
ZombieLoad: Cross-Privilege-Boundary Data Sampling
Michael Schwarz

Graz University of Technology

michael.schwarz@iaik.tugraz.at

Moritz Lipp

Graz University of Technology

moritz.lipp@iaik.tugraz.at

Daniel Moghimi

Worcester Polytechnic Institute

amoghimi@wpi.edu

Jo Van Bulck

imec-DistriNet, KU Leuven

jo.vanbulck@cs.kuleuven.be

Julian Stecklina

Cyberus Technology

julian.stecklina@cyberus-

technology.de

Thomas Prescher

Cyberus Technology

thomas.prescher@cyberus-

technology.de

Daniel Gruss

Graz University of Technology

daniel.gruss@iaik.tugraz.at

ABSTRACT
In early 2018, Meltdown first showed how to read arbitrary kernel

memory from user space by exploiting side-effects from transient

instructions. While this attack has been mitigated through stronger

isolation boundaries between user and kernel space, Meltdown

inspired an entirely new class of fault-driven transient execution

::::::::::::::
transient-execution

:
attacks. Particularly, over the past year,Meltdown-

type attacks have been extended to not only leak data from the L1

cache but also from various other microarchitectural structures,

including the FPU register file and store buffer.

In this paper, we present the ZombieLoad attack which uncov-

ers a novel Meltdown-type effect in the processor’s previously

unexplored fill-buffer logic. Our analysis shows that faulting load in-

structions (i.e., loads that have to be re-issuedfor either architectural
or microarchitectural reasons) may transiently dereference unau-

thorized destinations previously brought into the fill buffer by

the current or a sibling logical CPU. Hence, we
:
In
:::::::
contrast

::
to

::::::::
concurrent

::::::
attacks

::
on

:::
the

::
fill

:::::
buffer,

:::
we

:::
are

::
the

::::
first

::
to report data

leakage of recently loaded
:::
and

:::::
stored

:
stale values across logical

cores
:::
even

:::
on

::::::::
Meltdown-

::::
and

:::::::::::
MDS-resistant

:::::::::
processors.

:::::
Hence,

:::::
despite

:::::
Intel’s

:::::
claims

::::
[37],

::
we

:::::
show

:::
that

:::
the

:::::::
hardware

::::
fixes

::
in

:::
new

::::
CPUs

:::
are

:::
not

:::::::
sufficient. We demonstrate ZombieLoad’s effective-

ness in a multitude of practical attack scenarios across CPU privi-

lege rings, OS processes, virtual machines, and SGX enclaves. We

discuss both short and long-term mitigation approaches and arrive

at the conclusion that disabling hyperthreading is the only possi-

ble workaround to prevent this extremely powerful attack
:
at
::::
least

::
the

::::::::::::
most-powerful

::::::::::::::
cross-hyperthread

:::::
attack

:::::::
scenarios on current

processors. ,
::
as

:::::
Intel’s

:::::::
software

::::
fixes

::
are

:::::::::
incomplete.

:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354252

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Systems security; Operating systems security.

KEYWORDS
side-channel attack, transient execution, fill buffer, Meltdown

ACM Reference Format:
Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-Privilege-

Boundary Data Sampling. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 17 pages. https://doi.org/10.

1145/3319535.3354252

1 INTRODUCTION
In 2018, Meltdown [47] was the first microarchitectural attack com-

pletely breaching the security boundary between the user and

kernel space and, thus, allowed to leak arbitrary data. While Melt-

down was fixed using a stronger isolation between user and kernel

space, the underlying principle turned out to be an entire class of

transient-execution attacks [8]. Over the past year, researchers have

demonstrated that Meltdown-type attacks cannot only leak kernel

data to user space, but also leak data across user processes, virtual

machines, and SGX enclaves [72, 79]. Furthermore, data cannot only

be leaked from
::::::
leakage

::
is

:::
not

:::::
limited

::
to

:
the L1 cache but also

::
can

:::
also

:::::::
originate from other microarchitectural structures, including

:::
such

::
as
:
the register file [71] , the line-fill buffer [47, 76], and, as

shown in concurrent work, the
::
fill

:::::
buffer

:::
[76],

::::
load

::::
ports

::::
[76],

:::
and

::
the

:
store buffer [?]

:::
[55].

Instead of executing the instruction stream in order, most mod-

ern processors can re-order instructions while maintaining archi-

tectural equivalence, creating the illusion of an in-order machine.

Instructions then
:
.
:::::::::
Instructions

:
may already have been executed

when the CPU detects that a previous instruction raises an ex-

ception. Hence, such instructions following the faulting instruc-

tion (i.e., transient instructions) are rolled back. While the rollback

ensures that there are no architectural effects, side effects might

remain in the microarchitectural state. Most Meltdown-type data

leaks
:::::
attacks

:
exploit overly aggressive performance optimizations

around out-of-order execution.

https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252

For many years, the microarchitectural state was considered in-

visible to applications, and hence security considerations were often

limited to the architectural state. Specifically, microarchitectural

elements often do not distinguish between different applications or

privilege levels [8, 13, 39, 47, 60, 64, 67].

In this paper, we show that, first, there still are unexplored mi-

croarchitectural buffers, and second, both architectural and microar-

chitectural faults can be exploited. With our notion of “microar-

chitectural faults”, i.e., faults that cause a memory request to be

re-issued internally without ever becoming architecturally visible,

we demonstrate that Meltdown-type attacks can also be triggered

without raising an architectural exception such as a page fault.

Based on this, we demonstrate ZombieLoad, a novel, extremely

powerful Meltdown-type attack targeting the fill buffer
:::::::
fill-buffer

logic.

ZombieLoad exploits that load instructions which have to be

re-issued internally, may first transiently compute on stale val-

ues belonging to previous memory operations from either the cur-

rent or a sibling hyperthread. Using established transient execution

::::::::::::::
transient-execution

:
attack techniques, adversaries can recover the

values of such “zombie load” operations. Importantly, in contrast

to all previously known transient execution
::::::::::::::
transient-execution

attacks [8], ZombieLoad reveals recent data values without adher-
ing to any explicit address-based selectors. Hence, we consider

ZombieLoad an instance of a novel type of microarchitectural data
sampling attacks.

:::::
(MDS)

::::::
attacks.

:::::
Unlike

::::::::
concurrent

::::
data

:::::::
sampling

:::::
attacks

:::
like

:::::
RIDL

::::
[76]

:
or

::::::
Fallout

:::
[55]

:
,
:::
our

::::
work

:::::::
includes

:::
the

:::
first

:::
and

:::
only

:::::
attack

::::::
variant

:::
that

:::
can

::::
leak

:::
data

::::
even

::
on

:::
the

::::
most

:::::
recent

:::
Intel

:::::::
Cascade

::::
Lake

:::::
CPUs

:::::
which

:::
are

::::::::
reportedly

:::::::
resistant

::::::
against

::
all

:::::
known

:::::::::
Meltdown,

:::::::::
Foreshadow,

:::
and

:::::
MDS

::::::
variants.

:
We present

microarchitectural data sampling as the missing link between tradi-

tional memory-based side-channels which correlate data adresses

:::::::
addresses within a victim execution, and existing Meltdown-type

transient execution
::::::::::::::
transient-execution

:
attacks that can directly

recover data values belonging to an explicit address. In this paper,

we combine primitives from traditional side-channel attacks with

incidental data sampling in the time domain to construct extremely

powerful attacks with targeted leakage in the address domain. This

not only opens up new attack avenues , but also re-enables attacks

that were previously assumedto be mitigated.

We demonstrate ZombieLoad’s real-world implications in a mul-

titude of practical attack scenarios that leak across processes, privi-

lege boundaries, and even across logical CPU cores. Furthermore,

we show that we can leak Intel SGX enclave secrets loaded from

a sibling logical core
:
,
::::
even

::
on

:::::::::::::::::
Foreshadow-resistant

:::::
CPUs. We

demonstrate that ZombieLoad attackers may extract sealing keys

from Intel’s architectural quoting enclave, ultimately breaking

SGX’s confidentiality and remote attestation guarantees. Zom-

bieLoad is furthermore not limited to native code execution, but also

works across virtualization boundaries. Hence, virtual machines

can attack not only the hypervisor but also different virtual ma-

chines running on a sibling logical core. We conclude that disabling

hyperthreading, in addition to flushing several microarchitectural

states during context switches, is the only possible workaround to

prevent this extremely powerful attack.

Contributions. The main contributions of this work are:

(1) We present ZombieLoad, a powerful data sampling attack

leaking data accessed on the same or sibling hyperthread.

(2) We combine incidental data sampling in the time domain

with traditional side-channel primitives to construct a tar-

geted information flow similar to regular Meltdown attacks.

(3) We demonstrate ZombieLoad in several real-world scenar-

ios: cross-process, cross-VM, user-to-kernel, and SGX. Zom-

bieLoad
:::
even

:::::
works

:::
on

::::::::::::::
Meltdown-resistant

::::::::
hardware.

:

(4) We show that ZombieLoad breaks the security guarantees

provided by Intel SGX
:
of
::::
Intel

::::
SGX,

::::
even

::
on

::::::::::::::::
Foreshadow-resistant

:::::::
hardware.

(5) We are the first to do post-processing of the leaked data

within the transient domain to eliminate noise.

Outline. Section 2 provides background. Section 3 provides
::::
gives

an overview of ZombieLoad, and introduces a novel classification

scheme for memory-based side-channel attacks. Section 4 describes

attack scenarios and the respective
:::
their

:
attacker models. Section 5

introduces and evaluates the basic primitives required for mounting

ZombieLoad. Section 6 demonstrates ZombieLoad in real-world

attack scenarios. Section 7 discusses possible countermeasures. We

conclude in Section 8.

Responsible Disclosure. We provided Intel with a PoC leaking

::::::
reported

::::::
leakage

::
of
:
uncacheable-typed memory locations from a

concurrent hyperthread onMarch 28, 2018.We clarified to Intel
::::
2018,

:
to
:::::
Intel.

::
We

:::::::
clarified on May 30, 2018 , that we attribute the source

of this leakage to the LFB. In our experiments, this works identically

for Foreshadow(Meltdown-P), undermining the completeness of

L1-flush-based mitigations. This issue was acknowledged by Intel

and tracked under CVE-2019-11091
:::::::
(MDSUM). We responsibly dis-

closed the main attack presented in this paper ZombieLoad
:::::
Variant

:
1 to Intel on April 12, 2019. Intel verified and acknowledged our

findings
:::::
attack and assigned CVE-2018-12130

::::::
(MFBDS)

:
to this issue.

Both issues
:::::::
MDSUM

:::
and

::::::
MFBDSwere part of an

::
the

::::::::::::::
Microarchitectural

:::
Data

::::::::
Sampling

:::::
(MDS) embargo ending onMay 14, 2019.

::
We

:::::::::
responsibly

:::::::
disclosed ZombieLoad

:::::
Variant

::
2
:::::
(which

::
is

::
the

::::
only

::::
MDS

:::::
attack

:::
that

:::::
works

::
on

::::::
Cascade

::::
Lake

:::::
CPUs)

::
to

::::
Intel

::
on

::::
April

::
24,

::::
2019.

::::
This

::::
issue,

:::::
which

:::
Intel

:::::
refers

::
to

::
as

::::::::::
Transactional

::::::::::::
Asynchronous

::::
Abort

:::::
(TAA)

:
is
:::::::
assigned

:::::::::::::
CVE-2019-11135

:::
and

::
is
::::
part

::
of

::
an

:::::::
ongoing

:::::::
embargo

:::::
ending

:::
on

::::::::
November

::
12,

:::::
2019.

:::
On

::::
May

::
16,

:::::
2019,

::
we

:::::::
reported

::
to

:::
Intel

::::
that

::::
their

:::::::::
mitigations

::::
using

::::
VERW

::
are

:::::::::
incomplete

:::
and

:::
can

::
be

::::::::::
circumvented,

:::::
which

::::
they

::::::
verfied

:::
and

:::::::::::
acknowledged.

:

2 BACKGROUND
In this section, we describe the background required for this paper.

2.1 Transient Execution Attacks
Today’s high-performance processors typically implement an out-
of-order execution design, allowing the CPU to utilize different exe-

cution units in parallel. The instruction stream is decoded in-order
into simpler micro-operations (µOPs) [14] which can be executed

as soon as the required operands are available. A dedicated reorder

buffer stores intermediate results and ensures that instruction re-

sults are committed to the architectural state in the order specified

by the program’s instruction stream.
::::::
in-order.

:
Any fault that oc-

curred during the execution of an instruction is handled at instruc-

tion retirement, leading to a pipeline flush which squashes any

outstanding µOP results from the reorder buffer.

In addition, modern CPUs employ speculative execution optimiza-

tions to avoid stalling the instruction pipeline until a conditional

branch is resolved. The processor predicts the most likely
:::
CPU

::::::
predicts

:::
the outcome of the branch and continues execution along

that direction. If the branch is resolved and the prediction was

correct, the speculative results retire in-order yielding ameasurable

performance improvement. On the other hand, if the prediction

was wrong, the pipeline is flushed, and any speculative results are

squashed in the reorder buffer. We refer to instructions that are

executed speculatively or out-of-order but whose results are never

architecturally committed as transient instructions [8, 47, 72].
While the results and the architectural effects of transient instruc-

tions are discarded, measurable microarchitectural side effects may

remain and are not reverted. Attacks that exploit these side effects

to observe sensitive information are called transient execution at-
tacks [8, 44, 47]. Typically, these attacks utilize a cache-based covert
channel to transmit the secret data observed transiently from the

microarchitectural domain to an architectural state. However, other

covert channels can be utilized as well [5, 66]. In line with a recent

exhaustive survey [8], we refer to attacks exploiting mispredic-

tion [28, 42, 44, 45, 51] as Spectre-type, whereas attacks exploiting

transient execution after a CPU exception [8, 42, 47, 71, 72, 79] are

classified as belonging to Meltdown-type.

2.2 Memory Subsystem
The CPU architecture defines different instructions to load data

from memory. In this section, we give a high-level overview of

how
::::::
overview

:::::::
memory

::::
loads

::
in out-of-order CPUs handle memory

loads . However, as the actual implementation of themicroarchitecture

is usually not publicly documented, we rely on patents held by Intel

to back up possible implementation details.
:::::
CPUs.

Caches. To improve the performance ofmemory accesses, CPUs

contain small and fast internal caches that store
:::::
caches

::::::
storing fre-

quently used data. Caches are typically organized in multiple levels

that are either private per core or shared amongst them. Modern

CPUs typically use n-way set-associative caches containing n cache

lines per set, each typically 64 B wide. Usually, modern Intel CPUs

have a private first-level instruction (L1I) and data cache (L1D) and

a unified L2 cache. The last-level cache (LLC) is shared across all

cores.

Virtual Memory. CPUs use virtual memory to provide memory

isolation between processes. Virtual addresses are translated to

physical memory locations using multi-level translation tables. The

translation table entries define the properties, e.g., access control or

memory type, of the referenced memory region. The CPU contains

the translation-look-aside buffer (TLB) consisting of additional

caches to store address-translation information.

Memory Order Buffer. µOPsthat deal
::::::
dealing with memory op-

erations are handled by dedicated execution units. Typically, Intel

CPUs contain 2 units responsible for loading data and one for stor-

ing data. While the reorder buffer resolves register dependencies,

out-of-order executed can still have memory dependencies. In an

out-of-order CPU, the
:::
The

:
memory orde

:::
order r buffer (MOB), incor-

porating a load buffer and a store buffer, controls the dispatch of

memory operations and tracks their progress to resolve memory

dependencies.

