher-level caches offer bigger storage at
cost of increased latency. Modern Intel CPUs usually have
at the lowest level a private instruction cache (L1I) and data
cache (L1D), and at the second level a private unified cache
(L2). The Last-Level Cache (LLC or L3) is usually shared
across all physical cores.
Path to Main Memory. The CPU tries to serve each mem-
ory access from the lowest cache level possible. It allocates
the resources necessary to track the memory requests, i.e.,
load or store buffers. Upon completion of the address trans-
lation, if any of the physical tags in the indexed cache set
matches the physical address, the data is returned from the
L1D. In case no tag matches (i.e., the data is not in L1D), the

CPU allocates a line-fill-buffer (LFB) entry to interface with
the L2 cache. Line fill buffers act as a decoupling compo-
nent between L1 and L2 caches to keep track of outstanding
requests, uncacheable memory accesses, and non-temporal
moves [63, 78]. The CPU then performs the lookup in L2,
which loads the LFB entry in case the data is present, returns
it to L1D, and back to the load buffers. In case data is not
present in L2, the CPU must issue an offcore request to the
LLC cache. It reserves a fill buffer entry to hold the data in
the superqueue [40, 43] between L2 and LLC, issues the load
over the ring interconnect [59] and waits for the request to
be completed. The superqueue decouples the interaction be-
tween the L2 and the LLC caches, in a similar way the line
fill buffers do between L1 and L2. The ring interconnect is an
on-die interconnect used for uncore communication between
CPU cores, LLC, memory controller, and the integrated GPU.
The load request is satisfied either by the LLC or the memory
controller, and the fill-buffer entry in the superqueue collects
the value, which sends the data back to the core.

2.3 Intel SGX
Intel Software Guard Extension (SGX) provides a Trusted
Execution Environment (TEE) on x86 processors. Introduced
in Skylake CPUs, SGX offers hardware isolation and local
and remote attestation for so-called enclaves even on possibly
attacker-controlled machines [28]. SGX enclaves reside in the
virtual address space of a userspace process, but their physi-
cal memory is backed by the protected Enclave Page Cache
(EPC). Stores to EPC are automatically encrypted, and loads
are decrypted by the memory encryption engine. While en-
clave memory is inaccessible to attackers probing the memory
bus [7], CPUs affected by transient-execution vulnerabilities
can leak the values from the microarchitecture [63, 72, 78].

Enclaves can only be executed from pre-configured entry
points using the eenter instruction and exit using an eexit
instruction. If a fault or interrupt occurs while an enclave is
running, the processor issues an Asynchronous Enclave Exit
(AEX), securely storing and clearing all the enclave CPU
registers at the time of enclave interruption in a Save State
Area (SSA) inside EPC. An eresume instruction restores
enclave execution from the SSA frame.

Due to the limited EPC size, untrusted system software can
leverage the ewb and eldu instructions to move encrypted
EPC pages to main memory and back, without revealing the
content. When an enclave page is moved from main memory
back to EPC using eldu, it is decrypted and cryptographically
verified to ensure its content has not been tampered with,
bringing the plaintext data to the L1 cache [72].

SGX supports local and remote attestation. During the en-
clave creation process, the CPU collects cryptographic mea-
surements about the starting enclave and its signature in two
different Measurement Registers (MRSIGNER and MRENCLAVE).
An enclave can generate a signed local attestation for a target
enclave using the ereport instruction, which can be cryp-



tographically verified by the target enclave using a key ob-
tained through the egetkey instruction. The report of the
local attestation includes the enclave’s initial code and data as
measurement registers in addition to other security-related in-
formation [28]. Intel provides a trusted quoting enclave to
sign locally-generated identity reports using an Intel-private
key and enabling remote attestation. The egetkey instruc-
tion also provides a sealing key that the enclaves can use to
securely seal secrets for untrusted persistent storage.

SGX enclaves have been compromised in numerous ways
over the past years, e.g., memory-safety violations [44], inse-
cure synchronization [82], asynchronous exception manage-
ment [10], and side channels [53, 65, 75, 76]. SGX has also
been the target of transient-execution attacks [62, 63, 72, 78].

2.4 Transient-Execution Attacks
On x86, the instruction stream, once fetched, is decoded into
smaller micro-operations (µops) to simplify the underlying
microarchitecture and enable low-level optimizations. The
µops are decoded in-order and executed out of order over the
different execution units, keeping track of the dependencies to
satisfy them. The results are committed in order to the archi-
tecture, thus ensuring correctness. Given the highly parallel
nature of modern CPUs, branch prediction has been intro-
duced to avoid stalls, speculatively executing the predicted
path. If the prediction turns out correct, the speculatively exe-
cuted µops are committed to the architectural state, while in
case of a misprediction, the results are discarded by the CPU.
All non-committed µops are discarded if exceptions arise dur-
ing out-of-order execution. Any discarded µop does not affect
the architectural state, but it can affect the microarchitectural
state (e.g., cache state). Such instructions are called transient
instructions [4, 39, 48].

3 Software and Hardware Vulnerabilities

In this section, we systematically analyze existing docu-
mented CPU vulnerabilities on x86 CPUs, showing that the
underlying root causes are the same as for software vulnera-
bilities. We demonstrate that the CWE classification of soft-
ware vulnerabilities can be applied both to transient-execution
vulnerabilities as well as architectural CPU vulnerabilities.
Table 1 provides this classification.

3.1 Types of Vulnerabilities
For a long time, system security relied on the correctness
of the underlying hardware, ignoring the possibility of se-
curity vulnerabilities on the CPU [37]. With the discov-
ery of transient-execution attacks [39, 48], this view has
changed drastically. Since the first publication of such at-
tacks, numerous vulnerabilities have been discovered in
CPUs [2, 4, 61–63, 72, 73, 78]. However, transient-execution
attacks are neither the only nor the first discovered CPU vul-
nerabilities. The history of CPU vulnerabilities that affect a

large number of users goes back to well-known bugs such
as the Intel Pentium FDIV bug [5] described in 1995 or the
Intel F00F bug [6] described in 1997. These bugs did not pose
a significant security risk back then. However, today, with
cloud computing and trusted-execution environments, such
small bugs would be exploitable. DVFS attacks [36, 57, 60]
can induce a similar effect as the FDIV bug by causing wrong
results in multiplications (instead of divisions), which has
been used to break the confidentiality and integrity of Intel
SGX. Similarly, LVI-FP [61] induced wrong floating-point
calculations in the transient domain, which has been exploited
to disclose arbitrary memory in the browser. Hence, as we
have seen with software, simple bugs can become exploitable
vulnerabilities when exploitation techniques improve [20, 67].

When analyzing existing CPU vulnerabilities, we can–at
the high level–categorize them into architectural and transient
vulnerabilities. Architectural vulnerabilities are exploitable
by relying only on architecturally-defined interfaces and fea-
tures. Transient vulnerabilities do not have an architecturally-
visible effect as they are only visible on the microarchitectural
level and hence require side channels to observe them.

Architectural Vulnerabilities. Architectural vulnerabilities
are visible without requiring any further indirection or side
effects. x86 CPUs have been affected by several architectural
vulnerabilities over the years. Vulnerable components in the
architecture may incur invalid states due to design or imple-
mentation errors from the manufacturer, causing unwanted
behaviours like system hangs, shutdowns, or, in the worst
case, undefined states possibly exploitable. For example, the
F00F bug was triggered by an invalid opcode that led to the
lock-up of the CPU until it was rebooted [6]. The FDIV bug
is in this category as well, as it simply provides wrong results
for specific operands provided to the floating-point division
instruction [5]. Although well-known, these bugs are not the
only architectural CPU vulnerabilities. Many architectural
bugs were never documented but only mentioned in CPU
erratas [29, 30]. The specification update for the 11th genera-
tion of Intel CPUs (released 2020) already contains 73 errata.
While many of these errata might not be exploitable, e.g.,
incorrect values reported or failure to resume correctly from
sleep states, the missing details make it impossible to guaran-
tee non-exploitability. Recent vulnerabilities that have been
found mostly by researchers [12, 29, 30, 36, 45, 55, 57, 60] are
exploitable, though. These vulnerabilities allow an attacker to
crash a system [12, 30], leak data from parts of cache lines of
a different security domain [29], modify computation results
in a different security domain [36, 55, 57, 60], or change the
control flow of a different application [45]. Although all these
bugs are observable on the architectural level, understanding
the root cause is often still difficult [42]. Moreover, while it
is often not difficult to trigger the bugs, it is extremely dif-
ficult to exploit them in a reliable way that goes beyond a
denial-of-service attack [12, 30, 42, 45].



Table 1: Classification of transient and architectural vulnerabilities according to CWE originally targeted at software vulnerabili-
ties. CWE-441 has no architectural counterpart yet. ÆPIC Leak represents the architectural counterpart for CWE-665.

