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Abstract --​ Deep learning has resulted in state of the art 
performance for automated tasks in the fields of natural 
language processing, computer vision, autonomous 
driving, and many other subfields of Artificial 
Intelligence. However, if the goal is to create a system 
that is capable of learning any task, given an objective 
function, I hypothesize that it’s necessary to reconsider 
classical neural network architecture to incorporate 
certain properties of quantum mechanics, namely 
superposition and entanglement. Building on the work 
of Fisher [12], I surmise that Phosphorus-31 enables 
both of these properties to occur within neurons in the 
human brain. In light of this evidence, quantum 
information processing in the context of digital neural 
networks is an area that deserves further exploration. As 
such, I present a novel quantum neural network 
architecture, similar to the continuous variable 
archicecture by Killoran et al. [11]. It was applied to a 
transaction dataset for a fraud detection task and 
attained a considerable accuracy score. My aim is that 
this will provide a starting point for more research in 
this space, ultimately using this technology to drive 
more innovation in every Scientific discipline, from 
Pharmacology to Computer Science.  
 
Introduction  
 
A Biological Neural Networks 

Our brain's neural networks are what inspired the advent 
of digital neural networks more than 50 years ago, but I 
use the term inspired loosely here. Human neurons both 
send and receive data in analog frequencies consisting 
of combinations and even overlays of tones, chirps, and 
strobes. The symbology of these transmissions are 
unique for each person, like a fingerprint. These 

frequencies can ride each other over a synapse and 
dendrite, so that one message might reach a target, 
while another is shunted to another area. 

 

     Figure 1 - Different neuronal cell types in the brain 

These behaviors constantly change as the city of activity 
inside the neuron are all making their own decisions 
about how to process these signals.  

B Digital Neural Networks 

Digital neural networks however, have no corollary for 
this kind of signal processing complexity. One of the 
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simplest types of neural networks, the perceptron [4], 
receives two floating point numbers, performs a 
multiplication operations between the two then adds a 
bias value, and if the result passed through an activation 
function trips the minimum value, it sends it along 
either a boolean or a numerical output 

 

      Figure 1.1 - The classical perceptron network 

Despite this huge difference between the neuron in 
biology and the neuron in silicon, neural networks are 
still capable of performing incredibly challenging tasks 
like image captioning, essay writing, and vehicle 
driving. Despite this, they are still limited in their 
capability. For example, they can’t yet perform causal 
reasoning, meaning making connections between 
disparate concepts, Recent progress in Transformer 
networks trained on text data have shown it’s possible 
to generate a compelling essay, but it still has not been 
shown that the network understands what the concepts 
it’s writing about are or how they’re related. It’s 
repeatedly making likely next word predictions using a 
probability model. Self driving cars use neural networks 
for computer vision, but are still vulnerable to 
adversarial attacks which can sometimes make them 
misclassify an image if a single pixel is replaced. In 
order to improve these efficiencies, it’s widely 
acknowledged that we’ll need better algorithms and 
more computational power. I hypothesize that quantum 
hardware and software can help us do both. They can 
allow us to solve problems of enormous time 
complexity in a feasible time span. If we can simulate 
our universe on a machine, chemical, physical, and 

biological interactions, we can build a simulated lab in 
the cloud that scales, ushering in a new era of Scientific 
research for anyone to make discoveries using just their 
computer. More specifically, if we incorporate quantum 
computing into machine learning to get higher accuracy 
scores, that’ll enable innovation in the private sector to 
create more efficient services for every industry, from 
agriculture to finance.  