Data Loads. For every dispatched load operation an entry is

allocated in the load buffer and in the reorder buffer. The allocated

load-buffer entry holds information about the operation, ordering

constraints, the reorder buffer ID or the age of the most recent

store. To determine the physical address, the upper 36 bit of the

linear address are translated by the memory management unit. Con-

currently, the untranslated lower 12 bit are already used to index

the cache set in the L1D [18]. If the address translation is cached in

the TLB, the physical address is available immediately. Otherwise,

the page miss handler (PMH) is activated to perform
:::::::
performs a

page-table walk to retrieve the address translation as well as the

corresponding permission bits. With the physical address, the tag

and, thus, the way of the cache is determined. If the requested data

is in the L1D (cache hit), the load operation can be completed.

If data is not in the L1D, it needs to be served from higher levels

of the cache or the main memory via the line-fill buffer (LFB). The

LFB serves as an interface to other caches and the mainmemory and

keeps track of outstanding loads. Memory accesses to uncacheable

memory regions, and non-temporal moves all go through the LFB.

If a load corresponds to an entry of a previous load operation in

the load buffer, the loads can be merged [59?].
On a fault, e.g., a physical address is not available, the page-table

walk will
::::
does not immediately abort [18]. Still, an

::
An instruction

in a pipelined implementation must undergo each stage regardless

of whether a fault occurred or not [1], and is
:::
and

::
is

:::::
simply reissued

in case of a fault
::
[1]. Only at the retirement of the faulting µOP, the

fault is handled, and the pipeline is flushed [17, 18]. If a fault occurs

within a load operation, it is still marked as “valid and completed”

in the MOB [1].

2.3 Processor Extensions
Microcode. Initially, all instructionswere hardwired in the CPU

core. However, to
::
To support more complex instructions,microcode

allows implementing higher-level instructions usingmultiple hardware-

level instructions. Importantly, this
:::
This

:
allows processor vendors

to support complex behavior and even extend or modify CPU be-

havior through microcode updates [29]. Preferably, new architec-

tural features are implemented as microcode extensions, e.g., Intel

SGX [40].

While the execution units perform the fast-paths directly in

hardware, more complex slow-path operations
:
,
::::
such

::
as

::::
faults

::
or

::::::::
page-table

::::::::::
modifications,

:
are typically performed by issuing a mi-

crocode assist which points the sequencer to a predefined microcode

routine [12]. To do so, the execution unit associates an event code

with the result of the faulting micro-op. When the micro-op of the

execution unit is committed, the event code causes the out-of-order

scheduler to squash all in-flight micro-ops in the reorder buffer [12].

The microcode sequencer uses the event code to read the micro-ops

associated with the event in the microcode [6].

Intel TSX. Intel TSX is an x86 instruction set extension to support

::
for hardware transactional memory [36] which has been introduced

with Intel Haswell CPUs. With TSX, particular code regions are

executed transactionally. If the entire code regions completes suc-

cessfully, memory operations within the transaction appear as an

atomic commit to other logical processors. If an issue occurs during

the transaction, a transactional abort rolls back the execution to

an architectural state before the transactionand, thereby, discard-

ing all performed operations. Transactional aborts can be caused

by different issues: Typically, a conflicting memory operation oc-

curs where another logical processor either reads from an address

which has been modified within the transaction or writes to an

address which is used within the transaction. Further, the amount

of read and written data within the transaction may not exceed

the size of the LLC and L1 cache respectivelyfor the transaction to

succeed [29]. In addition, some instructions or system event might

cause the transaction to abort as well [36].

Intel SGX. With the Skylake microarchitecture, Intel introduced

Software Guard Extension (SGX), an instruction-set extension for

isolating trusted code [29]. SGX executes trusted code inside so-

called enclaves, which are mapped in the virtual address space of a

conventional host application process but are isolated from the rest

of the system by the hardware itself. The threat model of SGX as-

sumes that the operating system and all other running applications

could be compromised and, therefore, cannot be trusted. Any at-

tempt to access SGX enclave memory in non-enclave mode results

in abort page semantics, regardless of the current privilege level,

reads return the
:
a
:
dummy value 0xffand writes are ignored [30].

Furthermore, to protect against powerful physical attackers prob-

ing the memory bus, the SGX hardware transparently encrypts the

memory region used by enclaves
::::
used

::::::
memory

:::::
region [12].

A dedicated eenter instruction redirects control flow to an en-

clave entry point, whereas eexit transfers back to the untrusted

host application. Furthermore, in case of an interrupt or fault, SGX

securely saves CPU registers inside the enclave’s save state area

(SSA) before vectoring to the untrusted operating system. Next, the

eresume instruction can be used to restore processor state from the

SSA frame and continue a previously interrupted enclave.

SGX-capable processors feature cryptographic key derivation

facilities through the egetkey instruction, based on a CPU-level

master secret and a secure measurement of the calling enclave’s ini-

tial code and data. Using this key, enclaves can securely seal secrets
for untrusted persistent storage, and establish secure communica-

tion channels with other enclaves residing on the same processor.

Furthermore, to enable remote attestation, Intel provides a trusted

quoting enclave which unseals an Intel-private key and generates

an asymmetric signature over the local enclave identity report.

Over the past years, researchers have demonstrated various at-

tacks to leak sensitive data from SGX enclaves, e.g., through mem-

ory safety violations [46], race conditions [78], or side-channels [67, 74? , 75]

:::::::::::
[56, 67, 74, 75].More recently, SGXwas also compromised by transient

execution
::::::::::::::
transient-execution attacks [10, 72] which necessitated

microcode updates and increased the processor’s security version

number (SVN). All SGX key derivations and attestations include

SVN to reflect the current microcode version, and hence security

level.

3 ATTACK OVERVIEW
In this section, we provide an overview of ZombieLoad. We describe

what can be observed using ZombieLoad and how that fits into the

landscape of existing side-channel attacks. By that, we show that

ZombieLoad is a novel category of side-channel attacks, which we

refer to as data-sampling attacks, opening a new research field.

3.1 Overview
ZombieLoad is a transient-execution attack [8] which observes the

values of memory loads
::
and

:::::
stores

:
on the current physical CPU

:::
CPU

::::
core. ZombieLoad exploits that the fill buffer is accessible

:::
used

:
by all logical CPUs of a physical CPU core and that it does

not distinguish between processes or privilege levels
:::::::
privileges.

The load buffer acts as a queue for all memory loads from the

memory subsystem. Whenever the CPU encounters a memory load

during execution, it reserves an entry in the load buffer. If the

load was not an L1 hit, it additionally requires a fill-buffer entry.

When the requested data has been loaded, the memory subsystem

frees the corresponding load- and fill-buffer entries, at which point

the corresponding
:::
and

::
the

:
load instruction may retire.

:::::::
Similarly,

:
if

::::
stores

::::
miss

:::
the

::
L1

::
or

:::
are

:::::
evicted

::::
from

:::
the

:::
L1,

:::
they

:::
are

:::::::::
temporarily

:::::
stored

:
in
::
a
:::::::
fill-buffer

:::::
entry

::
as

:::
well.

:

However, we observed that under certain complex microarchi-

tectural conditions (e.g., a fault), where the load requires a mi-

crocode assist, it may first read stale values before being re-issued

eventually. As with any Meltdown-type attack, this opens up a

transient execution window in which
::::::::::::::
transient-execution

::::::
window

:::::
where this value can be used for subsequent calculationsbefore

the execution is aborted and rolled back. .
:
Thus, an attacker can

encode the leaked value into a microarchitectural element, such as

the cache.

In contrast to previous Meltdown-type attacks, however, it is not

possible to select the value to leak based on an attacker-specified

address. ZombieLoad simply leaks any value which is currently

loaded
::
or

:::::
stored by the physical CPU core. While this at first sounds

like a massive limitation, we show that this opens a new field of

side-channel attacks
:::
data

::::::::::::
sampling-based

::::::::::::::
transient-execution

::::::
attacks.

:::::::
Moreover,

:::
in

::::::
contrast

::
to
:::::::
previous

::::::::::::
Meltdown-type

:::::::
attacks, Zom-

bieLoad
:::::::
considers

::
all

:::::::
privilege

:::::::::
boundaries

:::
and

::
is

:::
not

::::::
limited

::
to

:
a

::::::
specific

:::
one.

::::::::
Meltdown

::::
[47]

::
can

::::
only

:::
leak

::::
data

::::
from

:::
the

:::::::
attacker’s

::::::
address

::::
space,

:::::::::
Foreshadow

::::
[72]

::::::
focussed

:::::::::
exclusively

::
on

::::
SGX

:::::::
enclaves,

::::::::::::
Foreshadow-NG

::::
[79]

::::::::
afterwards

:::::::::
investigated

::::::::::
cross-process

:::
and

:::::::
cross-VM

::::::
leakage,

:::
and

:
Fallout

::::
[55]

:::
can

::::
only

:::
leak

::::::
kernel

:::
data

:::
on

:::
the

::::
same

:::::
logical

::::
core. We show that ZombieLoad is an even more power-

ful attack when combined with existing techniques known from

traditional
:
in
::::::::::
combination

::::
with

::::::
existing side-channel attacks

::::::::
techniques.

3.2 Microarchitectural Root Cause
For Meltdown, Foreshadow, and Fallout

:
,
:::
and

::::
RIDL, the source of the

leakage is apparent. Moreover, for these attacks, there are plausible

explanations on what is going wrong in the microarchitecture, i.e.,
what the root cause of the leakage is [47, 72, 79?]

::::::::::
[47, 55, 72, 79].

For ZombieLoad, however, this is not entirely clear.

While we identified some necessary building blocks to observe

the leakage (cf. Section 5), we can only provide a hypothesis on

why the interaction of the building blocks leads to the observed

leakage. As we could only observe data leakage on Intel CPUs,

we assume that this is indeed an implementation issue (such as

Meltdown) and not an issue with the underlying design
:
a
:::::
design

::::
issue (as with Spectre). For our hypothesis, we combined our obser-

vations with the nearly non-existent
:::
little official documentation

of the fill buffer [29, 35]
:::
and

:::::
Intel’s

::::
MDS

::::::
analysis

:::
[34]. Ultimately,

we could neither prove nor disprove our hypothesis, leaving the

verification or falsification of our hypothesis to future work.

Stale-Entry Hypothesis. Every load is associated with an entry

in the load buffer and potentially an entry in the fill buffer [35].

When a load encounters a complex situation, such as a fault,

it requires a microcode assist [29]. This microcode assist triggers

a machine clear, which flushes the pipeline. On a pipeline flush,

instructions which are already in flight still finish execution [27].

As this has to be as fast as possible to not incur additional delays,

we expect that fill-buffer entries are optimistically matched as long

as parts of the physical address match. Thus, the load continues

with a wrong fill-buffer entry, which was valid for a previous load

::
or

::::
store. This leads to a use-after-free vulnerability [23] in the

hardware. Intel documents the fill buffer as being competitively

shared among hyperthreads [29], giving both logical cores access

to the entire fill buffer (cf. Appendix A). Consequently, the stale

fill-buffer entry can also be from a previous load
::
or

::::
store

:
of the

sibling logical core. As a result, the load instruction loads valid data

from a previous load
:
or

::::
store.

Leakage Source. We devised 2 experiments to reduce the num-

ber of possible sources of the leaked data.

In our first experiment, we marked a page as “uncacheable” via

the page-table entry and flushed the page
:::
and

::::::
flushed

:
it
:
from the

cache. As a result, every memory load from the page circumvents

all cache levels and directly travels from the main memory
:::
goes

::::::
directly to the fill buffer [29]. We then write the secret onto the un-

cacheable memory page to ensure that there is no copy of the data

in the cache. When loading data from the uncacheable memory

page, we can see leakage , but the leakage rate is only
::
see

::::::
leakage

in the order of bytes per second, e.g., 5.91 B/s (σx̄ = 0.18, n = 100,

:::::
where

:
n
:
is
:::
the

::::::
number

::
of

::::::::::
experiments

:::
and

::
σx̄::

is
::
the

:::::::
standard

::::
error

:
of
:::
the

:::::
mean) on an i7-8650U. We can attribute this leakage to the

fill buffer. This was also exploited in concurrent work [76]. Our hy-

pothesis is further backed by the MEM_LOAD_RETIRED.FB_HIT per-

formance counter, which shows multiple thousand line-fill-buffer

hits (117 330 FB_HIT/s (σx̄ = 511.57, n = 100)).

Intel claims that the leakage is entirely from the fill buffer.
:::
[34]

.
::::
This

::
is

:::
also

:::::
what

:::
Van

:::::
Schaik

:
et al.

::::
[76]

::::::
conclude

:::
for

::::
their

::::
RIDL

:::::
attack. However, our second experiment shows that the line-fill

buffer might not be the only source of the leakage
::
for ZombieLoad.

We rely on Intel TSX to ensure that memory accesses do not reach

the line-fill buffer as follows. Inside a transaction, we first write

the secret value to a memory location which was previously ini-

tialized with a different value. The write inside the transaction

ensures that the address is in the write set of the transaction and

thus in L1 [35, 63]. Evicting data from the write set from the

cache leads to a transactional abort [35]. Hence, any subsequent

memory access to the data from the write set ensures that it is

served from the L1, and therefore, no request to the line-fill buffer

is sent [29]. In this experiment, we see a much higher rate of

Instruction Pointer

AddressData
Meltdown

Memory-based Side-channel

Attacks

Data Sampling

(this paper)

Figure 1:The 3 properties of amemory operation: instruction
pointer of the program, target address, and data value. So far,
there are techniques to infer the instruction pointer from
target address and the data value from the address. With
ZombieLoad, we show the first instance of an attack which
infers the data value from the instruction pointer.

leakage,
:
which is in the order of kilobytes per second. More im-

portantly, we only see the value written inside the TSX transac-

tion and not the value that was at the memory location before

starting the transaction. Our hypothesis that the line-fill buffer is

not the only source of the leakage is further backed by observ-

ing performance counters. The MEM_LOAD_RETIRED.FB_HIT and

MEM_LOAD_RETIRED.L1_MISS performance counters , do not in-

crease significantly. In contrast, the MEM_LOAD_RETIRED.L1_HIT
performance counter shows multiple thousand L1 hits.

While accessing the data to leak on the victim core, we moni-

tored the MEM_LOAD_RETIRED.FB_HIT performance counter on the

attacker core for 10 s. If the address was cached, we measured a

Pearson correlation of rp = 0.02 (n = 100) between the correct re-

coveries and line-fill buffer hits, indicating no association. However,

while continuously flushing the data on the victim core, ensuring

that a subsequent access must go through the LFB, we measure

a strong correlation of rp = 0.86 (n = 100). This result indicates

that the line-fill buffer is not the only source of leakage. However,

a different explanation might be that the performance counters are

not reliable in such corner cases.
:::
Van

::::::
Schaik et al.

:::
[76]

::::::
reported

:::
that

:::
the

::::
RIDL

:::::
attack

:::
can

::::
only

:::
leak

::::
data

:::::
which

::
is

:::
not

:::::
served

::::
from

::
the

:::::
cache,

:
i.e.,

::::
which

:::
has

::
to

::
go

:::::::
through

:::
the

::
fill

::::::
buffers.

::::::
Hence,

::
we

:::::::
conclude

:::
that

::::
RIDL

:::::
indeed

::::
leaks

::::
from

::
fill

::::::
buffers,

:::::::
whereas

::
the

:
Zom-

bieLoad
:::::
leakage

:::::
might

:::
not

:::
be

::::::
entirely

::::::::
attributed

::
to

:::
the

::
fill

::::::
buffer.

Future work has to investigate whether other microarchitectural

elements, e.g., the load buffer, are also involved in the observed

data leakage.

Comparison to RIDL.
:
In
:::::::::
concurrent

:::::
work,

::::
Van

:::::
Schaik

:
et al.

:::
[76]

::::::::
presented

:::
the

::::
RIDL

::::::
attack,

:::::
which

::::
also

::::
leaks

::::
data

::::
from

:::
the

::
fill

::::::
buffers,

::
as

::::
well

::
as

::::
from

:::
the

::::
load

::::
ports.