Vulnerability Type Transient Vulnerability Architectural Vulnerability

CWE-416 Use-after-free ZombieLoad [63], RIDL [78], Fall-
out [2], Spectre-STL [19]

iTLB multihit [30]

CWE-441 Confused Deputy SWAPGS [49] -
CWE-119 Out-of-bounds Operation Spectre-PHT [39], Spectre v1.1 [38],

Meltdown-BND [4]
GPU cache-line leak [29]

CWE-843 Type Confusion Foreshadow-VMM [83] F00F bug [6]
CWE-682 Incorrect Calculation LVI-FP [61] Plundervolt [57], V0LTpwn [36],

VoltJockey [60], FDIV bug [5]
CWE-362 Race Condition Meltdown [48], Foreshadow [72] AMD Ryzen IRETQ bug [12]
CWE-691 Insufficient CF Management Spectre-BTB [39], Spectre-RSB [41,

50]
Skylake bug [45]

CWE-74 Improper Neutralization (Injection) LVI [73] SEVerity [55]
CWE-665 Improper Initialization CrossTalk [62], Medusa [54] ÆPIC Leak (this paper)

Transient Vulnerabilities. Transient vulnerabilities are not
directly visible on the architectural level, as they affect the
microarchitecture. Observing these vulnerabilities requires a
side channel [4]. Well-known transient vulnerabilities include
Spectre [39] and Meltdown [48]. Meltdown-type attacks ex-
ploit delayed exception handling in out-of-order execution,
while Spectre-type attacks leverage branch mispredictions.
To leak data from the transient domain, the secret data is
encoded into microarchitectural elements not cleared upon
discarding transient instructions and transferred to the ar-
chitectural state via a covert channel [1, 18, 47, 64, 81, 84].
As these vulnerabilities require indirect observation, they
are much harder to detect accidentally. Similar to archi-
tectural vulnerabilities, many of them might not be ex-
ploitable [4]. However, as with architectural vulnerabilities,
several of these vulnerabilities have been exploited success-
fully [1, 2, 19, 38, 39, 41, 48, 50, 61–63, 72, 73, 78, 83]. These
vulnerabilities allow an attacker to read architecturally in-
accessible data from the own process [19, 39], change the
transient control flow of processes [38, 39, 41, 50], inject data
into the transient domain [61,73], and leak data from different
security domains [2,48,62,63,72,78,83]. The last generation
of Intel CPUs (Sunny-Cove-based CPUs) is not vulnerable to
Meltdown-type attacks due to in-silicon mitigations.

3.2 Classification of Vulnerabilities
For software (and now also hardware) vulnerabilities, there
is the CWE (Common Weakness Enumeration) classifica-
tion. This classification contains more than 900 categories of
vulnerabilities [70]. Intuitively, one would assume that the
hardware vulnerabilities cover CPU vulnerabilities. However,
while they are indeed classified in the hardware-bug categories
in the CWE, sometimes even with their own categories, we
argue that these categories are not necessary to enumerate the
vulnerabilities. Looking at modern CPUs, they are designed
using hardware-description languages (HDLs) [71]. Hence,
CPUs can, to some extent, also be considered as software.

Our analysis shows that the underlying root causes of CPU
vulnerabilities are not so different from (complex) software
vulnerabilities. Thus, they can be classified using the existing
software-vulnerability categories (cf. Table 1). This classifica-
tion works both for architectural and transient vulnerabilities.
Out-of-bounds Operation (CWE-119). The transient-
execution attack Spectre-PHT [4, 39] can be classified under
CWE-119 “Improper Restriction of Operations within the
Bounds of a Memory Buffer”. The description of this cate-
gory states: “The software performs operations on a memory
buffer, but it can read from or write to a memory location
outside of the intended boundary of the buffer.” [70], which
is precisely what is happening in Spectre-PHT, except that it
is not the software but the CPU. Meltdown-BND [4] exploits
a similar problem, where the hardware transiently ignores the
bounds check for a buffer. Although there are not many de-
tails, the architectural vulnerability Intel SA-00219 [29] also
fits into this category. On affected CPUs, the integrated graph-
ics card has an incorrect bounds check that allows reading the
first 64 bit of a cache line used inside SGX enclaves.
Use after Free (CWE-416). According to Schwarz et al. [63],
the root cause of the transient-execution attacks known as
microarchitectural data sampling (MDS) [2, 63, 78] is a use-
after-free vulnerability in internal CPU buffers. The old con-
tent of these internal buffers, i.e., the line-fill buffer and the
store buffer, is used transiently in a faulting load, although
the entry was already free’d by a previously finished load
(or store). Similarly, in Spectre-STL [19], the CPU uses old
stale memory locations that should have already been over-
written by newer stores, i.e., it reads from a resource that was
already “released”. The iTLB multihit vulnerability [30] is an
architectural instance of a use-after-free vulnerability. In this
vulnerability, the CPU tries to use an old TLB entry that is not
valid anymore, while a newer valid TLB entry already exists
for the virtual address. Hence, although the old entry should
have been released by creating the new entry, the CPU still
tries to use the released one, leading to a CPU lockup [30].



Confused Deputy (CWE-441). A confused deputy vulner-
ability sees an intermediary forwarding a request to a target
resource without preserving information about access permis-
sions of the origin source. When the SWAPGS instruction
is speculatively executed in kernel mode, it swaps the kernel
GS register with the user GS register during the transient win-
dow. The transient swap causes the CPU to use user-provided
values in the GS register [49]. The SWAPGS instruction acts
as a confused deputy to the instructions dereferencing GS,
leaving no trace of the origin of the GS value that was coming
from userspace and not kernelspace. We did not identify any
corresponding architectural vulnerability in this category.
Type Confusion (CWE-843). In the Foreshadow-VMM [83]
variant of Foreshadow [72], the CPU suffers from a type
confusion in the page-table entry of a guest page table. On a
non-present fault inside the VM, the CPU treats the page-table
entry like a host page table, interpreting the stored page frame
number as a host physical address instead of a guest physical
address. The F00F bug [6] can also be considered as a type
confusion: the CPU locked the bus as it confused the register
access of the opcode with a memory access, preventing the
bus lock from being released as the CPU did not observe the
completed memory access.
Incorrect Calculation (CWE-682). The LVI-FP vulnerabil-
ity [61] shows that the transient result of floating-point values
can be modified in certain corner cases where the operation
requires a microcode assist. While the calculation is corrected
architecturally, subsequent code that is executed transiently
works with incorrect values. The FDIV bug is the famous
example of an architectural incorrect calculation, where the
result of floating-point divisions was incorrect for specific
operands [5].
Race Condition (CWE-362). The first Meltdown-type at-
tacks Meltdown-US [48] and Foreshadow [72] can be con-
sidered race conditions. In both cases, the data is already
accessed and forwarded to dependent operations before the
CPU realizes that the virtual address points to architecturally
inaccessible data. While there are not many details available
about the AMD Ryzen IRETQ bug [12], it is very likely a
race condition, as it can only be triggered when executing
the iretq instruction on one hyperthread, while running a
CPU-bound loop on the other hyperthread [12]. In this setup,
the hyperthread executing the iretq stalls until the sibling
hyperthread pauses.
Insufficient Control-Flow Management (CWE-691). For
both Spectre-BTB [39] and Spectre-RSB [41, 50], an attacker
can change the transient control flow unexpectedly. As the
CPU does not properly distinguish between different appli-
cations for branch-prediction targets, an attacker can inject
an arbitrary branch target. On Intel Skylake CPUs, there is
an architectural vulnerability that is not well understood but
has similar effects [45]. Using 8-bit registers in a tight loop
on one hyperthread can lead to unexpected changes of the
instruction pointer on the sibling hyperthread.

Improper Neutralization (Injection) (CWE-74). LVI [73]
injects values into a victim’s transient data stream. In these
attacks, the CPU does not properly neutralize the input to
a faulting (or assisting) load, forwarding unrelated attacker-
controlled data, i.e., dependent operations receive incorrect
data. This matches the description of CWE-74: “The software
constructs all or part of a command, data structure, or record
using externally-influenced input from an upstream compo-
nent, but it does not neutralize or incorrectly neutralizes spe-
cial elements that could modify how it is parsed or interpreted
when it is sent to a downstream component.” [70]. On AMD,
there is an architectural vulnerability in this category called
SEVerity [55]. Due to missing integrity checks of encrypted
memory, an attacker can inject code into SEV-protected VMs.
Improper Initialization (CWE-665). The CrossTalk [62]
transient-execution attack exploits the improper initialization
of the internal staging buffer of the CPU. This buffer is used
for the hardware random-number generator, as well as for
the cpuid instruction. In both cases, only a part of the buffer
is used, and the remaining part of the buffer is not cleared.
However, the entire buffer is transmitted to the line-fill buffer,
from where the improperly-initialized buffer can be leaked
via RIDL [78] or ZombieLoad [63]. In this paper, we show
the first architectural vulnerability in this category. We show
that the reserved part of the APIC registers on Ice Lake and
Alder Lake CPUs are not properly initialized, leaking stale
data that was loaded from or stored to the LLC cache.

3.3 Missing Architectural Counterpart Discovery
Except for CWE-665 (Improper Initialization) and CWE-441
(Confused Deputy), we identified both transient and architec-
tural vulnerabilities in every category in Table 1. We target the
blank spot in CWE-665 by systematically analyzing the possi-
ble targets for architectural vulnerabilities caused by improper
initialization. We focus on data loads where the underlying
data structure is larger than the loaded data. For this, we focus
on the I/O address space. As data leakage from valid memory
addresses would have already been discovered, we do not
expect any architectural vulnerabilities there. Similarly, pre-
vious work investigated the address space of model-specific
registers [13] without discovering any data leakage.