The Limits of Classical Computation 
 
Although the limits of the classical computing theory 
theory have been well known since its beginnings, 
computers can do so much nowadays that it is easy to 
forget that they have been invented for what they could 
not do. Alan Turing defined the notion of a universal 
digital computer (a Turing machine) in his 1937 paper, 
"On computable numbers, with an application to the 
decision problem," and his goal was to show that there 
were tasks that even the most powerful computer 
machine could not perform (for example, the stop 
problem). According to the now-famous Church-Turing 
thesis, these issues are merely beyond traditional 
computing. Kurt Gödel acquired a comparable outcome 
around the same time. In 1931, through an ingenious 
device known as Gödel numbering, Gödel discovered a 
way to assign natural numbers to arithmetic statements 
themselves in a distinctive manner,effectively turning 
numbers into talking about numbers. This allowed him 
to demonstrate a theorem of incompleteness that 
basically says there are real statements of mathematics 
(theorems) that we can never officially understand are 
true. It is interesting that while both Turing and Gödel 
have shown that the entire body of human knowledge 
can not be obtained by formal computation alone, 
considering the intrinsic limitations of the method,  they 
seem to give distinct reasons for how the human mind 
could accomplish the feat. Comparing a Turing machine 
to a human mind is unfair, according to Turing–the 
former runs algorithmically and never makes mistakes, 
and the latter does "trial-and-error" and always makes a 
wild guess. "If a machine is to be unfailing, it can't be 
smart as well." And only if it makes no pretense of 
infallibility can a device become smart and human-like. 
On the other hand, Gödel, on the consistency of human 
knowledge, did not want to give up. He suggested that 
"it remains possible for a theorem-proving machine to 
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exist (and even be empirically discovered) that is in fact 
equivalent to mathematical intuition, but can not be 
proven to be so, nor can it be demonstrated to produce 
only right theorems of the theory of finite numbers." 

 
Figure 2 - An example problem complexity space 
 
At the end of his now famous 1960 article entitled "The 
unreasonable efficacy of mathematics in the natural 
sciences," Eugene Wigner wondered "if one day we 
could establish a[ mathematical] theory of 
consciousness or biology phenomena that would be as 
coherent and convincing as our present theories of the 
inanimate world." Apparently, half a century later, the 
hope of Wigner was not fulfilled. The list of human 
"cognitive biases" gets longer and longer as we discover 
more of them. In all these cases, of course, irrationality 
is described as human deviation from a Turing-like 
computational representation of the issue to be solved, 
and decades of psychological studies seem to 
demonstrate without doubt that such deviation is 
systematic and abundant. The discrepancy shown in 
Figure 2 suggests an explanation: we may have used 
mathematics that is not strong enough to capture all of 
human cognition's exciting complexity. Efforts have 
been made to extend the classical computing theory–its 
history is nearly as long as the classical computing 
theory itself. Various computation models, often called 
hypercomputation or super-Turing computation, have 
been suggested that can calculate functions that are not 
effectively computable in the Church-Turing sense of 
the thesis. The BlumShub-Smale (BSS) machine [14], 
also called a real computer, is an example of a 
remarkable hyper-computational model. 
 
 A classical computer, as we understand, relies on 
discrete symbols (e.g., 0s and 1s) for encoding data and 

presupposes that all the fundamental sets are countable 
(one-to -one correspondence to natural numbers N). 
Real numbers (R, a continuum) can be handled by a real 
computer and can therefore answer uncountable subset 
questions (e.g., "is the Mandelbrot set decisive?"). 
While it has been shown that real computation can be 
applied straight to numerical analysis and scientific 
computing issues, it is not evident whether it 
substantially decreases the discrepancy shown in Figure 
2. I claim that the expansion from N to R, however 
important it may seem, remains insufficient to deal with 
some of the cognitive science's toughest issues 
(X-problems). 
 
“​X-problems” of Human Cognition 
 
As I will later attempt to define a technique to more 
accurately simulate human cognition programmatically, 
it’s helpful to distinguish two classes of cognitive 
science issues[12]. One class can be called Z-problems 
(for puZZle), referring to those empirical results that are 
puzzling but in classical computational terms somewhat 
explainable. Examples of the Z-problem include the 
difference between short-term memory and long-term 
memory, the idea of working memory ability, skill 
development through the formation and tuning of 
when-then manufacturing laws, and attention through 
bottom-up and top-down control. 
 
Another class of issues can be called X-problems (for 
paradoXes), referring to those empirical results that are 
so magical and mysterious that they seem to defy 
classical descriptions of mathematics. Examples of this 
category include consciousness and awareness, 
intuition, sensation, visual perception gestalt 
phenomena, and, to name but a few, multiple so-called 
"cognitive biases" in human judgement and decision 
making. It seems insufficient to discredit them as 
ephemeral and indignant, or merely to label them as 
"human biases and heuristics," or to suggest ad-hoc 
patched explanations. These phenomena are human 
brain and body functions resulting from millions of 
years of evolution and adaptation. It is reasonable to say 
that cognitive science has so far been brief in offering 
solutions to X-problems with more strict and more 
systematic responses. In order to offer solutions to 
Z-problems, I surmise that it’s necessary to explore the 
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possibilities that quantum mechanics play in giving rise 
to human cognition. 
 