:
Table 1

:::::
shows

:
a
::::
table

:::::
which

:::::::::
summarizes

:::
the

::::
main

:::::::::
differences

::::::
between

:::::
RIDL

:::
and Zom-

bieLoad.
::::
The

::::
most

:::::
crucial

::::::::
difference

:::::::
between

:::
the

::::::
attacks

::
is

:::
that

ZombieLoad
:::
still

:::::
works

:::
on

:::
the

::::::
newest

::::::::
generation

::
of
::::
Intel

:::::
CPUs

:::::::
(Cascade

::::
Lake

:::
with

:::::::
stepping

:::
B1)

:::::
which

:::
are

:::
not

:::::::
affected

::
by

::::
RIDL

::
or

:::::
Fallout.

:::::
RIDL

:::
can

:::
only

::::
leak

::::
loads

:::::
which

:::
are

::
not

::::::::
currently

:
in
:::
the

::
L1

:::::
cache. ZombieLoad

:::
can

:::
leak

::
all

:::::
loads,

:::::::::
independent

:::::::
whether

:::
they

::
are

::::::::
currently

::
in

:::
the

::
L1

:::::
cache

::
or

:::
not.

:
ZombieLoad

::
has

::
a
:::::::
thorough

::::::
analysis

::
of

:::
the

::::::::::::::
microarchitectural

:::
root

:::::
cause,

:::::
which

::::
leads

::
to

::::
more

::::::
variants

::::
with

:::::
unique

:::::::
features,

:::
such

::
as

::::::
leakage

::
on

::
an

:::::::::::
MDS-resistant

::::
CPU.

3.3 Classification
In this section, we introduce a way to classify memory-based side-

channel and transient-execution attacks. For all these attacks, we

Table 1:
::::::::::
Comparison

::::::::
between

:::
the

::::
RIDL

::::::
attack

::::
[76]

:::
and

:
ZombieLoad.

::::
RIDL ZombieLoad

::::::
Leakage

:::::
Source

: ::
Fill

::::::
Buffer,

::::
Load

:::
Port

: ::
Fill

:::::
Buffer

:

:::::
Leaked

:::::
Loads

:::::::
Uncached

:::::
Loads

::::
Only

:::
(Fill

::::::
Buffer)

::
All

:::::
Loads

:::
(Fill

::::::
Buffer)

:::::
Leaked

:::::
Stores

: ::
All

:::::
Stores

:::
(Fill

::::::
Buffer)

::
All

:::::
Stores

:::
(Fill

::::::
Buffer)

:::::
Known

:::::::
Variants

:
1
::
or

::
2
†

: :
5

:::::::
Exploited

::::
Fault

: ::::
Page

::::
Fault

::::::::
Microcode

:::::
Assist,

::::
Page

::::
Fault

:

::::
Fixed

::::
with

:::::::::::::
Countermeasures

:
✓ ✗

:::::
Works

::
on

:::::::::::
MDS-resistant

:::::
CPUs ✗ ✓

:::::::
(Variant

::
2)

:

†

:::
The

:::
RIDL

::::
paper

:::
[76]

::
only

::::::
describes

::
one

:::::
variant

::::
leaking

:::
from

:::
the

:
fill
:::::
buffers,

::
but

:::
also

:::::
mentions

:
a
:::::
variant

::::
leaking

::::
from

::
the

:::
load

:::
ports

:::::
without

::::
further

:::::::
description

:
or
:::::::
evaluation.

12Physical

12Virtual

ZombieLoad/

RIDL

51

47

11 6 5 0

12Physical

12Virtual

Fallout

51

47

11 0

12Physical

12Virtual

Foreshadow

51

47

11 0

12Physical

12Virtual

Meltdown

51

47

11 0

Page Number Page Offset

Figure 2: Meltdown-type attacks provide a varying degree of
target control (gray hatched), from full virtual addresses in
the case of Meltdown to nearly no control for ZombieLoad.

assume a target program which executes a memory operation at a

certain address with a specific data value at the program’s current

instruction pointer. Figure 1 illustrates these three properties as the
corner of a triangle, and techniques which let an attacker infer one

of the properties based on one or both of the other properties.

Traditionalmemory-based side-channel attacks allow an attacker

to observe the location of memory accesses. The granularity of

the location observation depends on the spatial accuracy of the

used side channel. Most common memory-based side-channel at-

tacks [19, 21, 22, 24, 39, 58, 60, 75, 82, 83] have a granularity be-

tween one cache line [21, 22, 24, 83] i.e., usually 64 B, and one

page [19, 39, 75, 82], i.e., usually 4 kB. These side channels establish

a connection between the time domain and the space domain. The

time domain can either be the wall time or also commonly the exe-

cution time of the program which correlates with the instruction

pointer. These classic side channels provide means of connecting

the address of a memory access to a set of possible instruction

pointers, which then allows reconstructing the program flow. Thus,

side-channel resistant applications have to avoid secret-dependent

memory access to not leak secrets to a side-channel attacker.

Since early 2018, with transient execution
::::::::::::::
transient-execution

attacks [8] such asMeltdown [47] and Spectre [44], there is a second

type of attacks which allow an attacker to observe the value stored

at a memory address. Meltdown provided the most control over

target address. With Meltdown, the full virtual address of the target

data is provided, and the corresponding data value stored at this

address is leaked. The success rate depends on the location of the

data, i.e., whether it is in the cache or main memory. However, the

only constraint for Meltdown is that the data is addressable using

a virtual address [47]. Other Meltdown-type attacks [72?]
::::::
[55, 72]

also connect addresses to data values. However, they often impose

additional constraints, such as that the data has to be cached in

L1 [72, 79], the physical address has to be known [79], or that an

attacker can choose only parts of the target address [?]
:::::
[55, 76].

Figure 2 illustrates which parts of the virtual and physical address

an attacker can choose to target data values to leak. For Meltdown,

the virtual address is sufficient to target data in the same address

space [47]. Foreshadow already requires knowledge of the physical

address and the least-significant 12 bits of the virtual address to

target any data in the L1, not limited to the own address space [72,

79]. When leaking the last writes from the store buffer, an attacker

is already limited in choosing which value to leak. It is only possible

to filter stores based on the least-significant 12 bits of the virtual

address, a more targeted leakage is not possible [?]
:::
[55].

Zombie loads,
:::::
which

::
are

::::::::
exploited

::
by ZombieLoad

:::
and

::::
RIDL

:::
[76]

,
:
provide no control over the leaked address to an attacker. The only

possible target selection is the byte index inside the loaded data,

which can be seen as an address with up to 6-bit in case an entire

cache line is loaded. Hence, we do not count ZombieLoad
:::
and

::::
RIDL

as an attack which leaks data values based on the address. Instead,

from the viewpoint of the target control, ZombieLoadis
:::
and

::::
RIDL

::
are

:
more similar to traditional memory-based side-channel attacks.

With ZombieLoad
:::
and

::::
RIDL, an attacker observes the data value of

a memory access. Thus, this side channel establishes a connection

between the time domain and the data value. Again, the time do-

main correlates with the instruction pointer of the target address.

ZombieLoadis the first instance
:::
and

::::
RIDL

:::
are

:::
the

:::
first

:::::::
instances

:
of

a class of attacks which connects the instruction pointer with the

data value of a memory access. We refer to such attacks as data
sampling attacks. Essentially, this new class of data sampling attacks

is capable of breaking side-channel resistant applications, such as

constant-time cryptographic algorithms [26].

Following the classification scheme from Canella et al. [8], Zom-

bieLoad is aMeltdown-type transient execution
:::::::::::::::
transient-execution

attack, and we propose Meltdown-MCA as the generic name . This

reflects that the (microarchitectural)fault type being exploited by

:::::::
canonical

:::::
name

::
for

::::::::
exploiting

::::::::
microcode

:::::
assists

::::::
(MCA,

:::::::
explained

::::::
further)

::
as

::::::::
exception

::::
type.

:::
We

:::
can

::::::
further

::::::
classify

:::
the

:::::::
different

::::::
variants

::
of ZombieLoad

:
(cf. Section 5.1

:
).
:::
We

::::::
propose

::::::::::::::
Meltdown-US-LFB

::
for

:
ZombieLoadis the microcode assist (MCA, explained further).

:::::
Variant

::
1,
::
as

::
it
::::::
exploits

::
a

::::
page

::::
fault

::
on

:
a
:::::::::
supervisor

::::
page

::
to

:::
leak

::::
from

::
the

::
fill

:::::
buffer.

:::
For ZombieLoad

::::::
Variant

:
2,
:::
we

::::::
propose

::::::::::::::::
Meltdown-MCA-TAA

::::::::
(microcode

::::
assist

::::::
caused

::
by

::::::::::
transactional

::::::::::
asynchronous

:::::
abort),

:::
and

::
for

:
ZombieLoad

::::::
Variant

:
3
::::::::::::::::
Meltdown-MCA-AD

:::::::::
(micorcode

::::
assist

:::::
caused

::
by

:::::::::
modifying

:::
the

::::::
accessed

:::
or

::::
dirty

:::
bit).

::::
The

::::
RIDL

:::::
attack

::::::
exploits

:::::::::
non-present

::::
page

::::
faults

:::::
caused

::
by

:::::::::::
NULL-pointer

:::::::
accesses

:::
[76]

.
:::::
Thus,

:::
we

::::::
propose

:::
the

::::::::
canonical

::::
name

::::::::::::::
Meltdown-P-LFB

::
for

:::
the

::::
RIDL

:::::
attack.

:

4 ATTACK SCENARIOS & ATTACKER MODEL
Followingmost side-channel attacks, we assume the attacker can ex-

ecute unprivileged native code on the target machine. Thus, we
::
We

assume a trusted operating system if not stated otherwise. This rela-

tively weak attacker model is sufficient to mount ZombieLoad. How-

ever, we also show that the increased attacker capabilities offered

in certain scenarios, e.g., SGX and hypervisor attacks, may further

amplify the leakage while remaining within the threat model of

the respective scenario
:::::::
respective

:::::
threat

:::::
model.

At the hardware level, we assume a ubiquitous Intel CPU with

simultaneous multithreading (SMT, also known as hyperthread-

ing) enabled. Crucially, we do not rely on existing vulnerabilities,

such as Meltdown [47], Foreshadow [72, 79], or [?]Fallout
:::
[55]

:
.

:::::
Hence,

::::
even

:::
the

::::
most

:::::
recent

::::
Intel

:::
9th

::::::::
generation

::::::::
processors

::::
with

:::::::::
silicon-level

::::::::
Meltdown

::::::::
mitigations

::::::
remain

:::::
within

:::
our

::::
threat

:::::
model.

User-Space Leakage. In the cross-process user-space scenario,

an unprivileged attacker leaks values loaded
::
or

:::::
stored by another

concurrently running user-space application. We consider such a

cross-process scenario most dangerous for end users, who are not

commonly using Intel SGX nor virtual machines. Moreover, many
:
.

::::
Many

:
secrets are likely to be found in user-space applications such

as browsersor password managers. .
:

The attacker can execute unprivileged code and is co-located

with the victim on the same physical but a different logical CPU

core. This is a typical ,
::
a
:::::::
common case for hyperthreading, where

both attacker and victim run on one hyperthread of the same CPU.

Kernel Leakage. In addition to leakage across user-space applications,
ZombieLoad can also leak across the privilege boundary between

user and kernel space. We demonstrate that the value of loads
:::
The

:::::
values

::
of

::::
loads

:::
and

:::::
stores executed in kernel space is

::
are

:
leaked to

an unprivileged attacker, executing either on the same or a sibling

logical core.

In this scenario, the
::
An unprivileged attacker performs a system

call to the kernel, running on the same logical core. Importantly,

we found that kernel load leakage may even survive the switch

back from the kernel to user space. Hyperthreading is hence
:::::
Hence,

:::::::::::
hyperthreading

::
is
:
not a strict requirement

::::::
required for this sce-

nario.

Intel SGX Leakage. In addition to leaking values loaded by the

kernel, ZombieLoad can observe loads
:::
and

::::
stores

:
executed inside

an Intel SGX enclave. In this scenario, the
:::
SGX

::::::
enclave,

:::::
even

:
if

::
the

:::::
loads

:::
and

:::::
stores

::::
target

:::
the

::::::::
encrypted

:::::::
memory

:::::
region,

:
i.e.,

::
the

::::::
enclave

::::
page

:::::
cache.

:::
The

:
attacker is executing

:::::
outside

::
of

::
an

::::
SGX

::::::
enclave on a sibling logical core, co-located with the victim enclave

on the same physical core. We demonstrate that can leak secrets

loaded during the enclave’s execution from a concurrent logical

core, but
:
In

:::::::
contrast

::
to

::
the

:::::
kernel

:::::::
leakage, we did not observe leak-

age on the same logical core after exiting the enclavesynchronously
(eexit) or asynchronously (on interrupt). .

:

While in the aftermath of the Foreshadow [72] attack, current

SGX attestations indicatewhether hyperthreading has been enabled

at boot time, Intel’s official security advisory [33] merely
::::
Intel

:::
[33]

Table 2: Overview of different variants to induce zombie
loads in different scenarios.

Scenario
Variant 1 2 3

Unprivileged Attacker

Privileged Attacker (root)

Symbols indicate whether a variant can be used in the corresponding attack scenario

(), can be used depending on the hardware configuration as discussed in Section 5.1

(), or cannot be used ().

suggests that a remote verifier might reject attestations from a

hyperthreading-enabled system “if it deems the risk of potential

attacks from the sibling logical processor as not acceptable”. Hence,

hyperthreading can decidedly be enabled safely on recent Intel

Cascade Lake CPUs which include silicon-level
:::::::
hardware mitiga-

tions against Foreshadow [33], but even older SGX machines with

up-to-date patched microcode may still run with hyperthreading

enabled.

Within the SGX threat model, we can leverage the attacker’s first

rate control over the untrusted operating system. An
::
an attacker

can, for instance, e.g., modify page table entries [75], or precisely

execute the victim enclave at most one instruction at a time [73].

Virtual Machine Leakage. With ZombieLoad, it is possible

to leak loaded
:::
can

::::
leak

:::::
loaded

:::
and

::::::
stored values across virtual-

machine boundaries. In this scenario, an
::
An

:
attacker running inside

a virtual machine can leak values from a different virtual machine

co-located on the same physical but different logical core. Thus, an

attacker can leak values loaded from a virtual machine running on

the sibling logical core.

As the attacker is running inside an untrusted virtual machine,

the attacker is not restricted to unprivileged code execution. Thus,

the attacker can, for instance, e.g., modify guest-page-table entries.

Hypervisor Leakage. In the hypervisor scenario, an attacker

running
:::
An

::::::
attacker inside a virtual machine utilizes

::
can

:::
use

:
Zom-

bieLoad to leak the value of loads
::::
values

::
of
:::::
loads

:::
and

:::::
stores exe-

cuted by the hypervisor.

As the attacker is running inside an untrusted virtual machine,

the attacker is not restricted to unprivileged code execution.

5 BUILDING BLOCKS
In this section, we describe the building blocks for the attack.

5.1 Zombie Loads
The main primitive for mounting ZombieLoad is a load which trig-

gers a microcode assist, resulting in a transient load containing

wrong data. We refer to such a load as a zombie load. Zombie loads

are loads which either architecturally or microarchitecturally fault

and thus cannot complete, requiring a re-issue of the load at a later

point. We identified multiple different scenarios
:
(cf. Appendix B)

to create such zombie loads required for a successful attack. All

::::
Most variants have in common that they abuse the clflush in-

struction to reliably create the conditions required for leaking from

a wrong destination (cf. Section 3.2). In this section, we describe

2
:
3
:
different variants that can be used to leak data (cf. Section 5.2)

depending on the adverary
::::::::
adversary’s capabilities.