In our experimental setup, we iterate over the entire I/O
address space by mapping the address space page-by-page
into the user space. Similarly to the approach described by
Moghimi et al. [54], we groom microarchitectural buffers on
the hyperthread while reading from the I/O address space. The
grooming application simply reads and writes known data,
ensuring that they end up in the store buffer, fill buffers, and
cache hierarchy. If a value read from the I/O address space
matches the known data, the physical address is reported as a
potential source of data leakage.

Such a scan takes around 3 h to 4 h depending on the sys-
tem we tested. On all Ice Lake and Alder Lake CPUs, this
scan reported a physical address that architecturally leaks data



Table 2: Subset of tested CPUs and whether they are vulnera-
ble (✓) or not (✗) to ÆPIC Leak. All tested Sunny-Cove-based
CPUs are vulnerable.

CPU Microarchitecture Based on ÆPIC Leak

Core i3-1005G1 Ice Lake Sunny Cove ✓
Core i5-1035G1 Ice Lake Sunny Cove ✓
Core i7-10510U Comet Lake Skylake ✗
Core i5-1135G7 Tiger Lake Willow Cove ✗
Core i9-12900K Alder Lake Sunny Cove ✓
Xeon Platinum 8375C Ice Lake SP Sunny Cove ✓
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Figure 1: ÆPIC Leak reads a reserved part of an APIC reg-
ister. The APIC uses the superqueue between L2 and LLC
to transfer the data to the core. The reserved parts do not
overwrite the superqueue entry, exposing stale values from
previous reads and writes of other applications to the attacker.

from the sibling hyperthread: 0xFEE00000. In Section 4, we
provide an analysis of this architectural information leakage,
showing that it is indeed caused by improper initialization.
The scanning also led to several crashes, e.g., when read-
ing from the Serial IO GPIO host controller. As scanning is
only possible from ring 0, i.e., the kernel, we do not consider
this behavior security-relevant. While reading from address
0xFEE00000 is also only possible from the kernel, such an
attacker is valid when attacking SGX enclaves.

4 ÆPIC Leak Overview

In this section, we introduce ÆPIC Leak, an architectural
vulnerability in Intel CPUs that exploits undefined behavior
in the APIC to leak data from the cache hierarchy. We provide
an overview of ÆPIC Leak in Section 4.1, its threat model in
Section 4.2 and analyze the root cause in Section 4.3. Based
on the analysis, we introduce required building blocks for
exploitation in Section 4.4.

4.1 Attack Overview
Figure 1 shows a high-level overview of ÆPIC Leak. ÆPIC
Leak leaks values by architecturally reading the undefined
range of APIC registers from ring 0, i.e., the OS. Accessing
bytes 4 to 15 of each 16−byte register results in undefined
behavior according to Intel [28]. This undefined behaviour
includes reading either zeros or 0xFF, system hangs, or triple
faults on most CPUs. However, as discovered via the I/O
address-space scan (cf. Section 3.3), this is not the case on

0x0 0x10 0x20 0x30 0x40

Cache line

Leakable bytesValid APIC offset

Figure 2: Leakable bytes in a 64-byte cache line.

Sunny-Cove-based CPUs. Instead, stale data from the su-
perqueue is returned. Accessing any defined or undefined
register in the byte-range 4-15, with a load width between 1
and 4 bytes, returns such stale data. Hence, ÆPIC Leak can
atomically leak a 32-bit value per read. Load widths of 8 bytes
or more return 0xFF, and thus do not leak data.

The uninitialized data returned from ÆPIC Leak is not
restricted to any security domain, i.e., the origin can be user-
space applications, the kernel, and, most importantly, SGX
enclaves. Our hypothesis is that the invalid offsets in APIC
registers are not properly initialized, i.e., zeroed. Our exper-
iments indicate that the superqueue is used as a temporary
buffer for APIC requests. The superqueue entry contains stale
data of recent memory loads and stores that traveled from the
L2 to the L3 or the other direction. The APIC only overwrites
the architecturally-defined parts of the register and leaves the
stale values in the reserved part.

There is no correlation between the APIC register used for
leaking data and the leaked data. Reading any reserved ad-
dress within the APIC range 0xFEE00000-0xFEE003FF leads
to the same leakage. The only control over the leaked data is
the cache-line offset. The cache-line offset of the used APIC
address always matches the cache-line offset of the leaked
data, which is also the case for MDS attacks [2, 63, 78].

As valid APIC register parts overwrite the stale value, the
leakage pattern is as illustrated in Figure 2. For every 16 B
block, the first 4 B contain valid APIC data, followed by 12 B
stale data. Hence, ÆPIC Leak deterministically leaks 48 B
from a cache line. Another limitation is that ÆPIC Leak only
leaks even cache lines, i.e., cache lines that start at an address
that is a multiple of 128. As cache line pairs are typically
transferred in pairs [27], we hypothesize that the second cache
line is transferred first and then immediately overwritten by
the first cache line, leaving only the stale data of the first cache
line in the superqueue. Still, the leakage of ÆPIC Leak covers
37.5 % of any page. Section 5 shows that this is sufficient to,
e.g., extract AES-NI keys from SGX enclaves, and presents
different techniques to circumvent this limitation. However,
this is exactly what we propose to leverage, to mitigate ÆPIC
Leak at the software level (cf. Section 6.3).

4.2 Threat Model
Following most microarchitectural attacks on Intel SGX, we
assume the attacker can execute privileged native code on the
target machine. At the hardware level, we assume a Sunny-
Cove-based Intel CPU (e.g., 10th and 12th generation code



name “Ice Lake” and “Alder Lake” and 3rd generation Xeon
scalable “Ice Lake SP”). These CPUs are not vulnerable to
any Meltdown-type attacks, such as Meltdown [48], Fore-
shadow [72,83], RIDL [78], or ZombieLoad [63]. ÆPIC Leak
observes memory operations inside an Intel SGX enclave. We
assume either a malicious hypervisor targeting secrets in guest
enclaves or a privileged attacker willing to extract secrets from
local enclaves, e.g., bypassing private contact discovery on
Signal Servers [51], leaking DRM secrets or even SGX attes-
tation keys. ÆPIC Leak only requires the OS or hypervisor
to access the physical Local APIC to leak secrets, with no
difference between the two settings. The attacker is either
running on the same physical core, either on the sibling logi-
cal core or on the same logical core, e.g., if hyperthreading is
disabled. While SGX enclaves can detect if hyperthreading is
enabled during remote attestation [23], there is no recommen-
dation to disable hyperthreading on CPUs with silicon fixes
against Meltdown-type attacks. Thus, on Sunny-Cove-based
CPUs, hyperthreading can be enabled. Still, even without hy-
perthreading, ÆPIC Leak can leak memory operations inside
an SGX enclave, just with a reduced leakage rate.

In line with the SGX threat model, an attacker can rely on
arbitrary operating-system features, such as the modification
of page-table entries [76], the precise interrupts of enclaves
using timer interrupts [74], or the execution of privileged SGX
instructions, such as EWB to evict EPC pages.
Virtualized Environments. A malicious virtual machine
with access to the host Local APIC could exploit ÆPIC Leak
to observe data from other tenants or the hypervisor. However,
no hypervisor we analysed exposes direct access to the host
Local APIC. Usually, the APIC MMIO region, when enabled,
is emulated by the hypervisor by intercepting the accesses to
the region and managing the virtual interrupts [69]. In case
Intel APIC virtualization (Intel APICv [28]) is enabled, the
physical CPU emulates APIC functionality for the virtual
CPUs in dedicated pages. We empirically verified that ÆPIC
Leak does not work with APIC virtualization and APICv
mode to leak from a guest VM. Thus, ÆPIC Leak does not
allow guest virtualized systems to leak data. On the contrary,
a malicious hypervisor could leverage ÆPIC Leak to leak
secrets from guest VMs, leveraging its own Local APIC, irre-
spective of the guest APIC configuration.
Other Vendors and CPUs. We tested all Intel Core microar-
chitectures from Sandy Bridge (2nd generation) to Alder Lake
(12th generation), and AMD CPUs from Zen to Zen 3. We did
not discover any vulnerable CPU other than the ones based on
Sunny Cove. Table 2 reports a subset of the CPU we tested,
see Appendix C for the full list. We observe hangs or reads of
0x00 or 0xFF on unaffected CPUs.

4.3 Leakage Analysis
In this section, we analyze the leakage of ÆPIC Leak, i.e.,
from which microarchitectural element the data originates.
We designed several experiments that show how the leakage

source of ÆPIC Leak is different from previous microarchi-
tectural attacks and demonstrate that ÆPIC Leak allows pick-
ing up stale values from the superqueue. We performed our
tests on an Ice Lake Core i5-1035G1 machine, with Ubuntu
20.04.1, kernel 5.4.0-96, and the last microcode update in-
stalled (cf. Table 2).

4.3.1 Ruling out Microarchitectural Elements.
As we cannot directly observe from which microarchitectural
element ÆPIC Leak leaks, we instead rule out microarchitec-
tural elements from which ÆPIC Leak does not leak, expand-
ing and systematizing the methodology from Schwarz et al.
[63]. Our methodology is general to be applied to the study of
the leakage of other CPU bugs. In this section, we describe the
experiments we designed for all microarchitectural elements
that are not involved, i.e., where ÆPIC Leak still leaks the
targeted data after clearing or circumventing them.
L1 Data Cache. By flushing the L1D via MSR_0x10B [23]
and disabling hyperthreading, we ensure that the targeted data
is not stored in the L1 while being leaked.
Line-Fill Buffer and Load Ports. We use the software se-
quences provided by Intel [34] to clear intermediate buffers,
including the LFB and load ports, and still leak values.
L1 Instruction Cache. ÆPIC Leak leaks code and data,
which travel through different paths in the hardware (e.g.,
code does not go through the LFB). It is unlikely that both
paths (L1D and L1I) are affected and we see some combined
leakage. Thus, we rule out the L1 cache and its line fill buffer.
Store Buffer. ÆPIC Leak is not limited to store operations
but also leaks memory loads. Thus, we can eliminate the store
buffer as leakage source. Moreover, ÆPIC Leak cannot leak
transient stores which are only stored in the store buffer [2].
L2 Cache. ÆPIC Leak cannot leak data that is kept in L2
and not evicted towards L3. Thus we can exclude stale data
in L2 as the source of leakage.
L3 Cache. ÆPIC Leak does not leak data kept in L3 while
being exclusively used by other cores, and thus, not loaded
towards the local L2 cache. This rules out all CPU caches.
Ring Bus. ÆPIC Leak cannot leak values processed by the
GPU or from LLC slices exclusively used by other physical
cores, also ruling out the ring bus. Moreover, ÆPIC Leak also
works on Xeon CPUs without a ring bus [15].
Staging Buffer. ÆPIC Leak does not leak values from cpuid
or rdrand, ruling out the staging buffer.
Memory. We also rule out the DRAM and memory controller
by marking a memory region as uncachable to ensure that
every store and load circumvents the cache hierarchy. ÆPIC
Leak does not leak these loads and stores.
System Agent. As ÆPIC Leak does not leak values from
PCI devices, we exclude this subsystem as leakage source.

Our experiments rule out the known internal buffers up to
the L2 cache and the components in the uncore subsystem.
Thus, we hypothesize that the leakage source is the internal
buffer between the L2 and LLC cache, i.e., the superqueue.
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Figure 3: When executing the ewb instruction, a transparently
encrypted page gets re-encrypted and moved to the non-EPC
main memory. During this process, the unencrypted content
of the page flows through the cache hierarchy. Vice versa for
decryption with the eldu instruction.

We achieve the best leakage when building eviction sets that
evict data from L2 but not from L3, and when relying on
cache-line bouncing [52]. In both cases, the data deterministi-
cally moves through the superqueue between L2 and L3.

4.3.2 Performance Counter Analysis.
ÆPIC Leak does not trigger an architectural fault when per-
forming a load instruction, even on reserved and undefined
offsets of the MMIO region. However, we observed subtle
microarchitectural differences when performing a load from
a 16 B-aligned offset, whether it contains defined data or has
been reserved by the specification. For every load to a re-
served or undefined region, we observe a higher latency (437
cycles (n = 1000, σx̄=0.57)) in contrast to a valid offset (47
cycles (n = 1000, σx̄=0.03)). The MACHINE_CLEARS.COUNT
performance counter indicates that the invalid load trig-
gers an exception not forwarded to the architectural level.
Furthermore, OFFCORE_REQUESTS_OUTSTANDING.X perfor-
mance counters indicate that the core sends offcore requests
as the loads are not satisfied by the local APIC, increasing the
CYCLE_ACTIVITY.STALLS_X and, hence, the observed access
time. As the data is not in any cache (and the PTE marked
uncachable), the miss creates an entry in the superqueue and
allocates a line fill buffer [46]. Table 5 in Appendix C gives an
overview of all performance counters that show differences
for defined and undefined offsets.

4.4 Building Blocks
Reading from a reserved part of the APIC does not provide
any control over which cache line is leaked. However, we
introduce three building blocks to influence which cache line
is leaked. First, we force the target lines into the superqueue.
Second, we increase the leakage of the specific target line. Fi-
nally, we extract the target line from the noisy measurements.
Forcing Data into the Superqueue. To target specific data,
ÆPIC Leak first forces target cache lines into the superqueue.
Van Bulck et al. [72] demonstrated that ewb and eldu swap-
ping instructions bring plaintext data into the L1 cache while

moving EPC pages. As the EPC pages are copied from mem-
ory to the L1 cache, and back from the L1 cache to memory,
the–at this point unencrypted–data also travels through the su-
perqueue. Hence, an attacker can bring data from an arbitrary
enclave page into the superqueue using these instructions (cf.
Figure 3). ÆPIC Leak uses a modified version of the Linux
SGX driver to identify the enclave coupled with a target pro-
cess and continuously swaps the target pages of the enclave.
There is no need for ÆPIC Leak to run in the same or paral-
lel hyperthread of the victim process, as the EPC swapping
mechanism works independently from the enclave owning the
page. Furthermore, as the EPC memory is persistent during
the enclave’s existence, ÆPIC Leak does not require the en-
clave to be active, i.e., executing ECALLs during the leak. We
refer to this technique as Enclave Shaking. Direct integration
into the driver allows targeting an arbitrary enclave on the
system, including Intel’s quoting enclave.
Increasing the Leakage. While Enclave Shaking forces data
from an EPC page into the superqueue, there is no control
over which cache line is leaked. To solve that problem, we in-
troduce Cache Line Freezing, a novel technique that provides
control over which cache line of the page is leaked. Cache
Line Freezing exploits that the cache access pattern of the hy-
perthread running in parallel to the attacker influences which
entry is used, and thus leaked, from the superqueue.

Counterintuitively, Cache Line Freezing continuously ac-
cesses a page offset x of unrelated pages to increase the prob-
ability of leaking the cache line at the same offset x in the
enclave. Specifically, the parallel hyperthread evicts the cache
set of the target cache line with a crafted eviction set made
up by continuously accessing several contiguous zero-filled
pages at the same page offset of the target line. In our setup,
it is sufficient to keep iterating over 256 virtually-contiguous
pages at offset x, to trigger the effect.

The access pattern ensures that zero-filled cache lines with
the same offset as the target cache line are continuously
evicted from the L2 cache, and thus interact with the su-
perqueue. Note that Cache Line Freezing does not work if the
cache lines of the eviction set are set to values different from
‘0’, or if their pages are all mapped to the kernel zero-page,
i.e., have never been written.

While the exact interaction of Cache Line Freezing with
the superqueue is unknown, we hypothesize that zero-filled
loads and stores are optimized. This would be in line with the
observation that Ice Lake can eliminate stores of ‘0’s to cache
lines that only contain ‘0’s [14]. Furthermore, we observe
that if only one half of the cache lines of the eviction set is
filled with zeros, we can only leak that same half of the target
line with this method. This indicates that the granularity of
this zero optimization is 32 B, in line with the memory bus
width [27]. We assume that the zero data is marked differently
in the superqueue, i.e., only in the metadata without overwrit-
ing the entry. As a result, the eviction set keeps the entry in
the superqueue used without overwriting it. Thus, stale data is



preserved over a longer duration, increasing the probability to
leak it. Notice that Cache Line Freezing is the only building
block of ÆPIC Leak where enabling hyperthreading has an
impact. When hyperthreading is disabled, Cache Line Freez-
ing must interleave with the attacker process on the same
logical core, reducing its efficacy.

Cache Line Freezing allows an attacker to precisely select
which cache line numbers to leak from the victim, and thus,
to control which line is sampled. In case Cache Line Freez-
ing is not leveraged, ÆPIC Leak would simply degrade to a
sampling-based attack, similarly to MDS attacks, and addi-
tional techniques might be needed to reconstruct the original
order of the leaked data [63, 78].
Extracting the Target Line. In addition to the content of the
target cache line of the targeted EPC page (CLtarget), unrelated
values are leaked. Unrelated values include code and data
involved in swapping pages and leaking values as well as
data from general system activity. Since ÆPIC Leak is an
architectural bug that deterministically reads stale data in the
superqueue, the only noise it incurs is leaking such unrelated
values. To filter these values, we establish a noise profile by
leaking the content of the cache line with the same cache-
line index from a different EPC page (CLnoise). Based on this
noise profile, we can remove all values that have a similar
frequency for CLnoise and CLtarget. These values are likely
independent from the content of the EPC page. Infrequent
values that only occur for CLnoise or CLtarget are likely secret-
independent values from other applications or the OS and
can thus also be ignored. The remaining values observed for
CLtarget are sorted by frequency. The value occurring with the
highest frequency is likely the actual value of CLtarget.