::::
While

:::::
there

::
are

Page p
2MB

User mapping

v
4 KB

2MB

Kernel

address

k 4 KB

2MB

cache line

flushfaulting load

Figure 3: Variant 1: Using huge kernel pages for ZombieLoad.
Page p is mapped using a user-accessible address (v) and
a kernel-space huge page (k). Flushing v and then reading
from k using Meltdown leaks values from the fill buffer.

::::
more

::::::
variants

:
(cf. Appendix B

::
and

::::
Van

:::::
Schaik et al.

::::
[76]

::
for

::::
more

:::::
known

::::::::
variants),

::::
these

:
3
:::::::
variants

:::
are

:::
fast,

:::
and

::::
each

:::
has

::
a

:::::
unique

::::::
feature. Table 2 overviews which variant is

::::::
variants

::
are

:
applicable

in which scenario
:::::::
scenarios, depending on the operating system

and underlying hardware configuration.

Variant 1: Kernel Mapping. The first variant is a ZombieLoad

setup which does not rely on any specific CPU feature. We require

a kernel virtual address k , i.e., an address where the user-accessible

bit is not set in the page-table entry. In practice, the kernel is usually
mapped with huge pages (i.e., 2 MB pages). Thus k refers to a 2 MB

physical page p. Note that although we use such huge pages for

our experiments, it is not strictly required, as the setup also works

with 4 kB pages. We also require the user to have read access to the

content of the physical page through a different virtual address v .
Figure 3 illustrates such a setup. In this setup, accessing the page

p via the user-accessible virtual address v provides an architec-

turally valid way to access the contents of the page. Accessing the

same page via the kernel address k results in a zombie load similar

to Meltdown [47] requiring a microcode assist. Note that while

there are other ways to construct an inaccessible address k , e.g., by
clearing the present bit [72], we were only able to exploit zombie

loads originating from kernel mappings.

To create precisely the scenario depicted in Figure 3, we allocate

a page p in the user space with the virtual address v. Note that

p is a regular 4 kB page which is accessible through the virtual

address v. We retrieve its physical address through /proc/pagemap,
or alternatively using a side channel [21, 38].

::::::::
[21, 38, 62].

:
Using

the physical address and the base address of the direct-physical

map, we get an inaccessible kernel address k which maps to the

allocated page p. If the operating system does not use stronger

kernel isolation [20]
:::
[?], e.g., KPTI [49], the direct-physical map

in the kernel is mapped in the user space and uses huge pages

which are marked as not user accessible. In the case of a privileged

attacker ,
::
A

:::::::
privileged

:::::::
attacker

:
(e.g., when attacking a hypervisor

or SGX enclave, an attacker
::
for

:::::::::
hypervisor

::
or

:::::::::
SGX-enclave

::::::
attacks)

can easily create such pages if they do not exist.

:::
The

::::::::::
disadvantage

::
of

:::
this

::::::::
approach

:
is
::::
that

::
it

:::
does

:::
not

:::::
work

::
on

::::::::::::::
Meltdown-resistant

::::::::
machines.

:::::
There,

:::
we

::::
have

::
to

:::
use Variant 2.

:

Variant 2: Intel TSX.
:::
With

:::
the

:::::
second

::::::
variant

::
of

::::::
inducing

::::::
zombie

::::
loads,

:::
we

:::::::
eliminate

:::
the

:::::::::
requirement

::
of

:
a
:::::
kernel

::::::::
mapping.

:::
We

:::
only

:::::
require

:
a
:::::::
physical

::::
pagep

::::
which

::
is

:::
user

::::::::
accessible

::
via

:
a
::::::
virtual

:::::
address

v .
::::
Any

::::
page

:::::::
allocated

::
in

:::
user

:::::
space

:::::
fulfills

:::
this

::::::::::
requirement.

:

:::::
Within

::
a

:::
TSX

:::::::::
transaction,

:::
we

::::::
encode

:::
the

::::
value

::
of

:
v

:
in

::
a

::::
cache

:::::::::::
covert-channel

::::::
likewise

::
to

::::::
Spectre

::
or

::::::::
Meltdown.

::::
This

::::::
ensures

:::
that

v
:
is
::
in

:::
the

::::
read

::
set

::
of

:::
the

:::::::::
transaction

:::
[35].

::::
Note

::::
that

::
we

:::::::
perform

:
a

:::::::
legitimate

::::
load

::
to

:::
the

:::::::::::
user-accessible

::::::
address v

:::::
which

::::
itself

:::::
should

::
not

:::::
cause

::
the

::::
TSX

::::::::
transaction

::
to

:::
fail.

::::::::
However,

::
by

::::::
inducing

:::::::
conflicts

:
in
:::
the

::::
read

:::
set

:
(cf. Section 2.3

:
),
:::
the

::::
TSX

:::::::::
transaction

::::::
“faults”

:::
and

:::
does

:::
not

::::::
commit.

:::::
There

:
is
:::
no

:::::::::
architectural

::::
fault

:::
but

:::
only

:
a
:::::::
transient

:::
fault

:::::
which

::::::
results

::
in

:
a
::::::
zombie

::::
load.

:::
The

::::
main

::::::::
advantage

::
of
::::
this

:::::::
approach

::
is

:::
that

::
it
::::
also

:::::
works

::
on

:::::::
machines

::::
with

:::::::
hardware

::::
fixes

::
for

:::::::::
Meltdown,

:::::
which

::
we

::::::
verified

::
on

::
an

:::::::
i9-9900K

:::
and

::::
Xeon

::::
Gold

::::
5218.

::::::::
However,

::
in

::::::
contrast

::
to

:
Variant

1,
:::
we

:::::
require

:::
the

::::
Intel

:::
TSX

::::::::::::
instruction-set

:::::::
extension

:::::
which

::
is

:::
only

::::::
available

::
in
:::::::
selected

::::
CPUs

::::
since

:::::
2013.

Variant 3: Microcode-Assisted Page-Table Walk. A variant

similar to Variant 1 is to trigger a microcode-assisted page-table

walk. If a page-table walk requires an update to the access or dirty

bit in the page-table entry, it falls back to a microcode assist [12].

In this setup, we require one physical page p which has 2 user-

accessible virtual addresses, v and v2. This can be easily achieved

by using a shared-memory segment or memory-mapped file, which

is mapped twice in the application. The virtual address v can be

used to access the contents of p architecturally. For v2, we have

to clear the accessed bit in the page-table entry. On Linux, this is

not possible in the case of an unprivileged attacker, and can thus

only be used in attacks where we assume a privileged attacker

(cf. Section 4). However, we experimentally verified that Windows

10 (1803 build 17134.706) periodically clears the accessed bits. We

assume that the page-replacement algorithm is responsible for this.

Thus, this variant enables the attack on Windows for unprivileged

attackers
:
if
:::
the

::::
CPU

::::
does

::
not

:::::::
support

:::
Intel

::::
TSX.

When accessing the page through the virtual address v2, the

accessed bit of the page-table entry has to be set. This, however,

cannot be done by the page-miss handler [12]. Instead, microar-

chitecturally, the load faults, and a micro-code assist is triggered

which repeats the page-table walk and sets the accessed bit [12].

If the access to v2 is done transiently, i.e., behind a misspecu-

lated branch or after an exception, the accessed bit cannot be set

architecturally. Thus, the leakage is not only exploitable once but

instead for every access.

5.2 Data Leakage
To leak data with the

:::
any setup described in Section 5.1, we con-

stantly flush the first cache line of p through the virtual address v.
We achieve this by executing the unprivileged clflush instruction

(or clflushopt instruction if available) on the user-accessible vir-

tual address v. For Variant 1, we leverage Meltdown to read from

the kernel address k which maps to the cache line flushed before. As

with Meltdown-US [47],
:::
there

:::
are various methods of preventing an

architectural exceptioncan be used. We verified that ZombieLoad

with Variant 1 works with exception prevention (i.e., speculative
execution), handling (i.e., a custom signal handler), and suppression

(i.e., Intel TSX).
For Variant 2,

:::
the

::::::::
cache-line

:::::::::
invalidation

::
of

:::
the

::::
flush

::::::
triggers

:
a

:::::
conflict

::
in

:::
the

:::
read

:::
set

::
of

::
the

:::::::::
transaction

:::
and

:::::
aborts

:::
the

:::::::::
transaction.

::
As

::::
there

::
is
::
no

::::::::::
architectural

::::::::
exception

:::
on

:
a
::::::::::
transactional

::::::
conflict,

::::
there

:
is
:::
no

::::
need

::
to

:::::
handle

:::::::::
exceptions.

::
For

:
Variant 3, we transiently, i.e., behind a mispredicted branch,

read from the addressv2. :::::
Similar

::
to Variant 2,

::::
there

::
is

::
no

:::::::::
architectural

::::::::
exception.

:::::
Hence,

::::
there

::
is

::
no

::::
need

::
to

::::::
handle

::::::::
exceptions.

:

Counterintuitively, the resulting values leaked for all variants

are not coming from page p. Instead, we get access to data which

is currently loaded
::
or

:::::
stored on the current or sibling logical CPU

core. Thus, it appears that we reuse fill-buffer entries, and leak

the data which the entries references. For Variant 1 and Variant

3, this allowed us to access all bytes from the cache line that the

fill-buffer entry references.
:::::::
However,

:::
for Variant 2

:
,
::
we

:::
are

::::
only

:::
able

::
to

::::::
recover

:::
the

::::::
number

::
of
:::::
bytes

::
of

:::
the

::::::
victim’s

::::
load

::
or

::::
store

:::::::
operation

:::
and

::
in

:::::::
contrast

::
to Variant 1,

:::
not

:::
the

:::::
entire

::::
cache

::::
line.

5.3 Data Sampling
Independent of the setup for ZombieLoad, we cannot directly con-

trol the address of the data to leak. Both the virtual addresses k
and v, as well as the physical address of p is arbitrary and does not

correlate with the leaked data. In any case, we simply get the value

referenced by one fill-buffer entry which we cannot specify.

However, there is at least control within the fill-buffer entry,

i.e., we can target specific bytes within the 64 B fill-buffer entry.

The least-significant 6 bits of the virtual address v refer to the byte

within the fill-buffer entry. Hence, we can target a single byte at a

specific position from the fill-buffer entry. While at first, this does

not sound powerful, it allows leaking sensitive information, such

as AES keys, byte-by-byte as shown in Section 6.1.

As described in Section 4, the leakage is not limited to the own

process. With ZombieLoad, we observe values from all processes

running on the same as well as on the sibling logical CPU core.

Furthermore, we also observe leakage across privilege boundaries,

i.e., from the kernel, hypervisor, and Intel SGX enclaves. Thus,

ZombieLoad allows sampling of all data which is loaded
:
or

:::::
stored

by any application on the current physical CPU core.

5.4 Performance Evaluation
In this section, we evaluate ZombieLoad and the performance of

our proof-of-concept implementations
1

.

Environment. Weevaluated the different variants of ZombieLoad,

described in Section 5.1, on different environments listed in Table 3.

The tested CPUs range from Sandy Bridge (released 2012) to Cas-

cade Lake (released 2019). We
:::::
While

::
we

:
were able to mount Variant

1 and Variant 3 on different microarchitectures except for Whiskey

Lake, Coffee Lake-R, and Cascade Lake-SP,
:::
we

:::::::::
successfully

::::
used

Variant 2
:
on

:::
all

::::::
systems

:::::
where

::::
Intel

:::
TSX

::::
was

:::::::
available.

:::::
Thus, Vari-

ant 2
:::
also

:::::
works

::
on

::::::::::::::
microarchitectures

::::
with

:::::::
hardware

:::::::::
mitigations

:::::
against

::::::::
Meltdown

:::
and

::::::::::
Foreshadow.

Performance. To evaluate the performance of each variant, we

performed the following experiment on an i7-8650U. While reading

a specific value on one logical core, we performed each variant

of ZombieLoad on the sibling logical core for 10 s, recording the

number of successful and unsuccessful recoveries. For Variant 1

using TSX to suppress the exception, we achieve an average trans-

mission rate of 5.30 kB/s (σx̄ = 0.076, n = 1000) and a true positive

1

::
Our

::::::::::
proof-of-concept

::::::::::
implementations

::
can

::
be

::::
found

:
in
:
a
:::::
GitHub

:::::::
repository: https:

//github.com/IAIK/ZombieLoad

Table 3:Tested environments.
:
A

:
‘✓

:
’
:::::::
indicates

::::
that

:::
the

::::::
version

:::::
works,

:
‘✗
:
’
::::
that

:
it
:::::
does

:::
not

:::::
work,

:::
and

:::
‘-’

:::
that

::::
TSX

::
is

:::::::
disabled

::
or

:::
not

:::::::::
supported

::
on

::::
this

::::
CPU.

Variant
Setup CPU (Stepping) µ-arch. 1 2 3
Lab Core i7-3630QM (E1) Ivy Bridge ✓ - ✓

Lab Core i7-6700K (R0) Skylake-S ✓ ✓ ✓

Lab Core i5-7300U (H0) Kaby Lake ✓ ✓ ✓

Lab Core i7-7700 (B0) Kaby Lake ✓ ✓ ✓

Lab Core i7-8650U (Y0) Kaby Lake-R ✓ ✓ ✓

Lab Core i7-8565U (W0) Whiskey Lake ✗ - ✗

Lab Core i7-8700K (U0) Coffee Lake-S ✓ ✓ ✓

Lab Core i9-9900K (P0) Coffee Lake-R ✗ ✓ ✗

Lab Xeon E5-1630 v4 (R0) Broadwell-EP ✓ ✓ ✓

Cloud Xeon E5-2670 (C2) Sandy Bridge-EP ✓ - ✓

Cloud Xeon Gold 5120 (M0) Skylake-SP ✓ ✓ ✓

Cloud Xeon Platinum 8175M (H0) Skylake-SP ✓ - ✓

Cloud Xeon Gold 5218 (B1) Cascade Lake-SP ✗ ✓ ✗

rate of 85.74 % (σx̄ = 0.0046, n = 1000).
::
For

:
Variant 2

:
,
::
we

:::::::
achieved

::
an

::::::
average

::::::::::
transmission

:::
rate

::
of

:
39.66 kB/s

:::::::::
(σx̄ = 0.048,

:::::::
n = 1000)

:::
and

:
a
::::
true

::::::
positive

:::
rate

:::
of 99.99 %

::::::::::
(σx̄ = 6.45

−9

,
::::::::
n = 1000). With

Variant 3 in combination with signal handling, we achieved an

average transmission rate of 0.08 kB/s (σx̄ = 0.002, n = 1000) and

a true positive rate of 52.7 % (σx̄ = 0.0062, n = 1000). Variant 3 in

combination with TSX, achieves an average transmission rate of

7.73 kB/s (σx̄ = 0.21, n = 1000) and a true positive rate of 76.28 %

(σx̄ = 0.0055, n = 1000).

6 CASE STUDY ATTACKS
In this section, we present 5 attacks using ZombieLoad in real-world

scenarios.

6.1 AES-NI Key Leakage
To demonstrate that data sampling is a powerful side channel, we ex-

tract an AES-128 key. The victim application uses AES-NI, which is

resistant against timing and cache-based side-channel attacks [26].

However, even with the hardware-assisted AES-NI, the key has

to be loaded from memory to a 128-bit XMM register. This is usu-

ally the case before invoking AESKEYGENASSIST, which is used to

derive the AES round keys. The round-key derivation is entirely

done in hardware using the XMM registers. Hence, there is no

memory load required for the derivation of the 11 round keys used

in AES-128. Thus, when the key is loaded from memory before

the round-key derivation starts is the point where we can mount

ZombieLoad to leak the value of the key. For OpenSSL (v3.0.0),

this is in the function aesni_set_encrypt_key which is called by

EVP_EncryptInit_ex. Note that instead of leaking the key, we can
also leak the round keys loaded in the encryption process. However,

to attack the round keys, an attacker needs to leak (and distinguish)

more different values, making the attack more complex.