Due to the zero optimization (cf. previous paragraph),
ÆPIC Leak cannot directly leak zero-filled blocks, as they are
not stored in the superqueue. Instead, ÆPIC Leak can infer
that a cache line contains zeros if there is not a single value
with a distinct frequency, i.e., the two most-frequent values
have a similar frequency.

4.5 Performance Evaluation
To evaluate ÆPIC Leak’s leaking characteristics, we set up
a debug enclave that generates secret data via the rdrand in-
struction. This data is generated during an initial ECALL, and
the page is targeted with ÆPIC Leak. To verify the correctness
of the leaked data, we use the edbrg to read the generated
page from the debug enclave after the leakage to ensure no
other source is contributing to the leakage.

Repeating each cache line leak 2000 times, we achieve a
leakage rate of 334.8 B/s with an average error rate of 7.8 %
(n = 100, σ = 2.4%). Decreasing the number of repetitions to
200 , the leakage rate increases to 1.76 kB/s with an average
error rate of 16.0 % (n = 100, σ = 4.1%) due to the increased
noise of unrelated values. Note that in contrast to transient-
execution attacks, all leaked values are correct. Noise only
refers to data of other applications. Due to ÆPIC Leak lim-

itations (cf. Section 4.1), this approach leaks 37.5 % of a
page. This percentage can be further extended by combining
different exploitations techniques, as we show in Section 5.

5 ÆPIC Leak Exploitation

In this section, we describe three attacks leveraging ÆPIC
Leak against SGX enclaves. While in theory, ÆPIC Leak
could leak memory from VMs or the hypervisor, no major
hypervisor maps the host APIC MMIO region in the guest.
We evaluate our attacks on the Ice Lake Core i5-1035G1.

5.1 Attack Techniques
We describe two attack techniques with ÆPIC Leak. We either
target the data section of an enclave to leak secret data at rest,
or we target the SSA area to leak data in use in the registers.
Due to the limitations of which cache-line parts ÆPIC Leak
can leak (cf. Section 4.1), the most effective technique to
leak the target secret depends on the victim application. We
observe no difference while leaking data from debug, pre-
release or release enclaves.
Leaking Data and Code Pages. The straightforward use
case for ÆPIC Leak is to combine Enclave Shaking and Cache
Line Freezing to leak the data (and code) at rest of an SGX
enclave. With Enclave Shaking and Cache Line Freezing, we
target every cache line of a target page to leak 48 B of each
even cache line within the page. This results in an overall
leakage rate of 37.5 % of the page content. We repeat this
process for each enclave page to recover a memory dump of
an enclave. This technique is usable while the enclave is not
running, resulting in a consistent state of the enclave data.
Leaking Register Values. Although ÆPIC Leak only leaks
values from the superqueue, we can also use it to leak regis-
ter values. During an asynchronous event, e.g., an interrupt,
the hardware stores the current enclave registers in the SSA.
Hence, the current register values are stored in the EPC. From
there, we can again use Enclave Shaking and Cache Line
Freezing to target a specific cache line containing one of
the enclave registers and partially reconstruct the value of
this register. Furthermore, by combining ÆPIC Leak with
SGX-step [74], we can precisely single step the enclave, inter-
rupting the enclave after each instruction. Hence, leaking the
partial register state is possible after each executed instruc-
tion. As ÆPIC Leak does not require the enclave to run, we
can target the SSA page with no timing restrictions, poten-
tially recovering a full register trace of the enclave. However,
due to the leakage limitations, ÆPIC Leak is restricted to the
registers specified in Table 3.

Based on the register leakage, we identify a generic tech-
nique to leak data copied inside enclaves: the __memcpy func-
tion uses the rdi register as temporary storage to move data
from the source over rdi to the destination. Since ÆPIC Leak
can leak the upper 32 bit of the rdi register, this allows leak-
ing 50 % of any data copied with __memcpy inside enclaves.



Table 3: Leakable SSA registers. For underlined GP-registers
(e.g., rdi) ÆPIC Leak can only leak the upper 32-bit as the
lower 32-bit are overshadowed by valid APIC registers.

Class Registers

General Purpose rdi r8 r9 r10 r11 r12 r13 r14
SIMD xmm0-1 xmm6-9

5.2 Breaking AES-NI
Our first attack targets the 128-bit key in the constant time
AES encryption provided by the Intel IPP library [26]. The
IPP library leverages AES-NI for cryptographic primitives.
The AES-NI primitives are tightly entangled with the enclave
execution to, e.g., unseal and seal data or transfer data outside
the enclave. We use the provided AES example from the
official IPP GitHub repository [33]. The example uses the
ippsAESInit function to initialize the AES context and the
ippsAESDecryptCTR function to decrypt data with the AES
counter mode. Leaking the key is possible either if it is at rest
in the data page, or if it is in use in a register.
Key on Data Page. We can dump all the enclave pages
after the secret key is transferred to the enclave and resides in
memory. If the attacker knows the memory offset where the
key is stored, this offset can be targeted directly. Given that
there is no ASLR in enclaves [66], and the code is typically
not confidential [7], this is a realistic assumption. Depending
on the enclave memory layout, this technique has an ad-hoc
probability of 50 % to leak the key: if it is stored in an even
cache line, extracting the key is possible, if it is stored at
an odd cache line it cannot be leaked. In the latter case, an
attacker can leak the key when it is in use.
Key in SIMD Register. We assume that the IPP primitives
used in an enclave are usually not modified by an enclave de-
veloper. Therefore, we can find the functions leaking the key
without analyzing the remaining enclave. Furthermore, we
assume that the enclave code is not encrypted. For encrypted
code, we could first either leak the decryption key, or simply
the decrypted code.

We developed an sgx-gdb [22] script that traces a debug
version of the target enclave. This script prints the content of
all leakable registers listed in Table 3, which are stored in the
SSA. We identified that the k0_aes_DecKeyExpansion_NI
function, which is independent of the AES implementa-
tion, temporarily stores the AES key in the xmm1 regis-
ter. Hence, by interrupting the enclave during that func-
tion, ÆPIC Leak can leak 96 bit of the AES key from the
SSA. We can recover the remaining 32 bit of the key in the
k0_aes128_KeyExpansion_NI function. Furthermore, we
also leak 96 bit of the initial value over the xmm0 register
in the k0_EncryptStreamCTR32_AES_NI function. The re-
maining 32 bit can also be easily bruteforced, as it is exactly
known which bits are missing. On the i9-12900K, we can

evaluate on average 403 million AES keys per second. Hence,
in the worst case, it takes 10.7 s to bruteforce the missing bits.
Evaluation. We evaluate ÆPIC Leak with 100 different
random keys and try to leak the AES keys with a single run
of the attack. A full key recovery takes on average 1.35 s
(n = 100, σ = 15.70%) with a success rate of 94 %. In the
remaining 6 cases, we leaked unrelated data from different
applications. However, as an attacker can typically restart
enclaves arbitrarily often, as it is the case with the Quoting
Enclave, the attack can simply be repeated until the correct
key is leaked.

5.3 Breaking RSA
To show that ÆPIC Leak is not limited to secrets in single
registers, we target RSA keys from the IPP library reference
example [33]. The enclave contains the secret primes P and
Q as well as the private key parts dQ, dP and qInv. The public
modulus N is computed in ippsRSA_SetPrivateKeyType2
when initializing the RSA context.
Key on Data Page. Similar to AES-NI, we can target the
memory used to store the RSA key parts. RSA keys are usu-
ally not stored directly in registers and are larger than 128 bit.
Therefore, dumping the enclave data pages already has a high
chance to leak parts of the stored RSA key.
Key in GP Registers. We can leak the RSA primes P and Q
during the calculation of the public modulus N. The bits of
the prime numbers P and Q temporarily flow through r10 in
the function k0_cpDec_BNU, and dP and dQ in the function
k0_ippsRSA_SetPrivateKeyType2, and thus can be leaked.
Evaluation. We target RSA-1024 and leak 100 random
512 bit RSA primes with ÆPIC Leak. Leaking one of the
secret parameters is already sufficient to fully recover all the
remaining parameters and decrypt data. We count the attack
on RSA as successful if we can fully recover at least one of
the four RSA parameters. Leaking the parameters from regis-
ters has a success rate of 72 %. The attack takes on average
81.81 s (n = 100, σ = 48.92%). In 18 cases, the parameters
are not leaked as single-stepping the target instruction fails.
In 10 cases, we leak data from other processes. However, the
attack can typically be repeated until the correct key is leaked.

5.4 Breaking SGX Attestation
As previous work [72,77,79], we demonstrate leakage of seal-
ing keys. With the sealing keys, it is possible to unseal sealed
data as well as to decrypt the attestation keys, the fundamen-
tal security primitives used in SGX. The derivation process
to get access to such a key is done in hardware with the
egetkey instruction [7]. We can target the results of this in-
struction within the SGX implementation sgx_unseal_data.
This function uses the generated egetkey key to derive the
AES round keys used to unseal the encrypted data.

To test the attack, we build and debug an enclave that
uses the sgx_seal_data and sgx_unseal_data functions
to seal and unseal enclave data. By tracing the occurences of



the enclu instruction with rax=1 we can precisly target the
egetkey instruction. By following the hardcoded addresses
to this instruction, we can find the sgx_get_key function
without additional debug information. We use the offset of the
sgx_get_key function to monitor its accesses and start ÆPIC
Leak after observing the first access within our target enclave.
From this point, we partially leak the xmm0 and xmm1 registers
with Enclave Shaking and Cache Line Freezing and attack
the AES key expansion as demonstrated in Section 5.2. We
decrypt the sealed data passed to the untrusted environment
with the extracted sealing key.
Extracting the EPID Private Key. We attack the official
Intel quoting enclave [83] by modifying the untrusted sgx-
psw aesmd service. The service handles the inter-process
communication between the various Intel enclaves. In the
modified service, we target the first call to the verify_blob
function, which passes the encrypted EPID private key blob,
retrieved from the provisioning enclave to the quoting enclave.
During this ECALL, we use ÆPIC Leak to extract the blob’s
sealing key as described above. We use the extracted key
together with the known zeroed initial value to decrypt the
blob with sgx_rijndael128GCM_decrypt, and successfully
verified the tag: as the GCM decryption is authenticated, this
proves that the key is correct. Extracting the EPID keys allows
an attacker to forge remote attestations, breaking the whole
SGX system, as enclaves can then be emulated. Thus, SGX
could not be trusted anymore on any platform until the keys
are replaced. In addition, such an attack may also break TDX
confidentiality, which bases its attestation on SGX [31].

6 Mitigations

In this section, we discuss mitigations in hardware (Sec-
tion 6.1), firmware (Section 6.2), and software (Section 6.3).

6.1 Hardware
As a long-term solution, ÆPIC Leak has to be fixed in hard-
ware. Given that older Intel CPU microarchitectures are not
affected by ÆPIC Leak, we assume that fixing the issue in
silicon is not complex. Similar to uninitialized variables in
software, it might be sufficient to set the most-significant 12 B
of any APIC to a defined value, such as ‘0’ or ‘-1’. When
accessing the APIC using 64 bit reads, the return for all reads
is already ‘-1’, regardless of whether the address points to
a valid or reserved part of any APIC register. Hence, such
functionality to return properly-initialized data already exists.

6.2 Firmware
In addition to hardware, mitigations can also be deployed
on the firmware level, i.e., as microcode update. Based on
mitigations for other CPU vulnerabilities [34], we suspect that
mitigations on the firmware level are the most promising mid-
term solutions until the hardware is fixed. Intel can deploy
such firmware fixes as microcode updates distributed and

applied by the OS. As the microcode security version number
is part of the SGX attestation [7], enclaves can refuse to run
if the microcode updates are not applied. We propose three
approaches to mitigate ÆPIC Leak name in microcode with
different advantages and disadvantages.
Disable SGX. Even if disabling SGX is not a real mitigation,
ÆPIC Leak only targets SGX enclaves, thus, microcode can
simply disable SGX. Without SGX, there is no target within
the threat model of ÆPIC Leak. Coincidentally, Intel dep-
recated SGX on Ice Lake and Alder Lake client CPUs [32].
However, ÆPIC Leak is still relevant, as Intel did not depre-
cate SGX on server CPUs (e.g., Ice Lake SP). Thus, while
exploiting an enclave with ÆPIC Leak would not be possible
on client CPUs (preventing widespread exploitation), it is still
possible by using server CPUs. Leaking the Intel keys on
a single up-to-date machine is sufficient to break the SGX
ecosystem, as these keys can be used to emulate attestation.
Hence, ÆPIC Leak must also be mitigated on server CPUs.
Enforce x2APIC. ÆPIC Leak exploits that the legacy xAPIC
and not the x2APIC is used on most systems. One of the main
differences between xAPIC and x2APIC is the interface. The
xAPIC is accessed using memory-mapped I/O (MMIO). This
is the interface exploited with ÆPIC Leak. In contrast, the
x2APIC does not support the MMIO interface for perfor-
mance reasons [21]. Instead, the communication interface of
the x2APIC is based on MSRs. We verified that the MMIO
range is indeed disabled when enabling x2APIC, fully prevent-
ing ÆPIC Leak. Reads from the MMIO range when x2APIC
is enabled return -1.

The x2APIC specification [21] states that switching from
x2APIC to xAPIC is only possible by disabling the local
APIC unit. As this can only be done by writing to the
IA32_APIC_BASE MSR, a microcode update could enable
the x2APIC at boot and prevent the disabling of the x2APIC.
An enforced x2APIC is supported by Linux (tested on Ubuntu
20.04.1, kernel 5.4.0-96), and ensures that ÆPIC Leak cannot
be mounted. This solution is the only firmware-based solu-
tion that does not incur any performance penalties. In case
enforcing x2APIC mode would not be possible in microcode,
an alternative solution would be to insert the APIC mode in
the attestation process. The enclave attestation may simply
fail if x2APIC mode is not enabled. As a positive side effect
to fully mitigating ÆPIC Leak, enforcing x2APIC might even
slightly improve the system performance.
Disable Caching for EPC. The EPC range is by default
marked as write-back memory using a memory-type range
register (MTRR). A microcode update could easily change
the memory type for the EPC range to uncachable. As shown
in Section 4.3, ÆPIC Leak cannot leak load or stores to un-
cachable memory. Hence, an uncachable EPC range would
fully prevent ÆPIC Leak. Costanet al. [8] also proposed
an uncachable EPC range to protect enclaves against cache
attacks. While SGX explicitly supports an uncachable EPC
range, it is not clear whether the memory type is part of the



attestation [8]. Moreover, setting the entire EPC range to un-
cachable leads to a huge performance impact for enclaves, as
no part of an enclave can benefit from caching anymore.

Flush Caches on EEXIT. As ÆPIC Leak leaks values trav-
eling through the cache hierarchy, a possible mitigation is to
flush all caches on an enclave exit (EEXIT). However, this
is only sufficient if hyperthreading is disabled. With enabled
hyperthreading, ÆPIC Leak can leak values from the enclave
while it is running. Flushing caches with the same limita-
tion, i.e., disabling hyperthreading, is also the state-of-the-art
mitigation for L1TF [23] and MDS attacks [25] on affected
CPUs. The state of hyperthreading is already included in the
attestation. Hence, SGX enclaves can also refuse to run if
hyperthreading is enabled on the system.

We verified that the already-existing wbinvd successfully
prevents the leakage if hyperthreading is disabled. The
wbinvd instruction invalidates all cache levels and writes
modified values back to the main memory. While we did not
see any leakage after invalidating all cache levels, the invali-
dation is not very efficient. On average, we measured 321 655
cycles (n = 5000, σx̄ = 406.3) for executing the instruction. As
this invalidation is required on every EEXIT, this mitigation
has a huge impact on ECALL and OCALL latency. However,
we expect that as the L1 flush MSR [23], Intel can implement
an L2 flush MSR. As ÆPIC Leak is limited to leaking data
moving between L2 and LLC, an LLC flush might not be
necessary. While a huge performance overhead, such a buffer
flushing was also used for L1TF and MDS attacks.

6.3 Software

As the OS or hypervisor are untrusted, mitigations imple-
mented there are ineffective. However, mitigations can be
implemented into the trusted software part of the SGX ecosys-
tem, such as the enclave itself, or indirectly via the attestation.

Secret Alignment. A limitation of ÆPIC Leak is that the
first 4 bytes of every 16-byte block cannot be leaked. Hence,
we propose a software solution that splits secrets and stores
the parts of the secrets only in these non-leakable 4 bytes.
Our software workaround is similar to the Intel-proposed
workaround for SA-00219 [29]. For CPUs affected by SA-
00219, no secrets can be stored in the first 8 bytes of a cache
line. Hence, Intel added functionality to the SGX SDK to mis-
align buffers, ensuring that they do not start at the beginning
of a cache line. For ÆPIC Leak it is more complicated, as only
4 consecutive bytes can be used, in contrast to the 56 bytes for
SA-00219. We propose to rely on AVX scatter and gather in-
structions to automatically spread a secret over memory such
that only the non-leakable parts of memory are used. Listing 1
(Appendix A) shows a sample proof-of-concept implementa-
tion for 128-bit secrets, such as AES-NI keys. By relying on
the scatter and gather instruction for single-precision floats,
these functions can spread 4-byte blocks over one cache line.
As the source and destination memory addresses are 64-byte

aligned, all parts of the secret are overshadowed by valid
APIC registers, hence there is no leakage.