When leaking the key using ZombieLoad, we have first to detect

which load corresponds to the key. Moreover, as we can only leak

one byte at a time, we also have to combine the leaked bytes to the

full AES-128 key correctly.

https://github.com/IAIK/ZombieLoad
https://github.com/IAIK/ZombieLoad

(4,4)-dominon,n+1
(0x21)

(7,1)-dominon,n+1
(0xA4)

1 1 0 1 0 0 1 0

keyn (0xD2)

0 0 0 1 1 1 0 0

keyn+1
(0x1C)

Figure 4: Additionally leaking domino bytes comprised of
bits of different AES-key bytes to filter out unrelated loads.

Side-Channel Synchronization. For the attack, we assume a

shared library implementing the AES encryptionwhich can be used

by both the attacker and the victim, ,
:
e.g., OpenSSL. Even though

OpenSSL (v3.0.0) has a side-channel resistant AES-NI implemen-

tation, we can still rely on classical memory-based side-channel

attacks
:::
side

:::::::
channels

:
to monitor the control flow. For example,

using
:::
With

:
Flush+Reload, we can detect when a specific part of

the code
:::
code

::::
part is executed [15, 24]. While this

:::
This

:
does not

leak any secrets, it acts as
:::
but

:
it
::
is a synchronization primitive for

ZombieLoad.

We constantly monitor a cache line of the code which is executed

right before the key is loaded frommemory. In OpenSSL (v3.0.0), this

is the second cache line of aesni_set_encrypt_key, i.e., 64 B after

the start of the function. Similarly to Schwarz et al. [63], we leverage

the cache state of the cache line as a trigger for the actual attack.

Only if we detect a cache hit on the monitored cache line, we start

leaking values using ZombieLoad. Hence, we already filter out most

bytes not related to theAES key.
::::
Note

:::
that

::
the

:::::::::::::
synchronization

:::
does

::
not

::::
have

::
to
:::
be

::::::
perfect,

::
as

:::::::::
independent

::::::
system

::::
noise

::::::
cancels

::::
itself

::
out

::::
over

:::::::
multiple

:::::::::::
measurements.

::::::::
Moreover,

:::
the

:::
key

:
is
::::::
always 16 B

::::::
aligned,

:::
and

::
we

::::::
always

:::
leak

:::
an

::::
entire

:::::
cache

::::
line.

:::::
Hence,

::::
there

:::
can

::
be

::
no

:::::::
bytewise

::::
shift

::
of

:::
the

::::
AES

:::
key

:
–
:::
the

::::
first 16 B

:::
that

:::
we

:::
leak

::
are

::::::
always

:::::
either

::::
from

::
the

:::
key

::
or
::::
from

::::::::
unrelated

:::::
noise.

Note that if there is no cache line before the load which can be

used as a trigger, we can still use a nearby cache line (i.e., a cache
line after the load) as a filter. In a parallel thread, we collect the

timestamps of cache hits in the nearby cache line. If we also save the

time stamps
:::::::::
timestamps of the values leaked using ZombieLoad, in

an offline post-processing step,
:
we can filter out values which were

leaked at a different instruction-pointer location.

To further reduce unrelated loads, it is also possible to slow

down the victim using performance-degradation techniques such

as flushing the code [2, 15]. For OpenSSL, we used performance

degradation on the code directly following the load of the key.

Domino Attack. Inevitably, even when synchronizing Zom-

bieLoad by using a cache-based trigger, we also leak values not

related to the key. Moreover, for practical reasons, the size of the

Flush+Reload covert channel is limited, and we can only transmit

a single key byte from the transient domain at a time. Hence, we

have a probability distribution for every byte in the AES key. As

the bytes in the AES key are independent of each other, we can

only assume that the byte with the highest probability
:::::
which

::
we

:::
leak

::::
most

::::
often

:::
per

::::
byte

::::::
position

:
is the correct key byte. Thus, if

there is a key byte suffering from noise from unrelated loads, we

may assume that the noise is the correct key byte, which leads to a

wrong key.

Therefore, we propose theDomino attack, an innovative transient
error detection

::::::::::::
error-detection technique for reducing noise when

leaking multi-byte loads. In addition to leaking every single key

byte, we also transmit a specially crafted domino byte composed

by combining bits from two adjacent key bytes. Note that creating

such a domino byte is possible, as the transient domain has access

to the full AES key and can use it for arbitrary computations (
::
as

:::
also

:::::
shown

::::
with

::
the

::::::::
transient

::::
error

:::::::
detection

:::::::
described

::
in
:
Section 6.3).

Figure 4 illustrates the idea of the Domino attack. In this case, we

leak (4,4) domino bytes consisting of 4 bits of two adjacent key

bytes respectively. By combining the lower nibble of one key byte

with the higher nibble of the next key byte, we transmit a domino

byte which encodes partial information of two key bytes. Hence,

in

::
In a post-processing step, we combine the probability distribution

of two adjacent key bytes with the probability distribution of the

domino byte to select the two adjacent key bytes with the highest

combined probability
::::::
consider

:::
two

:::::::
adjacent

::::
bytes

::
as

::::::
correct,

::
if

::
we

::
not

::::
only

:::::
leaked

::::
both

::
of

::::
them

::::
often

::
but

:::::::::
additionally

::::
also

::
the

:::::::::::
corresponding

::::::
domino

:::
byte.

::::::::
Moreover,

:::
we

::
do

:::
not

:::
look

::
at

:::
two

:::
key

::::
bytes

::
in

:::::::
isolation,

::
but

:::
we

:::
look

::
at

:::
the

::::
entire

:::
key

::
as

:
a
:::::
chain

::
of

:::
key

::::
bytes

:::::
linked

::::::
together

::
by

::::::
domino

:::::
bytes.

::
If

::
all

:::
key

:::::
bytes

:::
and

:::
the

:::::::::::
corresponding

::::::
domino

::::
bytes

:::::::
occurred

::::
often

::
in

:::
the

:::::
leaked

::::::
values,

::
we

:::
can

::::::
assume

:::
that

:::
the

::::
entire

:::
key

::
is
::::::
leaked

:::::::
correctly. Note that the selection of bits can

be adapted to the noise which can be measured
::::::::
measurable

:
before

leaking the key, e.g., multiple(7,1) domino bytes can be leaked that

are shifted by only a single bit.

Results. We evaluated the attack in a cross-user-space attack (cf.

Section 4)
::::
using

:
Variant 1.We always ran the attack until the correct

key was recovered, i.e., until the key with the highest probability is

the correct key. In a practical attack, the number of attacks can even

be reduced, as typically it is easy to verify whether a key candidate

is correct. Thus, an attacker can simply test all key candidates with

a probability over a certain threshold and does not have to wait

until the highest probability corresponds to the correct key.

On average, we recovered the entire AES-128 key of the vic-

tim in under 10 s using the cache-based trigger and the Domino

attack. During this time, the key was loaded
:::::
victim

:::::
loaded

:::
the

:::
key

approximately 10 000 timesby the victim.

6.2 SGX Sealing Key Extraction
In this section, we show that privileged SGX attackers can drasti-

cally improve ZombieLoad’s temporal resolution and bridge from

incidental data sampling in the time domain to the targeted re-

construction of arbitrary enclave secrets (cf. Figure 1). We first

explain how state-of-the-art enclave execution control and tran-

sient post-processing techniques can be leveraged to reliably leak

register values at any point during an enclave invocation. Then we

demonstrate the impact of this attack by recovering a full 128-bit

SGX sealing key, as used by Intel’s trusted provision and quoting

enclaves to decrypt the long-term EPID private attestation key.

Leaking Enclave Registers. We consider Intel SGX root attack-

ers that co-locate with a victim enclave on the same physical CPU.

As a system attacker, we can increase ZombieLoad’s temporal res-

olution by leveraging previous research results exploiting page

faults [75, 82] or interrupts [74?]
::::::
[56, 74] to regulate the victim en-

clave’s execution. We use the SGX-Step [73] framework to precisely

single-step the victim enclave one instruction at a time, allowing

the attacker to reach a code part where sensitive information is

stored in CPU registers. At such a point, we switch to unlimited

zero-stepping [72] by either setting the system timer interrupt to

a very short interval or revoking code page execute permissions

before resuming the victim enclave. This technique provides Zom-

bieLoad attackers with a primitive to repeatedly force-reload CPU

registers from the interrupted enclave’s SSA frame (cf. Section 2.3).

Our experiments show that even though
::
the

:
execution of the en-

clave instruction never completes, any direct operands plus SSA

register file contents are loaded from memory each time. Impor-

tantly, since the enclave does not make progress, we can perform

unlimited ZombieLoad attack attempts to reconstruct CPU register

values from these implicit SSA memory accesses.

We further reduce noise from unrelated non-enclave loads on

the victim CPU by opting for timer-based zero-stepping with a

user space
::::::::
user-space

:
interrupt handler [74] to avoid repeatedly

invoking the operating system. Furthermore, we found that exe-

cuting the ZombieLoad attack code in a separate address space

avoids unnecessarily slowing down the spy through implicit TLB

invalidations on enclave entry/exit [30].

Note that the SSA frame spans multiple cache lines. With Zom-

bieLoad, we do not have explicit address-based control over which

cache line is being leaked. Hence, leaked data might come from dif-

ferent saved registers that are at the same offset within a cache line.

To filter out such noisy observations, we use the Domino transient

error detection technique introduced in Section 6.1. Specifically, we

implemented a “sliding window” that transmits 7 different domino

bytes for each candidate key byte, stuffed with increasing bits from

the next adjacent key byte candidate. Any noisy observations that

do not match the overlap can now efficiently be filtered out.

Attack on sgx_get_key. The Intel SGX design includes a se-

cure key derivation facility through the egetkey instruction (cf.

Section 2.3). Enclaves execute this instruction to query a 128-bit

cryptographic key from the hardware, based on the calling enclave’s

code layout or developer identity. This is the underlying primitive

used by Intel’s trusted prebuilt quoting enclave to securely un-

seal a long-term private attestation key from persistent storage

::::::
securely [12, 72].

The official Intel SGX SDK [30] offers a convenient sgx_get_key
wrapper procedure that first executes egetkey with the necessary

parameters, and eventually copies the retrieved key into a provided

buffer. We reverse engineered the proprietary intel_fast_memcpy
function and found that in this case, the key is copied using two 128-

bit moves to/from the xmm0 SSE register. We revert to zero-stepping

on the last instruction of the memcpyinvocation. At this point, the
attacker-induced zero-step enclave resumptions will repeatedly

reload a.o., the xmm0 register containing the 128-bit key from the

memory hierarchy.

Results. We evaluated the attack on a Kaby Lake i7-7700 CPU

with an up-to-date Foreshadow-patched microcode revision 0x8e

:::
and ZombieLoad Variant 1.

In the first experiment, we implemented a benchmark enclave

that uses sgx_get_key to generate a new report key with different

random key IDs. We performed 100 key-recovery experiments on

sgx_get_key with different random keys. Our results show that

30 % of the times
::
(in

::
30

::::::::::
experiments) the full 128-bit key is among

the key candidates with average remaining key space entropy of 8.8

bits.
:::
This

::::::
entropy

::
is

::::::::
calculated

::
by

::::::::
averaging

:::
the

::::::
entropy

::
of

::::
these

::
30

::::
cases

:::::
where

::
the

:::
full

:::
key

::
is

:::::
among

:::
the

:::::
128-bit

:::::::::
candidates. Among

these cases, 3 % of the times the exact full key has been recovered,

:::
and

:::
the

::::::::
worst-case

::::::
entropy

::
is
:::::
about

::
14

:::
bits. In the other 70 % of

the cases where the full key is not among the key candidates, 31 %

of the times, we have partial key bytes among the recovered key

candidates. The average correct key bytes are 10 out of 16 byteswith

the remaining global entropy of 13.59 bits. In the remaining of the

times where the correct key is not among the key candidates, our

attack which uses the Domino technique with a sliding window

did not reveal any candidates, which means an attacker can simply

repeat the attack in such cases. Also in cases.
::
In

::::
such

::::
cases, where

some of the key bytes are part of the candidates, most of
:::
the failed

key bytes resides
::::
reside in the first few bytes of the key. The reason

for this behavior is that the explained Domino attack will have

::::::
Domino

:::::
attack

:::
has a stronger effect on key bytes in the middle that

are surrounded by more key bytes.
::
In

:::
the

::::::::
remaining 39 %

:
of
:::
the

::::
times

:::::
where

:::
the

:::::
correct

::::
key

:
is
:::
not

::::::
among

::
the

::::
key

::::::::
candidates,

:::
our

::::
attack

::::::
which

:::
uses

:::
the

:::::::
Domino

::::::::
technique

::::
with

:
a
::::::
sliding

::::::
window

::
did

:::
not

:::::
reveal

:::
any

:::::::::
candidates,

::::
which

::::::
means

::
an

::::::
attacker

:::
can

:::::
simply

:::::
repeat

::
the

:::::
attack

::
in

::::
such

:::::
cases.

In the second experiment, we perform an attack on Intel’s trusted

quoting enclave. The quoting enclave performs a call to sgx_get_key
to derive the sealing key which is used to decrypt the EPID pro-

visioning blob. We executed the attack on a quoting enclave that

is signed with debug keys, so we can use it as a ground truth to

easily verify that we have recovered the correct sealing key. We

executed the attack multiple times on our setup, and we managed

to recover the correct 128-bit sealing key after multiple executions

of the attack and checking the candidates against each other. The

recovered sealing key matches the correct key, and can indeed

successfully decrypt the EPID blob for our debug signed quoting

enclave. While we did not yet reproduce this attack to recover the

sealing key from
::
on the official quoting enclave image signed by

Intel, we believe that this experimental evaluation showcased all

the required primitives to break Intel SGX’s remote attestation

guarantees, as demonstrated before by Foreshadow [72].

6.3 Cross-VM Covert Channel
To evaluate the performance of ZombieLoad, we implement a covert

channel which can be used for all attack scenarios described in

Section 4. However, in this section, we focus on the cross-VM covert

channel. While covert channels are possible for Intel SGX, the

kernel, and the hypervisor, these are somewhat artificial scenarios.

Moreover, there are various covert channels available to user-space

applications for stealthy inter-process communication [16, 53].

For VMs, however, there are not many known covert chan-

nels which can be used between two VMs. So far, all cross-VM

covert channels either relied on Prime+Probe [48, 52, 53, 61, 81],

DRAMA [60]
::::::
[60, 65], or bus locking [80]. We show that Zom-

bieLoad can be used as a fast and reliable covert channel between

VMs scheduled on the same physical core.

0xFF SEQ DATA DATA

071523

Figure 5:The packet format used in the covert channel. Every
32-bit packet consists of 8 data bits, 8-bit checksum (two’s
complement), 8-bit sequence number, and a constant prefix.

Sender. For the fastest result, the sender repeatedly loads the

value to be transmitted from the L1 cache into a register. By not

only loading the value from one memory address but instead from

multiple memory addresses, the sender ensures that potentially

multiple fill-buffer entries are used. In addition, this also thwarts

an optimization of Intel CPUs which combines multiple loads from

the same cache line to a single load [?]
::
[1].

On a CPU supporting AVX2, the sender can encode up to 256

bits per load (e.g., using the VMOVAPS load).

Receiver. The receiver mounts ZombieLoad to leak the values

loaded by the sender. However, as the receiver leaks the loads only

in the transient domain, the leaked value have to be transferred

into the architectural domain. We encode the leaked values into

the cache and recover them using Flush+Reload. When encoding

values in the cache, we require at least 2 cache lines, i.e., 128 B, per

bit to prevent the adjacent-cache-line prefetcher from interfering

with the encoding. In practice, we require one physical page , , per

possible value to prevent interference of the prefetcher
:::::::
prefetcher

:::::::::
interference. To reduce the recover bottleneck, we transfer single

bytes from the transient to the architectural domain which already

requires 256 runs of Flush+Reload.