This software workaround protects data at rest, as well as
the loading from and storing to memory. However, there is
still a small remaining attack surface left. When the secrets
are already loaded to CPU registers, they are spilled to main
memory on an (asynchronous) enclave exit. As this is done
by the hardware, there is no possibility for the software to
protect the secrets at this point. Thus, if an attacker triggers
such an exit in the short time window where the secrets are
in the CPU registers, the attacker can leak up to 96 bits of
the secrets via the SSA. However, as ÆPIC Leak can only
leak up to 96 bits of every even cache line, there are parts
of the SSA that cannot be leaked (cf. Section 4.1). Hence, if
only xmm{2-5} and xmm{10-15} are used for (round) keys,
AES-NI can still be used securely inside an enclave.
Transient Secrets. As ÆPIC Leak leaks secrets that are
moved between the L2 and the LLC cache, a possible soft-
ware mitigation could also ensure that secrets never leave
the CPU registers and the L1 cache. Previous work showed
that it is possible to implement cryptographic algorithms, e.g.,
AES, by only using CPU registers [56]. However, in an en-
clave setting, an attacker can arbitrarily interrupt an enclave
with high precision [74], forcing every register to be stored
to main memory. Enclaves cannot opt-out from storing cer-
tain registers in the SSA [28]. Hence, the only workaround is
to ensure that secrets are never architectural. With Mimosa,
Guan et al. [17] leveraged hardware transactional memory
to ensure secrets never leave the private cache and cannot
be spilled to memory. Unfortunately, hardware transactional
memory is not available on Sunny-Cove-based CPUs. As a
more obscure variant, an enclave could leverage speculative
execution to only work on secrets in the transient domain [80].
However, this would require an enclave to mount side-channel
attacks to make the computed results visible. Listing 2 (Ap-
pendix B) shows a sample code for realising this software
workaround for AES encryption.

7 Conclusion

We presented ÆPIC Leak, the first architectural CPU vulner-
ability that allows leaking values from the cache hierarchy.
ÆPIC Leak works on the newest Intel CPUs based on Ice
Lake, Alder Lake, and Ice Lake SP and does not rely on hy-
perthreading enabled. ÆPIC Leak enables attacks against
SGX enclaves on Ice Lake CPUs, forcing specific data into
caches and leaking targeted secrets. We show attacks that
allow leaking data held in memory and registers. We demon-
strate how ÆPIC Leak completely breaks the guarantees pro-
vided by SGX, deterministically leaking AES secret keys,
RSA private keys, and extracting the SGX sealing key for
remote attestation. We finally propose several firmware and
software mitigations that would prevent ÆPIC Leak from
leaking sensitive data or completely prevent ÆPIC Leak.
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A Software Workaround

Listing 1 shows a possible software workaround for spe-
cific scenarios, e.g., for protecting AES-NI keys. Secrets can
be scattered to memory locations shadowed by valid APIC

1 #define load_secret128(mem) _mm_i32gather_ps((float*)(
mem), _mm_set_epi32(12, 8, 4, 0), 4)

2

3 #define store_secret128(mem, secret) _mm_i32scatter_ps
((float*)(mem), _mm_set_epi32(12, 8, 4, 0), secret,
4)

4

5 #define define_secret128(name, secret) unsigned int
__attribute__((aligned(64))) name[] = {((unsigned
int*)(secret))[0], 0, 0, 0, ((unsigned int*)(
secret))[1], 0, 0, 0, ((unsigned int*)(secret))
[2], 0, 0, 0, ((unsigned int*)(secret))[3], 0, 0,
0, }

6

7 // define an 128-bit secret at compile time
8 define_secret128(secret, "ABCDEFGHIJKLMNO");
9 // load an 128-bit secret from memory into an

XMM register
10 __m128 xsecret = load_secret128(secret);
11 // store an 128-bit secret to memory
12 store_secret128(secret2, xsecret);

Listing 1: A software workaround for spreading 128-bit se-
crets to non-leakable 4-byte blocks using AVX.

registers and thus not leakable. This is possible with a single
AVX instruction. Furthermore, scattered secrets can also be
copied into one XMM register with a single instruction. If
an XMM register is chosen, that cannot be leaked via the
SSA, this drastically reduces the attack surface. To ensure
that a secret key cannot be leaked, this method can addition-
ally be combined with the transient computation shown in
Appendix B.

B Transient AES Computation

Listing 2 demonstrates how AES-NI can be used securely
inside SGX by doing all computations in the transient domain.
During transient execution, e.g., via a mispredicted branch,
the round key is loaded using the scatter-based technique
shown in Appendix A. The round key is then used in the
transient execution to encrypt the plain text, and encode one
byte of the result in the cache. After the transient execution,
this encoded byte can be inferred using a side-channel attack.
The encoding can be chosen in a way that it can be decoded
from within the enclave using, e.g., Evict+Reload, but not
from outside the enclave, e.g., with Prime+Probe. While this
method is not very efficient, it can protect an AES key even if
the CPU is affected by ÆPIC Leak.

C Performance Counters and CPUs

Table 4 shows all tested CPUs for ÆPIC Leak. Table 5 shows
performance counters that differ when loading from defined
and undefined offsets of the local APIC MMIO region.
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1 char aes_encrypt_get_byte(__m128 message, int
target_byte) {

2 char bytevalue[256 * 4096];
3 // the following code is never executed

architecturally, only transiently
4 if(<mispredicted>) {
5 // repeat for all AES-NI rounds
6 __m128 roundkey = load_secret128(roundkey[i]);
7 // AES-NI encryption rounds
8 _mm_aesenc_si128(message, roundkey)
9 [...]

10 // encode in cache
11 volatile char dummy = bytevalue[((message >> (8 *

target_byte)) & 0xFF) * 4096];
12 }
13 // recover encoded byte from cache
14 for(int i = 0; i < 256; i++)
15 if(flush_reload(bytevalue[i * 4096])) return i;
16 }

Listing 2: The function transiently encrypts a message using
AES-NI, encodes one chosen byte of the ciphertext in the
cache, and recovers it from the cache using Flush+Reload.
Although this function has to be called 16 times to get all
bytes of the ciphertext, it ensures that registers containing key
material never end up in the SSA.

Table 4: Tested CPUs that are (✓) or are not (✗) vulnerable.
All tested Sunny-Cove-based CPUs are vulnerable.

CPU Microarchitecture Based on ÆPIC Leak

Intel Core i5-2520M Sandy Bridge Sandy Bridge ✗
Intel Core i5-3230M Ivy Bridge Sandy Bridge ✗
Intel Core i3-4160T Haswell Haswell ✗
Intel Core i7-4790 Haswell Haswell ✗
Intel Core i3-5010U Broadwell Haswell ✗
Intel Core i7-6700K Skylake Skylake ✗
Intel Core i3-7100T Kaby Lake Skylake ✗
Intel Core i3-8130U Kaby Lake R Skylake ✗
Intel Core i7-8565U Whiskey Lake Skylake ✗
Intel Core i7-8700K Coffee Lake Skylake ✗
Intel Core i9-9980HK Coffee Lake Skylake ✗
Intel Core i9-9900K Coffee Lake Skylake ✗
Intel Core i7-10510U Comet Lake Skylake ✗
Intel Core i3-1005G1 Ice Lake Sunny Cove ✓
Intel Core i5-1035G1 Ice Lake Sunny Cove ✓
Intel Core i5-1135G7 Tiger Lake Willow Cove ✗
Intel Core i9-12900K Alder Lake Sunny Cove ✓
Intel Xeon E5-1630 v4 Broadwell Haswell ✗
Intel Xeon E3-1505M v5 Skylake Skylake ✗
Intel Xeon E-2176M Coffee Lake Skylake ✗
Intel Xeon Silver 4208 Cascade Lake-SP Cascade Lake ✗
Intel Xeon Platinum 8375C Ice Lake SP Sunny Cove ✓
Intel Celeron N3350 Apollo Lake Goldmont ✗
Intel Celeron J4005 Gemini Lake Goldmont Plus ✗
Intel Celeron N4500 Jasper Lake Tremont ✗
AMD Ryzen 5 2500U Zen Zen ✗
AMD Ryzen 5 3550H Zen Zen ✗
AMD Ryzen Threadripper 1920X Zen Zen ✗
AMD Ryzen 7 3700X Zen 2 Zen 2 ✗
AMD Ryzen 7 5800X Zen 3 Zen 3 ✗
AMD EPYC 7443 Zen 3 Zen 3 ✗

Table 5: Performance counter differences on loads to defined
and undefined offsets of the APIC memory-mapped region
on Intel i3-1005G1 CPU.

Performance Counter Defined Undefined

BR_INST_RETIRED.FAR_BRANCH 0.05 (σx̄ = 0.00) 1.05 (σx̄ = 0.00)
CORE_POWER.LVL0_TURBO_LICENSE 68.14 (σx̄ = 0.11) 627.76 (σx̄ = 0.09)
CPU_CLK_UNHALTED.DISTRIBUTED 68.13 (σx̄ = 0.11) 627.73 (σx̄ = 0.10)
CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE 0.75 (σx̄ = 0.00) 7.08 (σx̄ = 0.00)
CPU_CLK_UNHALTED.REF_DISTRIBUTED 0.75 (σx̄ = 0.00) 7.08 (σx̄ = 0.00)
CPU_CLK_UNHALTED.REF_XCLK 0.75 (σx̄ = 0.00) 7.08 (σx̄ = 0.00)
CYCLE_ACTIVITY.CYCLES_L1D_MISS 191.84 (σx̄ = 0.36) 176.34 (σx̄ = 0.02)
CYCLE_ACTIVITY.CYCLES_MEM_ANY 866.04 (σx̄ = 0.73) 2656.24 (σx̄ = 0.12)
CYCLE_ACTIVITY.STALLS_L1D_MISS 427.20 (σx̄ = 0.58) 2062.15 (σx̄ = 0.20)
CYCLE_ACTIVITY.STALLS_L2_MISS 235.36 (σx̄ = 0.26) 1885.75 (σx̄ = 0.20)
CYCLE_ACTIVITY.STALLS_L3_MISS 235.36 (σx̄ = 0.26) 1885.76 (σx̄ = 0.20)
CYCLE_ACTIVITY.STALLS_MEM_ANY 1101.16 (σx̄ = 0.93) 4541.89 (σx̄ = 0.29)
CYCLE_ACTIVITY.STALLS_TOTAL 235.37 (σx̄ = 0.26) 1886.16 (σx̄ = 0.25)
DSB2MITE_SWITCHES.COUNT 0.95 (σx̄ = 0.01) 5.91 (σx̄ = 0.21)
DSB2MITE_SWITCHES.PENALTY_CYCLES 0.95 (σx̄ = 0.01) 5.91 (σx̄ = 0.21)
EXE_ACTIVITY.1_PORTS_UTIL 1.95 (σx̄ = 0.02) 83.57 (σx̄ = 0.02)
EXE_ACTIVITY.2_PORTS_UTIL 2.64 (σx̄ = 0.02) 35.75 (σx̄ = 0.02)
EXE_ACTIVITY.3_PORTS_UTIL 2.05 (σx̄ = 0.01) 18.89 (σx̄ = 0.01)
EXE_ACTIVITY.4_PORTS_UTIL 0.76 (σx̄ = 0.00) 2.13 (σx̄ = 0.00)
ICACHE_64B.IFTAG_HIT 3.58 (σx̄ = 0.01) 20.80 (σx̄ = 0.29)
ICACHE_64B.IFTAG_STALL 2.01 (σx̄ = 0.00) 33.80 (σx̄ = 1.21)
IDQ.DSB_CYCLES_ANY 6.89 (σx̄ = 0.00) 24.52 (σx̄ = 0.16)
IDQ.DSB_CYCLES_OK 6.89 (σx̄ = 0.00) 24.52 (σx̄ = 0.16)
IDQ.DSB_UOPS 6.89 (σx̄ = 0.00) 24.52 (σx̄ = 0.16)
IDQ.MITE_CYCLES_ANY 6.11 (σx̄ = 0.00) 21.73 (σx̄ = 0.14)
IDQ.MITE_CYCLES_OK 6.11 (σx̄ = 0.00) 21.79 (σx̄ = 0.15)
IDQ.MITE_UOPS 6.11 (σx̄ = 0.00) 21.79 (σx̄ = 0.15)
IDQ.MS_CYCLES_ANY 16.32 (σx̄ = 0.12) 385.65 (σx̄ = 0.19)
IDQ.MS_SWITCHES 16.32 (σx̄ = 0.12) 385.65 (σx̄ = 0.19)
IDQ.MS_UOPS 16.38 (σx̄ = 0.12) 385.56 (σx̄ = 0.19)
IDQ_UOPS_NOT_DELIVERED.CORE 19.84 (σx̄ = 0.20) 411.07 (σx̄ = 0.18)
IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE 19.84 (σx̄ = 0.20) 411.07 (σx̄ = 0.18)
IDQ_UOPS_NOT_DELIVERED.CYCLES_FE_WAS_OK 19.84 (σx̄ = 0.20) 411.07 (σx̄ = 0.18)
INST_RETIRED.STALL_CYCLES 12.10 (σx̄ = 0.00) 13.10 (σx̄ = 0.00)
INT_MISC.ALL_RECOVERY_CYCLES 0.31 (σx̄ = 0.01) 27.49 (σx̄ = 0.01)
INT_MISC.CLEAR_RESTEER_CYCLES 0.25 (σx̄ = 0.01) 25.32 (σx̄ = 0.02)
INT_MISC.RECOVERY_CYCLES 0.31 (σx̄ = 0.01) 27.19 (σx̄ = 0.01)
INT_MISC.UOP_DROPPING 0.01 (σx̄ = 0.00) 5.20 (σx̄ = 0.00)
ITLB_MISSES.WALK_ACTIVE 0.94 (σx̄ = 0.00) 10.76 (σx̄ = 0.34)
ITLB_MISSES.WALK_PENDING 0.94 (σx̄ = 0.00) 10.80 (σx̄ = 0.34)
L1D_PEND_MISS.PENDING 23.98 (σx̄ = 0.04) 22.06 (σx̄ = 0.02)
L1D_PEND_MISS.PENDING_CYCLES 23.98 (σx̄ = 0.04) 22.06 (σx̄ = 0.02)
MACHINE_CLEARS.COUNT 0.01 (σx̄ = 0.01) 1.10 (σx̄ = 0.01)
MEM_INST_RETIRED.ALL_LOADS 2.95 (σx̄ = 0.00) 3.95 (σx̄ = 0.00)
MEM_INST_RETIRED.ANY 3.55 (σx̄ = 0.00) 4.55 (σx̄ = 0.00)
MEM_LOAD_RETIRED.L1_HIT 1.95 (σx̄ = 0.00) 2.95 (σx̄ = 0.00)
RESOURCE_STALLS.SCOREBOARD 57.34 (σx̄ = 0.05) 458.50 (σx̄ = 0.06)
RS_EVENTS.EMPTY_CYCLES 54.92 (σx̄ = 0.05) 318.39 (σx̄ = 0.06)
RS_EVENTS.EMPTY_END 54.92 (σx̄ = 0.05) 318.39 (σx̄ = 0.06)
TIME 44.05 (σx̄ = 0.04) 433.64 (σx̄ = 1.69)
TOPDOWN.BACKEND_BOUND_SLOTS 289.81 (σx̄ = 0.25) 2346.41 (σx̄ = 0.13)
TOPDOWN.BR_MISPREDICT_SLOTS 0.86 (σx̄ = 0.06) 86.21 (σx̄ = 0.05)
TOPDOWN.SLOTS_P 341.06 (σx̄ = 0.54) 3138.51 (σx̄ = 0.68)
UOPS_DECODED.DEC0 0.46 (σx̄ = 0.00) 3.25 (σx̄ = 0.10)
UOPS_DISPATCHED.PORT_0 2.90 (σx̄ = 0.02) 47.32 (σx̄ = 0.02)
UOPS_DISPATCHED.PORT_1 2.86 (σx̄ = 0.02) 57.18 (σx̄ = 0.02)
UOPS_DISPATCHED.PORT_2_3 3.05 (σx̄ = 0.00) 9.05 (σx̄ = 0.00)
UOPS_DISPATCHED.PORT_4_9 4.30 (σx̄ = 0.00) 6.30 (σx̄ = 0.00)
UOPS_DISPATCHED.PORT_5 2.86 (σx̄ = 0.02) 42.42 (σx̄ = 0.02)
UOPS_DISPATCHED.PORT_6 5.67 (σx̄ = 0.03) 72.28 (σx̄ = 0.03)
UOPS_DISPATCHED.PORT_7_8 4.25 (σx̄ = 0.00) 7.25 (σx̄ = 0.00)
UOPS_EXECUTED.CORE 25.83 (σx̄ = 0.09) 242.72 (σx̄ = 0.09)
UOPS_EXECUTED.CORE_CYCLES_GE_1 25.83 (σx̄ = 0.09) 242.76 (σx̄ = 0.09)
UOPS_EXECUTED.CORE_CYCLES_GE_2 25.83 (σx̄ = 0.09) 242.76 (σx̄ = 0.09)
UOPS_EXECUTED.CORE_CYCLES_GE_3 25.83 (σx̄ = 0.09) 242.76 (σx̄ = 0.09)
UOPS_EXECUTED.CORE_CYCLES_GE_4 25.83 (σx̄ = 0.09) 242.76 (σx̄ = 0.09)
UOPS_EXECUTED.CYCLES_GE_1 25.74 (σx̄ = 0.09) 242.58 (σx̄ = 0.09)
UOPS_EXECUTED.CYCLES_GE_2 25.74 (σx̄ = 0.09) 242.58 (σx̄ = 0.09)
UOPS_EXECUTED.CYCLES_GE_3 25.74 (σx̄ = 0.09) 242.58 (σx̄ = 0.09)
UOPS_EXECUTED.CYCLES_GE_4 25.74 (σx̄ = 0.09) 242.58 (σx̄ = 0.09)
UOPS_EXECUTED.STALL_CYCLES 25.76 (σx̄ = 0.09) 242.68 (σx̄ = 0.09)
UOPS_EXECUTED.THREAD 25.76 (σx̄ = 0.09) 242.68 (σx̄ = 0.09)
UOPS_ISSUED.ANY 29.38 (σx̄ = 0.12) 272.26 (σx̄ = 0.12)
UOPS_ISSUED.STALL_CYCLES 29.45 (σx̄ = 0.12) 272.27 (σx̄ = 0.12)
UOPS_RETIRED.SLOTS 29.60 (σx̄ = 0.09) 249.53 (σx̄ = 0.08)
UOPS_RETIRED.STALL_CYCLES 29.60 (σx̄ = 0.09) 249.53 (σx̄ = 0.08)
UOPS_RETIRED.TOTAL_CYCLES 28.00 (σx̄ = 0.08) 247.95 (σx̄ = 0.08)
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