As a result, our proof-of-concept limits the transmission of actual

data to a single byte per leaked load. However, we can use the

remaining bits in the load to ensure that the channel is free of

errors.

Transient Error Detection. The transmission of the data be-

tween sender and receiver is free of any noise. However, the re-

ceiver does not only recover values from the sender, but also other

loads from the current and sibling logical core. Hence, to get rid of

this noise, we encode the data as shown in Figure 5. This allows

the receiver to filter out data not originating from the sender.

Although we cannot transfer the entire packet into the archi-

tectural domain, we can compute on the packet in the transient

domain. Thus, we run the error detection in the transient domain ,

and only transmit valid packets to the architectural domain.

The challenge to run the error detection in the transient domain

is that the number of instructions is limited, and not all instructions

can be used. For reliable results, we cannot use instructions which

speculate on either control or data flow. Hence, the error-detection

code has to be as short as possible and branch free.

Our packet structure allows for extremely efficient error detec-

tion. We encode the data in the first byte and the two’s complement

of the data in the second byte as a checksum. To detect errors, we

XOR the value of the first byte (i.e., the data) onto the second byte

(i.e., the two’s complement of the data). If both values are received

correctly, the XOR ensures that the bits 8 to 15 of the packet are

zero. Thus, for a correct packet, the least-significant 16 bits of the

packet represent a value between 0 and 255, and for a wrong packet,

these bits represent a value which is larger than 255. We use these

resulting 16-bit value as an index into our oracle array, i.e., an array

consisting of 256 pages. Therefore, any value which is not a correct

byte is out of bounds and has thus no effect on the cache state of

the array. A correct byte is also a valid index into the oracle array

and ensures that the first cache line of the corresponding page is

cached. Finally, by applying a cache-based side-channel attack, such

as Flush+Reload, we can recover the byte from the cache state of

the oracle array [44, 47].

The error detection in the transient domain has the advantage

that we do not require computation time in the architectural do-

main. Instead of waiting for the exception to become architecturally

visible by doing nothing, we already use this time to perform the

required computation. An additional advantage is that while we

are still in the transient domain, we can work on noise-free data.

Thus, we do not require complex error correctionafter receiving

the data [53].

In addition to the error detection
:::::::::
Additionally, we also encode

a sequence number into the packet. The sequence number allows

ordering the received packets . It can be
:::
and

:
is
:::
also

:
recovered using

the same method as the data value, using an oracle array and a

cache-based side-channel attack.

Results. We evaluate the covert channel both in a lab environ-

ment as well as in
::
and

:
a public cloud. In the lab environment, we

used 2 virtual machines
::::
VMs running inside QEMU KVM on an

i7-8650U. For the cloud scenario
2

, we used 2 co-located virtual ma-

chines running CentOS 7.6.1810 with a Linux kernel version of

3.10.0-957 on a Xeon E5-2670 CPU.

Both on the cloud, as well as on our lab machine, we achieved

an error-free transmission. On our lab machine, we observed trans-

mission rates of up to 26.8 kbit/s
:::
with

:
Variant 1. As TSX was not

available in the cloud scenario, we achieved a transmission rate

of 1.99 kbit/s (σx̄ = 2.5 %, n = 1000) with Variant 1 and signal

handling.

Table 4
:::::
shows

:
a
:::::::::
comparison

::
to

::
the

::::::::::
transmission

::::
rates

::
of

:::::::::::
state-of-the-art

:::::::
cross-VM

:::::
covert

:::::::
channels.

:

6.4 Browsing-Behavior Monitoring
ZombieLoad is also well suited for detecting specific byte sequences

within loaded data.We demonstrate an attack for which we leverage

ZombieLoad to fingerprint a web browser session. For this attack,

2

The cloud provider asked us not to disclose its name at this point.

:::::
Covert

:::::::
channel

:::::
Speed

::::
Error

::::
rate

::::
Pessl et al.

:::
[60] 411 kbit/s 4.11 %

::
Liu

:
et al.

:::
[48] 600 kbit/s 1 %

::::::
Maurice et al.

::::
[53] 362 kbit/s 0 %

::::::::::
ZombieLoad

:::
(this)

:
26.8 kbit/s 0 %

::::::
Maurice et al.

::::
[52] 751.2 bit/s 5.7 %

:::
Wu et al.

:::
[80] 746.8 bit/s 0.09 %

::
Xu

:
et al.

:::
[81] 215 bit/s 5.12 %

::::::
Schwarz

:
et al.

:::
[65] 11 bit/s 0 %

::::::::
Ristenpart et al.

:::
[61] 0.2 bit/s

:
-

Table 4:
:::::::::::
Transmission

:::::
rates

:::
of

::::::::::::::
state-of-the-art

::::::::
cross-VM

:::::
covert

::::::::
channels

:::::::
ordered

::
by

::::
their

:::::::::::
transmission

::::::
speed.

we assume an unprivileged attacker running on one logical core and

a web browser running on the sibling logical core. In this scenario,

it is irrelevant whether the attacker and victim run on a native

machine or whether they are in (different) virtual machines.

We present two different attacks, a keyword detection attack

which can fingerprint website content, and an URL recovery attack

to monitor a victim’s browsing behavior.

Keyword Detection. The keyword detection allows an attacker

to gain information on the type of content the victim is consum-

ing. For this attack, we constantly sample data using ZombieLoad

and match leaked values against a list of pre-defined keywords

:::::::
keywords

::::::
defined

::
by

:::
the

:::::::
attacker.

We leverage the fact that we have access to a full cache line

and can do arbitrary computations in the transient domain (cf. Sec-

tion 6.3). As a resultof the computation, we only have to externalize

a small integer indicating which keyword has matched via a cache

side channel.

One limitation is the length of the keyword list, as in the transient

domain, only a limited number of memory accesses are possible

before the transient execution aborts. The most reliable solution is

to store the keyword list entirely in CPU registers. Hence, the length

of the keyword list is limited by the available registers. Moreover,

the length is also limited by the amount of code that is transiently

executed to compare leaked values to the keyword list.

URL Recovery. In the second attack, we recover accessed web-

sites from browser sessions without prior selection of interesting

keywords. We take a more indirect approach that relies on modern

websites performing many individual HTTP requests to the same

domain, e.g., to load additional resources such as scripts and images.

In the transient domain, we again sample data using ZombieLoad.

While still in the transient domain, we detect the substring “www.”
inside the leaked data. When we discover a match, we leak the

character following “www.” to the architectural domain using a

cache side channel. This already results in a set of first characters

of domain names which we refer to as the candidate set.

In the next iteration, for every domain in the candidate set, we

take the last four leaked characters (e.g., “ww.X”). We use this string

in the transient domain to filter leaked values, similar to the “www.”
substring in the first iteration. If a match is found, we leak the next

character. We can repeat these steps until we see a string ending ,

:::
until

:::
the

:::::
string

::::
ends with a top-level domain.

Note that this attack is not limited to URLs. Potentially all data

which follows a predictable pattern, such as session cookies or

credit-card numbers, can be leaked with this variant.

Results. We evaluated both attacks running an unmodified Fire-

fox browser version 66.0.2 on the same physical core as the attacker.

::
For

::::
both

:::::::
attacks,

::
we

::::
used

:
ZombieLoad Variant 2

:
. Our proof-of-

concept implementation of the keyword-checking attack can check

four up to 8-byte long keywords. Due to excessive precomputa-

tions of browsers when entering an URL, a keyword is sometimes

already matched during the autocompletion of the URL. For highly

dynamic websites, such as nytimes.com, keywords reliably match

on the first access of the website. Accessing mostly static websites,

such as gnupg.org, have a 60 % probability of matching a keyword

in this setup. We observed false positives after the first website

Table 5: Number of accesses required to recover a website
name. The experiment was repeated 100 times per website.

Website Minimal Average Maximum
nytimes.com 1 1 3

facebook.com 1 2 4

kernel.org 2 6 13

gnupg.org 2 10 34

1 if (x < array_len) {
2 y = array[x];
3 }

Listing 1: A simple prefetch gadget relying on Spectre-
PHT [44] . By mistraining the branch, this

:::::::
prefetch

:
gad-

getloads an arbitrary out-of-bounds value for targeted
leakage.

access when continuing to use the browser. We hypothesize that

memory locations containing the keywords get re-used and may

thus leak at a later time again.

For the URL recovery attack, we simulated user behavior by

accessing popular websites and refreshing them in a defined time

interval. We counted the number of refreshes necessary until we

recovered the entire URLincluding top level
:
,
:::::::
including

:::::::
top-level

domain. For each website, the experiment was repeated 100 times.

The actual number of refreshes needed depends on the nature

of the website that is visited. If it is a highly dynamic page, such as

facebook.com or nytimes.com, a small number of reloads is sufficient

to recover the entire name. For static pages, such as gnupg.org or

kernel.org, the number of reloads necessary increases by
:::::::
necessary

:::::
reloads

:::::::
increase

::
by

:::::::::::
approximately a factor of 10, approximately.

:::
10.

See Table 5 for a detailed overview of required reloads.

6.5 Targeted Data Leakage
Inherently, ZombieLoad is a 1-dimensional side channel, i.e., the
leakage is only controlled by the time. Hence, leakage cannot

be steered using specific addresses as is the case, e.g., for Melt-

down [47]. While this data sampling is still sufficient for several

real-world attacks, it is still a limiting factor for general attacks.

In this section, we show how ZombieLoad can be combined with

prefetch gadgets [8] for targeted data leakage.

Speculative Data Leakage. Listing 1 illustrates such a gadget.

It
:
,
:::::
which is a common pattern in software for accessing an element

of an array
::::
array

::::::
element [8]. First, the code checks whether the

index lies within the bounds of the array. Only if this is the case,

the element is accessed, i.e., loaded. While it is evident that for

a user-controlled index the corresponding array element can be

loaded, such a gadget is even more powerful.

On a CPU vulnerable to Spectre, an attacker can mistrain the

branch predictor, e.g., by providing several valid values for the array

index. Then, by providing an out-of-bounds index, the branch is

misspeculated and speculatively accesses an out-of-bounds value.

Alternatively, the attacker can alternate between valid and out-of-

bounds indices randomly to achieve a high percentage of mispre-

dictions without any prior branch predictor mistraining.

ZombieLoad cannot only leak architecturally accessed data but

also speculatively accessed data. Hence, ZombieLoad can even see

the value of loads which are never architecturally visible. Such loads

include, among others, speculative memory loads and prefetches.

Thus, any Spectre gadget which is not hardened, e.g., using a

memory fence [3, 4, 8, 31] or a mask [8, 9], can be used to specify

data to leak
:::
leak

::::
data.

Moreover, ZombieLoad does not require classic Spectre gadgets

containing an indirect array access [44]. A simple out-of-bounds

access (cf. Listing 1) is sufficient. While such gadgets have been

demonstrated for breaking KASLR [66], they were considered as

relatively harmless as they do not leak data [8]. Hence, most ap-

proaches for finding gadgets do not consider such gadgets [25, 77].

In the Linux kernel, however, such gadgets are also patched if

they are discovered, mainly as they can be used together with

the Foreshadow vulnerability
:::::::::
Foreshadow to leak arbitrary kernel

memory [11, 70]. So far, 172 such gadgets have been
:::
were

:
fixed in

kernel 5.0 [8]. With ZombieLoad, we show that such gadgets are

indeed powerful and have to be patched as well
:::::
require

:::::::
patching.

:

:
A
::::
huge

::::::::
advantage

::
of ZombieLoad

:::
over

::::::::
Meltdown

::
is

:::
that

:
it
:::::::::
circumvents

::::
KPTI.

:::
The

:::::::
targeted

:::
data

::
is

:::::::::
legitimately

::::::
accessed

::
in

:::
the

:::::
kernel

::::
space

::
by

:::
the

::::::
prefetch

::::::
gadget.

:::::
Thus,

::
in

:::::::
contrast

::
to

::::::::
Meltdown,

:::::::
stronger

:::::
kernel

::::::
isolation

::::
[?]

:::
does

:::
not

::::
have

:::
any

:::::
effect

::
on

:::
the

:::::
attack.

Potential Incompleteness of Countermeasures. Mainly, there

are 2 methods to prevent exploitation of Spectre-PHT: memory

fences after branches [3, 4, 8, 31], or constraining the index to a

valid range using a bitmask [8, 9]. The variant using fences is im-

plemented in the Microsoft compiler [43, 44], whereas the variant

using bitmasks is implemented in GCC [50] and LLVM [9], and also

used in the Linux kernel [50].

Both methods prevent exploitation of Spectre-PHT [8], as the

misspeculation cannot load any data. Hence, this is
:
,
::::::
making

:
it also

effective against ZombieLoad, as fixed gadgets cannot be exploited

to load arbitrary values. .
:

However, even with these countermeasures in place, there is

a remaining leakage which can be exploited using ZombieLoad.

When architecturally loading an in-bounds value, ZombieLoad can

leak up to 64 bytes of the load. Hence, with ZombieLoad, there is a

potential leakage of up to 63 bytes which are out of bounds if the

last in-bounds value is at the beginning of a cache line or the base

of the array is at the end of a cache line.

Data Leakage. To demonstrate the feasibility of prefetch gad-

gets for targeted data leakage, we leverage
::
use

:
an artificial prefetch

gadget as given in Listing 1. For our evaluation, we used such a

gadget in the system-call path of the Linux kernel 5.0.7. We execute

ZombieLoad Variant 1 on one logical core and on the other
:
, we

execute system calls that switch
:::::::
switching between out-of-bounds

and in-bounds array indices to achieve a high frequency of mispre-

dictions in the gadget.

This approach yields leaked values with a large noise compo-

nent from unrelated loads. We repeat this setup without trying to

generate mispredictions to generate a baseline of noise values. We

generate frequency distributions for both runs and subtract the

noise frequency from the misprediction run. We then choose the

byte value that was seen most frequently.

With this crude statistical method, we can
:::::::
leverage

::
We

:
recover

kernel memory at one byte per 10 s with 38 % accuracy. Probing

bytes for 20 s improves the accuracy to 46 %.

As with Meltdown [47], common byte values such as 0x00 and
0xFF occur too often and have to be removed from the leaked data

for the recovery to work. Our approach is thus blind to these values.

The speed and accuracy can be improved if there is a priori

knowledge of the target data. For example, a 7-bit ASCII string can

be leaked with a probing time of 10 s per byte with 72 % accuracy.

7 COUNTERMEASURES
As ZombieLoad leaks loaded

:::
and

:::::
stored values across logical cores,

a straight-forward mitigation is disabling the use of hyperthread-

ing. Hyperthreading improves performance for certain workloads

by 30 % to 40 % [7, 54], and as such disabling it may incur an

unacceptable
:
a
::::::::
significant performance impact.

Co-Scheduling. Depending on the workload, a more efficient

mitigation is the use of co-scheduling [57]. Co-scheduling can be

configured to prevent the execution of code from different pro-

tection domains on a hyperthread pair. Current topology-aware

co-scheduling algorithms [68] are not concerned with preventing

kernel code from running concurrently with user-space code. With

such a scheduling strategy, leaks between user processes can be pre-

vented but leaks between kernel and user space cannot. To prevent

leakage between kernel and user space, the kernel must addition-

ally ensure that kernel entries on one logical core force the sibling

logical core into the kernel as well
::::
[34]. This discussion applies in

an analogous way to hypervisors and virtual machines.

Flushing Buffers. We have demonstrated that
::
As ZombieLoad

also works across protection boundaries on a single logical core.

Hence, disabling hyperthreading or co-scheduling are not fully ef-

fective as mitigation. We have not found an instruction sequence

that reliably prevents leakage across protection boundaries. Even

flushing the entire
::::::
Flushing

:::
the L1 data cache (using MSR_IA32_FLUSH_CMD)

and issuing as many dummy loads as there are fill-buffer entries

(“load stuffing”) is not sufficient. There is still remaining leakage

, which we assume is caused by the replacement policy of the

line-fill buffer
::::
Intel

:::::::
provided

:
a
::::::::
microcode

:::::
update

::::
[34]

::::
which

:::::
added

:
a
:::
side

::::
effect

::
to
:::
the

:::::
rarely

:::
used

::::
VERW

::::::::
instruction.

::::::::
Operating

::::::
systems

:::
have

::
to
:::::
issue

:
a
::::::
dummy

::::
VERW

::::::::
instruction

::
on

:::::
every

::::::
context

::::::
switch.

:
If
:::
the

::::::::
microcode

::::::
update

:
is
:::::::
installed,

::::
this

::::
clears

:::
the

::
fill

::::::
buffers

:::
and

::::
store

:::::
buffer.

::::::::
Otherwise,

:::
the

::::::::
instruction

:::
has

::
no

:::
side

:::::
effect.

:::::
While

::
the

::::::::
microcode

:::::
update

:::::::::
(microcode

::::
0xB4

:::
on

:::::::
i7-8650U),

::
in
::::::::::
combination

:::
with

:
a
::::::
correct

::::
usage

::
of

:::
the

::::
VERW

::::::::
instruction

::::
does

:::::
reduce

:::
the

::::::
leakage,

:
it
::::
does

::
not

::::
fully

::::::
prevent

::
it.

:::
We

::
can

::::
still

::::::
observe

:::::
leakage

::::
from

:::::
kernel

:::::
values

:::::::
accessed

::
on

:::
the

:::::
same

:::::
logical

::::
core.

::::::::
However,

:::
the

::::::
leakage

:::
rate

::::
drops

::::
from

:::::::
multiple

:::::::
kilobytes

:::
per

::::::
second

::
to

:::
less

:::
than

:
0.1 B/s

:
.

:::
Our

::::::::
hypothesis

::
is
::::
that

::
we

:::
can

::::
leak

:::
data

:::::
which

::
is
::::::
evicted

::::
from

::
L1

:
to
:::
L2

::::
after

::::::
issuing

:::
the

::::
VERW

:::::::::
instruction.

::
As

:::
the

:::::
VERW

::::::::
instruction

:::
does

:::
not

:::::
flush

::::
dirty

:::::::
L1-cache

::::
lines,

:::::
these

:::
can

::
be

:::::
easily

::::::
leaked

:
if

::
the

:::::::
attacker

:::::
partly

::::
evicts

:::
the

:::
L1.

:::::::
Evicting

::
the

:::
L1

::::
cache

:::::
forces

:::
the

::::
dirty

:::::::
L1-cache

::::
lines

::
to

::
go

::::::
through

:::
the

:::
fill

:::::
buffer

::
to

::
L2. Hence, to

fully mitigate the leakage, we require a microcode update which

provides a method to flush ZombieLoad,
:::
the

::::::::
operating

:::::
system

:::
has

:
to
::::::::::
additionally

::::
flush

:::
the

::
L1

:::::
cache.

:::
Our

::::::::::
performance

::::::::::
measurement

::::::
showed

:::
that

::::
only

:::::::
flushing

:::
the

::
L1

:::::
takes

:::
on

::::::
average

:
1070

::::
cycles

:::::::
(i7-8650U,

::::::::
n = 1000,

::::::::
σx̄ = 1.08).

::::::::
Therefore,

::
we

::::::
expect

:::
that

::::::
flushing

::
the

::
L1

:::
on

::::
every

::::::
context

:::::
switch

:::::
would

::::
have

:
a
:::::::::
considerable

::::::::::
performance

:::::
impact.

:

:
If
:::
the

::::::::
microcode

:::::
update

::
is

:::
not

:::::::
available

::
for

:
a
::::::
specific

::::
CPU,

::::
Intel

::::::
provides

::::
code

::::::::
sequences

::
to

::::::
emulate

:::
that

::::::::
behaviour

::::
[34].

:::::::
However,

::::
these

::::
code

::::::::
sequences

::
do

:::
not

::::
fully

::::
work

::
on

:::
all

:::::
CPUs.

::
For

:::::::
example,

::
on

:::
the

:::::::
i7-8650U,

::
we

:::
still

::::::
observe

::::::
leakage

:::::
which

::
we

::::::
assume

:
is
::::::
caused

::
by

:::
the

:::::::::
replacement

:::::
policy

::
of the line-fill buffer.

Selective Feature Deactivation. Weaker countermeasures tar-

get individual building blocks (cf. Section 5).
::::
Intel

::::
SGX

:::
can

::
be

::::::
disabled

::
if

::
not

:::::::
required

::
to

::::::
disable

:::
the

::
use

::
of
::::::
Variant

::
4
:
(cf. Appen-

dix B)
:::::::::::
permanently. The operating system kernel can make sure

always to set the accessed and dirty bits in page tables to impair

Variant 3.
::
To

::::::
prevent

:
Variant 2,

::::
Intel

::::
may

::::
offer

:
a
::::::::
microcode

:::::
update

:
to
::::::
disable

::::
TSX.

::::
Such

::
a
::::::::
microcode

::::::
update

::::::
already

::::
exists

:::
for

::::
older

::::::::::::::
microarchitectures

::::
with

:
a
::::
faulty

::::
TSX

::::::::::::
implementation

:::
[32]

:
.
::
On

:::
the

::::::
Amazon

::::
EC2

::::
cloud,

:::
we

:::::::
observed

:::
that

:::
all

:::
TSX

::::::::::
transactions

:::::
always

:::
fail,

:::::
which

:::::::
indicates

:::
that

::::
such

::
a
::::::::
microcode

:::::
update

:::::
might

::::::
already

::
be

:::::::
deployed

::::
there.

:
Unfortunately, Variant 1 is always possible, if the

attacker can identify an alias mapping of any accessible user page

in the kernel. This is especially true if the attacker is running in or

can create a virtual machine. Hence, we also recommend disabling

VT-x on systems that do not need to run virtual machines.

Removing Prefetch Gadgets. To prevent targeted data leakage,
prefetch gadgets need to be neutralized, e.g., using array_index_nospec
in the Linux kernel. This function clamps array indices into valid

values and prevents arbitrary virtual memory to be prefetched.

Placing these functions is currently a manual task and due to the

incomplete documentation of how Intel CPUs prefetch data, these

mitigations cannot be complete. Note that Spectre mitigations using

lfence instructions might also
:::::
might be incomplete against Zom-

bieLoad(cf. Section 6.5
:
).

Another way to prevent prefetch gadgets from reaching sensitive

data is to prevent this data from being mapped in
:::::
unmap

:::
data

::::
from

the address space of the prefetch gadget. Exclusive Page-Frame

Ownership [41] (XPFO) partially achieves this for the Linux kernel’s

mapping of physical memory.

Prefetch gadgets can also be neutralized using Speculative Load

Hardening [9] (SLH). SLHprevents speculative execution by introducing

artificial data dependencies via a compiler pass. SLH incurs a performance

overhead of to for typical applications. To the best of our knowledge,

its overhead for kernel or hypervisor code has not been studied yet.

Instruction Filtering. The above discussion mostly focusses

on attacks across process or virtual-machine boundaries. For at-

tacks inside of a single process (e.g., JavaScript sandbox), the sand-

box implementation must make sure that the requirements for

mounting ZombieLoad are not met. One example is to prevent the

generation and execution of the clflush instructions, which so far

is a crucial part of the attack.

Secret Sharing. On the software side, we can also rely on secret

sharing techniques used to protect against physical side-channel

attacks [69]. We can ensure that a secret is never directly loaded

from memory but instead only combined in registers before being

used. As a consequence, observing the data of a load does not reveal

the secret. For a successful attack, an attacker has to leak all shares

of the secret. This mitigation is, of course, incomplete if register

values are written to and subsequently loaded from memory as part

of context switching.

8 CONCLUSION
With ZombieLoad, we showed a novel Meltdown-type attack target-

ing the processor’s fill-buffer logic. ZombieLoad enables an attacker

to leak recently loaded values used
:::::
values

:::::::
recently

:::::
loaded by the

current or sibling logical CPU. We show that ZombieLoad allows

leaking across user-space processes, CPU protection rings, virtual

machines, and SGX enclaves.
::::::::::
Furthermore,

:::
we

::::
show

::::
that Zom-

bieLoad
:::
even

:::::
works

:::
on

:::::
MDS-

:::
and

:::::::::::::::
Meltdown-resistant

::::::::
processors,

i.e.,
:::
even

::
on

:::
the

:::::
newest

:::::::
Cascade

:::
Lake

::::::::::::::
microarchitecture.

:
Wedemon-

strated the immense attack potential by monitoring browser be-

haviour, extracting AES keys, establishing cross-VM covert chan-

nels or recovering SGX sealing keys. Finally, we conclude that dis-

abling hyperthreading is the only possibleworkaround to
:::::::
necessary

:
to
::::
fully

:
mitigate ZombieLoad on current processors.

ACKNOWLEDGMENTS
We thank Werner Haas (Cyberus Technology), Claudio Canella

(Graz University of Technology), JonMasters (RedHat), Alex Ionescu

(CrowdStrike), and Martin Schwarzl (Graz University of Technol-

ogy).
::
We

:::::
would

:::
like

::
to

::::
thank

:::
our

:::::::::
anonymous

::::::::
reviewers

:::
and

:::::::
especially

:::
our

:::::::
shepherd,

::::::
Yinqian

::::::
Zhang,

::
for

::::
their

::::::::
comments

:::
and

:::::::::
suggestions

:::
that

:::::
helped

:::::::::
improving

:::
the

:::::
paper. The research presented in this

paper was partially supported by the Research Fund KU Leuven.

Jo Van Bulck is supported by a grant of the Research Foundation

– Flanders (FWO).
:::::
Daniel

:::::::
Moghimi

::
is
::::::::
supported

::
by

:::
the

:::::::
National

:::::
Science

::::::::::
Foundation,

:::::
under

::::
grant

:::::::::::
CNS-1814406.

:
The project was

supported by the European Research Council (ERC) under the Eu-

ropean Union’s Horizon 2020 research and innovation programme

(grant agreement No 681402). It was also supported by the Austrian

Research Promotion Agency (FFG) via the K-project DeSSnet, which

is funded in the context of COMET – -
:
Competence Centers for

Excellent Technologies by BMVIT, BMWFW, Styria and Carinthia.

Additional funding was provided by a generous gift from Intel. Any

opinions, findings, and conclusions or recommendations expressed

in this paper are those of the authors and do not necessarily reflect

the views of the funding parties.

REFERENCES
[1] Abramson, J. M., Akkary, H., Glew, A. F., Hinton, G. J., Konigsfeld, K. G.,

Madland, P. D., Papworth, D. B., and Fetterman, M. A. Method and apparatus

for dispatching and executing a load operation to memory, 1998. US Patent

5,717,882.

[2] Allan, T., Brumley, B. B., Falkner, K., Van de Pol, J., and Yarom, Y. Amplifying

side channels through performance degradation. In ACSAC (2016).

[3] AMD. Software Techniques for Managing Speculation on AMD Processors, 2018.

Revison 7.10.18.

[4] ARM Limited. Vulnerability of Speculative Processors to Cache Timing Side-

Channel Mechanism, 2018.

[5] Bhattacharyya, A., Sandulescu, A., Neugschwandtner, M., Sorniotti, A.,

Falsafi, B., Payer, M., and Kurmus, A. SMoTherSpectre: exploiting speculative

execution through port contention. In CCS (2019).
[6] Boggs, D. D., and Rodgers, S. D. Microprocessor with novel instruction for

signaling event occurrence and for providing event handling information in

response thereto, Apr. 1997. US Patent 5,625,788.

[7] Bulpin, J. R., and Pratt, I. A. Multiprogramming performance of the Pentium 4

with Hyper-Threading. In Second AnnualWorkshop on Duplicating, Deconstruction
and Debunking (WDDD) (2004).

[8] Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg, B., Ortner,

P., Piessens, F., Evtyushkin, D., and Gruss, D. A Systematic Evaluation of

Transient Execution Attacks and Defenses. In USENIX Security Symposium (2019).

[9] Carruth, C. RFC: Speculative Load Hardening (a Spectre variant #1 mitigation),

Mar. 2018.

[10] Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., and Lai, T. H. SgxPectre Attacks:

Stealing Intel Secrets from SGX Enclaves via Speculative Execution. In EuroS&P
(2019).

[11] Corbet, J. Finding Spectre vulnerabilities with smatch, https://lwn.net/Articles/

752408/ Apr. 2018.

[12] Costan, V., and Devadas, S. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086 (2016).

[13] Evtyushkin, D., Riley, R., Abu-Ghazaleh, N. C., ECE, and Ponomarev, D.

BranchScope: A New Side-Channel Attack on Directional Branch Predictor. In

ASPLOS (2018).
[14] Fog, A. The microarchitecture of Intel, AMD and VIA CPUs: An optimization

guide for assembly programmers and compiler makers, 2016.

[15] García, C. P., and Brumley, B. B. Constant-time callees with variable-time

callers. In USENIX Security Symposium (2017).

[16] Ge, Q., Yarom, Y., Cock, D., and Heiser, G. A Survey of Microarchitectural

Timing Attacks and Countermeasures on Contemporary Hardware. Journal of
Cryptographic Engineering (2016).

[17] Glew, A. F., Akkary, H., Colwell, R. P., Hinton, G. J., Papworth, D. B., and

Fetterman, M. A. Method and apparatus for implementing a non-blocking

translation lookaside buffer, Oct. 1996. US Patent 5,564,111.

[18] Glew, A. F., Akkary, H., and Hinton, G. J. Translation lookaside buffer that is

non-blocking in response to a miss for use within a microprocessor capable of

processing speculative instructions, 1997. US Patent 5,613,083.

[19] Gras, B., Razavi, K., Bos, H., and Giuffrida, C. Translation Leak-aside Buffer:

Defeating Cache Side-channel Protections with TLB Attacks. In USENIX Security
Symposium (2018).

[20] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and Mangard, S.

KASLR is Dead: Long Live KASLR. In ESSoS (2017).
[21] Gruss, D., Maurice, C., Fogh, A., Lipp, M., and Mangard, S. Prefetch Side-

Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS (2016).
[22] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+Flush: A Fast and

Stealthy Cache Attack. In DIMVA (2016).

[23] Gruss, D., Schwarz, M., Wübbeling, M., Guggi, S., Malderle, T., More, S.,

and Lipp, M. Use-after-freemail: Generalizing the use-after-free problem and

applying it to email services. In AsiaCCS (2018).
[24] Gruss, D., Spreitzer, R., and Mangard, S. Cache Template Attacks: Automating

Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium (2015).

[25] Guarnieri, M., Köpf, B., Morales, J. F., Reineke, J., and Sánchez, A. SPECTEC-

TOR: Principled Detection of Speculative Information Flows. arXiv:1812.08639
(2018).

[26] Gueron, S. Intel Advanced Encryption Standard (Intel AES) Instructions Set –

Rev 3.01, 2012.

[27] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative
Approach, 6 ed. Morgan Kaufmann, 2017.

[28] Horn, J. speculative execution, variant 4: speculative store bypass, 2018.

[29] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3

(3A, 3B & 3C): System Programming Guide, 2016.

[30] Intel. Intel Software Guard Extensions SDK for Linux OS Developer Reference,

May 2016. Rev 1.5.

[31] Intel. Intel Analysis of Speculative Execution Side Channels, https://software.

intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-

Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf July 2018.

[32] Intel. Intel Xeon Processor E3-1200 v3 Product Family Specifica-

tion Update, https://www.intel.com/content/dam/www/public/us/en/documents/

specification-updates/xeon-e3-1200v3-spec-update.pdf Aug. 2018.

[33] Intel. L1 Terminal Fault SA-00161, https://software.intel.com/security-software-

guidance/software-guidance/l1-terminal-fault Aug. 2018.

[34] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-

pling, https://software.intel.com/security-software-guidance/insights/deep-dive-

intel-analysis-microarchitectural-data-sampling May 2019.

[35] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2019.

[36] Intel. Intel® C++ Compiler 19.0 Developer Guide and Reference, Apr. 2019.

[37] Intel. Side Channel Vulnerability MDS, https://www.intel.com/content/www/

us/en/architecture-and-technology/mds.html May 2019.

[38] Islam, S., Moghimi, A., Bruhns, I., Krebbel, M., Gulmezoglu, B., Eisenbarth,

T., and Sunar, B. SPOILER: Speculative load hazards boost rowhammer and

cache attacks. In USENIX Security Symposium (2019).

[39] Jang, Y., Lee, S., and Kim, T. Breaking Kernel Address Space Layout Randomiza-

tion with Intel TSX. In CCS (2016).
[40] Johnson, S. P., Savagaonkar, U. R., Scarlata, V. R., McKeen, F. X., and Rozas,

C. V. Technique for supporting multiple secure enclaves, June 2012. US Patent

2012/0159184 A1.

[41] Kemerlis, V. P., Polychronakis, M., and Keromytis, A. D. ret2dir: Rethinking

kernel isolation. In USENIX Security Symposium (2014).

[42] Kiriansky, V., and Waldspurger, C. Speculative Buffer Overflows: Attacks and

Defenses. arXiv:1807.03757 (2018).

[43] Kocher, P. Spectre mitigations in Microsoft’s C/C++ compiler, 2018.

[44] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg,

M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre

Attacks: Exploiting Speculative Execution. In S&P (2019).

[45] Koruyeh, E. M., Khasawneh, K., Song, C., and Abu-Ghazaleh, N. Spectre

Returns! Speculation Attacks using the Return Stack Buffer. In WOOT (2018).

[46] Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M., and

Kang, B. B. Hacking in darkness: Return-oriented programming against secure

enclaves. In USENIX Security Symposium (2017).

[47] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,

Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown:

Reading Kernel Memory from User Space. In USENIX Security Symposium (2018).

[48] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-Level Cache Side-

Channel Attacks are Practical. In S&P (2015).

[49] LWN. The current state of kernel page-table isolation, https://lwn.net/

SubscriberLink/741878/eb6c9d3913d7cb2b/ Dec. 2017.

[50] LWN. Spectre v1 defense in gcc, https://lwn.net/Articles/759423/ July 2018.

[51] Maisuradze, G., and Rossow, C. ret2spec: Speculative Execution Using Return

Stack Buffers. In CCS (2018).
[52] Maurice, C., Neumann, C., Heen, O., and Francillon, A. C5: Cross-Cores

Cache Covert Channel. In DIMVA (2015).

[53] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano,

C., Mangard, S., and Römer, K. Hello from the Other Side: SSH over Robust

Cache Covert Channels in the Cloud. In NDSS (2017).
[54] Michael Larabel. Intel Hyper Threading Performance With A Core i7 On

Ubuntu 18.04 LTS, https://www.phoronix.com/scan.php?page=article&item=

intel-ht-2018&num=4 June 2018.

[55] Minkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J., Genkin, D.,

Gruss, D., Piessens, F., Sunar, B., and Yarom, Y. Fallout: Reading Kernel Writes

From User Space. arXiv:1905.12701 (2019).
[56] Moghimi, A., Irazoqi, G., and Eisenbarth, T. Cachezoom: How sgx amplifies

the power of cache attacks. In CHES (2017).
[57] Ousterhout, J. K., et al. Scheduling techniques for concurrent systems. In

ICDCS (1982).
[58] Percival, C. Cache missing for fun and profit. In BSDCan (2005).

[59] Peri, R., Fernando, J., and Kolagotla, R. Virtualized load buffers, 2008. US

Patent 7,346,735.

[60] Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S. DRAMA:

Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Security Sym-
posium (2016).

[61] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, You, Get Off of

My Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In

CCS (2009).
[62] Schwarz, M., Canella, C., Giner, L., and Gruss, D. Store-to-Leak Forwarding:

Leaking Data on Meltdown-resistant CPUs. arXiv:1905.05725 (2019).
[63] Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., and

Mangard, S. Automated Detection, Exploitation, and Elimination of Double-

Fetch Bugs using Modern CPU Features. AsiaCCS (2018).
[64] Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C., Spreitzer, R., and

Mangard, S. KeyDrown: Eliminating Software-Based Keystroke Timing Side-

Channel Attacks. In NDSS (2018).
[65] Schwarz, M., Maurice, C., Gruss, D., and Mangard, S. Fantastic Timers and

Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript.

In FC (2017).

[66] Schwarz, M., Schwarzl, M., Lipp, M., and Gruss, D. NetSpectre: Read Arbitrary

Memory over Network. In ESORICS (2019).
[67] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., and Mangard, S. Malware

Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA (2017).

[68] Schönherr, J. H., Juurlink, B., and Richling, J. Topology-aware equipartition-

ing with coscheduling on multicore systems. In 6th International Workshop on
Multi-/Many-core Computing Systems (MuCoCoS) (2013).

[69] Shamir, A. How to share a secret. Communications of the ACM (1979).

[70] Stecklina, J. [RFC] x86/speculation: add L1 Terminal Fault / Foreshadow demo,

https://lkml.org/lkml/2019/1/21/606 Jan. 2019.

[71] Stecklina, J., and Prescher, T. LazyFP: Leaking FPU Register State using

Microarchitectural Side-Channels. arXiv:1806.07480 (2018).
[72] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,

Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. Foreshadow:

Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order

Execution. In USENIX Security Symposium (2018).

[73] Van Bulck, J., Piessens, F., and Strackx, R. SGX-Step: A practical attack

framework for precise enclave execution control. InWorkshop on System Software

https://lwn.net/Articles/752408/
https://lwn.net/Articles/752408/
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/Articles/759423/
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://lkml.org/lkml/2019/1/21/606

6 8 10 12 14

300

400

500

FB exhaust

(12 entries)

Latency increase

(10 entries)

Latency increase

(12 entries)

Non-temporal Stores

L
a
t
e
n
c
y

[
c
y
c
l
e
s
]

Haswell

Skylake

Figure 7: One pre-Skylake, we measure 10 fill-buffer entries,
matching Intel’s documentation. On Skylake and newer, we
measure 12 fill-buffer entries.

0 5 10 15

100

200

300

400

FB exhaust

(12 entries)

Latency increase

(36 entries)

Non-temporal Stores

L
a
t
e
n
c
y

[
c
y
c
l
e
s
]

one thread

two threads

Figure 6: One logical core can leverage the entire fill buffer
(12 entries). If both logical cores execute stores, the fill buffer
is competitively shared, leading to an increased latency for
both logical cores.

for Trusted Execution (2017).

[74] Van Bulck, J., Piessens, F., and Strackx, R. Nemesis: Studying Microarchitec-

tural Timing Leaks in Rudimentary CPU Interrupt Logic. In CCS (2018).
[75] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R.

Telling your secrets without page faults: Stealthy page table-based attacks on

enclaved execution. In USENIX Security Symposium (2017).

[76] van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi,

K., Bos, H., and Giuffrida, C. RIDL: Rogue in-flight data load. In S&P (2019).

[77] Wang, G., Chattopadhyay, S., Gotovchits, I., Mitra, T., and Roychoudhury,

A. oo7: Low-overhead Defense against Spectre Attacks via Binary Analysis.

arXiv:1807.05843 (2018).
[78] Weichbrodt, N., Kurmus, A., Pietzuch, P., and Kapitza, R. Asyncshock:

Exploiting synchronisation bugs in Intel SGX enclaves. In ESORICS (2016).
[79] Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F.,

Silberstein, M., Strackx, R., Wenisch, T. F., and Yarom, Y. Foreshadow-

NG: Breaking the Virtual Memory Abstraction with Transient Out-of-Order

Execution, 2018.

[80] Wu, Z., Xu, Z., and Wang, H. Whispers in the Hyper-space: High-speed Covert

Channel Attacks in the Cloud. In USENIX Security Symposium (2012).

[81] Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., and Schlichting,

R. An exploration of L2 cache covert channels in virtualized environments. In

CCSW’11 (2011).
[82] Xu, Y., Cui, W., and Peinado, M. Controlled-Channel Attacks: Deterministic

Side Channels for Untrusted Operating Systems. In S&P (May 2015).

[83] Yarom, Y., and Falkner, K. Flush+Reload: a High Resolution, Low Noise, L3

Cache Side-Channel Attack. In USENIX Security Symposium (2014).

A FILL-BUFFER SIZE
In this section, we analyze the size of the fill buffer in terms of fill-

buffer entries usable per logical core. Intel describes the fill buffer as

a “competitively-shared resource during HT operation” [29]. Hence,

with 10 fill-buffer entries (Sandy Bridge and newer microarchitec-

tures) [29], we expect that when hyperthreading is enabled, every

logical core can use up to 10 entries.

Our experimental setup measures the time it takes to execute n
stores to DRAM, forn = 1, . . . , 20. We expect that the time increases

linearly with the number of stores n as long as there are unused

fill-buffer entries. To ensure that the stores occupy the fill buffer, we

leverage non-temporal stores which bypass the cache and directly

go to DRAM. We repeated our experiments 1 000 000 times, and we

always measured the best case, i.e., the minimum latency, to get rid

of any noise.

Figure 6 shows that both logical cores can indeed leverage the

entire fill buffer. When running the experiment on one (isolated)

logical core, while the other (isolated) logical core does nothing, we

get a latency increase when executing more than 12 stores. When

we run the experiment on both logical cores in parallel, the latency

increase is still after 12 stores.

Interestingly, the documented number of fill buffers does not

match our experiments for Skylake and newer microarchitectures.

While we measure 10 entries on pre-Skylake CPUs as it is docu-

mented, we measure 12 entries on Skylake and newer (cf. Figure 7).

From our experiments we conclude that both logical cores can

leverage the entire fill buffer Therefore, every logical core can

potentially use any entry in the fill buffer
:
.

B FURTHER VARIANTS

::
As

::::::::
explained

:::::
above,

::
we

:::::::::::
hypothesized

:::
that

::::
load

::::::::
operations

:::::
which

:::::
require

:
a
::::::::
microcode

:::::
assist

::::
might

::::
first

::::::::
transiently

:::::::::
dereference

::::::::::
unauthorized

::
fill

:::::
buffer

::::::
entries.

::::
Apart

::::
from

:::
the

:
3
::::
main

:::::::
variants

:::::::
described

::
in

:
Sec-

tion 5.1
:
,
::
we

:::::::::::
experimentally

::::::
verified

:::::::
multiple

::::::::
approaches

::
to

::::::
provoke

:
a
::::::::
microcode

::::
assist

:::
on

::::::::::::::
attacker-controlled

::::
load

::::::::
operations.

:

Variant 4: SGXAbort Page Semantics.
::::::::::
SGX-enabled

::::::::
processors

:::::
trigger

:
a
::::::::
microcode

::::
assist

::::::::
whenever

::
an

::::::
address

::::::::
translation

::::::
resolves

:::
into

:::::
SGX’s “processor reservedmemory”

:::
area

:::
and

:::
the

::::
CPU

:
is
::::::
outside

::::::
enclave

::::
mode

:::
[12]

:
.
::::
Next,

:::
the

::::::::
microcode

::::
assist

:::::::
replaces

::
the

::::::
address

::::::::
translation

:::::
result

:::
with

:::
the

::::::
address

::
of

:::
the

::::
abort

::::
page

:::::
which

:::::
yields

::::
0xff

::
for

:::::
reads

:::
and

::::::
silently

:::::
ignores

::::::
writes.

::
For

::::
this

:::::
attack

::::::
variant,

:::
we

:::::
require

::
a
:::::
virtual

::::::
address

:
v

::::::
mapping

:
to
::
a
:::::::
physical

::::::
enclave

::::
page

:
p.
:::::::::
Whenever

:::::::
accessing

:
v

:::::
outside

:::
the

::::::
enclave,

::::
abort

::::
page

::::::::
semantics

::::
apply,

:::
and

::
a

::::::::
microcode

::::
assist

:::
will

::
be

::::::
invoked.

:::::
While

:::
this

::::::
ensures

::::
that

::
the

::::
load

::::::::
instruction

::::::
always

::::
reads

::::
0xff

:
at
:::
the

::::::::::
architectural

::::
level,

::
we

:::::
found

::::::
however

::::
that

::::::::::
unauthorized

::
fill

:::::
buffer

:::::
entries

:::::::
accessed

:::
by

::
the

::::::
sibling

:::::
logical

::::
core

::::
may

:::
still

::
be

::::::::
transiently

::::::::::
dereferenced

:::::
before

::::
abort

::::
page

::::::::
semantics

:::
are

::::::
applied.

::
In

::
our

::::::::::
experimental

:::::
setup,

::::
much

:::
like

:
Variant 2,

:::
we

:::::
accessv

::::
inside

:
a
:::
TSX

:::::::::
transaction

::::
and

:::::
encode

::
it
::
in

:
a
::::::::::
cache-based

:::::
covert

:::::::
channel.

::::::::::
Interestingly,

:::::::
however,

::
we

:::::
found

:::
that

::
for

::::::
Variant

:
4
::::::
instead

:
of
:::::::
flushing

::
the

::::
first

::::
cache

:::
line

::
of p

:
,
:
it
::::::
suffices

::
to

:::::
simply

:::::
access

:
it
:::::
before

:::
the

:::
TSX

:::::::::
transaction.

:::
We

::::::::
conjecture

:::
that

::::
this

:
is
:::::::
because

::::
abort

::::
page

:::::
values

::::
never

:::
end

:::
up

::
in

::
the

:::::
cache

::::::::
hierarchy.

Variant 5: Uncachable Memory.
:
A
::::::
variant

:::::::::::
closely-related

::
to

:::::
Variant

::
4
:::
and

:::::::::::::
CVE-2019-11091,

::::::
yielding

:::
the

::::
same

:::::
effect

:
is
::
to

:::
use

:
a

::::::
memory

::::
page

:::
that

::
is
::::::
marked

::
as

:::::::::
uncacheable

:::::
instead

::
of

::
an

::::::
enclave

::::
page.

::
As

:::
the

:::::
page

::::
miss

::::::
handler

:::::
issues

:
a
:::::::::
microcode

::::
assist

:::::
when

:::
page

:::::
tables

:::
are

::
in

::::::::::
uncacheable

:::::::
memory,

::
we

:::
can

::::
leak

::::
data

:::::
similar

:
to
:::
the

::::::::
described

:::
SGX

:::::::
scenario

:::::
where

:::::::
memory

:::
can

:::
also

::
be

::::::
marked

::
as

::::::::
write-back

:::
[12].

	Abstract
	1 Introduction
	2 Background
	2.1 Transient Execution Attacks
	2.2 Memory Subsystem
	2.3 Processor Extensions

	3 Attack Overview
	3.1 Overview
	3.2 Microarchitectural Root Cause
	3.3 Classification

	4 Attack Scenarios & Attacker Model
	5 Building Blocks
	5.1 Zombie Loads
	5.2 Data Leakage
	5.3 Data Sampling
	5.4 Performance Evaluation

	6 Case Study Attacks
	6.1 AES-NI Key Leakage
	6.2 SGX Sealing Key Extraction
	6.3 Cross-VM Covert Channel
	6.4 Browsing-Behavior Monitoring
	6.5 Targeted Data Leakage

	7 Countermeasures
	8 Conclusion
	Acknowledgments
	References
	A Fill-buffer Size
	B Further Variants