Quantum Mechanics in the Brain 

Tegmark’s theory on the importance of quantum 
decoherence in brain processes was insightful towards 
this end[14]. In it, he demonstrated how Quantum 
mechanics processes only continue to show their effects 
when the relevant information doesn’t leak into the 
environment, also called decoherence. His argument 
was that decoherence timescales take place over a time 
of the order 10^-13  to 10^-20 seconds. But the 
timescales over which neurons fire is different, it’s .001 
to .1 seconds, meaning it must be a classical computer. 
However, Fisher more recently wrote that that there's a 
loophole in that argument [12]. Yes, quantum 
computation would indeed require isolation from the 
thermal bath of the human brain, but that’s what nuclear 
spins can help with. Because it is a charged particle in 
motion i.e spinning, an atomic nucleus creates a 
magnetic field. The "north pole" of this spin-generated 
magnetic field points towards a certain direction in 
space. The nuclear spin state is the orientation of the 
spin-generated magnetic field relative to an external 
magnetic field. He proposed that there must be a 
common biological element with a very isolated nuclear 
spin inside of a neuron that can serve as a kind of 
“neural qubit”. He calculated that it would have to be an 
atom with a nuclear spin of 1/2 to be able to maintain 
quantum coherence. 

       

 Figure 3 - Quantum Coherence in the  P-31 isotope 

He found that there is only one that does so, 
Phosphorous, specifically it’s only stable isotope, 
Phosphorus-31. P-31 is likely the only possible neural 
qubit, which when entangled with others like can 
maintain quantum coherence for up to 106 seconds[12]. 
There’s much more research to be done here, but given 
this evidence, we must examine how computation in the 
brain would work in a quantum framework. 

The Quantum Coin Toss 
 
In classical theory, tossing a coin that could land on 
head (H) or tail (T) is modeled by a bit.. There are two 
points (on R), 0 (for H) and 1 (for T) in the entire phase 
space. A state with binary decisions, H and T, each with 
a 1⁄2 likelihood, can be represented by tossing a fair 
coin. Formally, 
 

           S = ½ H + ½ T  
 
In quantum theory, a coin tossing can be depicted by a 
Qubit (a quantum bit) living in a complicated 
2-dimensional Hilbert space. Every point on the sphere 
of the Bloch is a possible Qubit state. A Qubit is 
comparable to a classic bit in that it turns out to be 0 or 
1. However, approximately speaking, a Qbit includes 
much more data (quantum) than a classic bit–each point 
(there are endless numbers) on the Bloch sphere's 
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equator unit circle reflects a feasible state of fair coin 
throwing. Thus, the following two states (among 
infinitely others) can equally well represent throwing a 
fair coin.  
 

             
 
These representations are called wavefunctions, and 
these coefficients are complex numbers whose squared 
modulus represents a corresponding likelihood.  
 

          
  Figure 4 - Bloch Sphere representation of a Qubit 
 
You may wonder how these extra degrees of freedom 
are being used. They appear to depict phase 
information, which is intended to live in a different 
dimension. Traditionally, the resulting states are 
explained roughly by the phrase "the coin is 
simultaneously in a superposition of heads and tails." 
For non-quantum physicists, this kind of description 
creates a lot of confusion. It seems that our natural 
language lacks the required expressive authority to even 
describe, let alone differentiate, these closely confused 
states. The issue is, can our brain do that? What about 
our mind (conscious or unconscious)? And what, if any, 
is the phase's feasible psychological significance? Any 
fair-minded psychologist would probably reject this 
nonsense quickly: "Why do I need an infinite number of 
possible states to represent a simple half-and-a-half-coin 
tossing that I don't even know how to tell them apart?"  
 
This is a reasonable question, of course, and here are 
some counterarguments. First of all, the brain has so 
many neurons, and we don't understand how each 
operates and what it really represents, depending on our 
present understanding of neuroscience. Certainly, the 
data of the stage may be represented by neurons or 
neuron groups somehow. Second, unlike experimental 
quantum physicists who design advanced and costly 

devices that enable them to perform multiple accurate 
and fine-grained measurements of quantum particles in 
their laboratories, psychologists are far less able to 
assess neuronal or mental states. Tools in their arsenal, 
including introspection, verbal reporting, reaction time, 
or even neuroimaging (fMRI or EEG), often result in 
rough, gross, imprecise, and indirect action. Thus, this 
type of framing of cognition can be beneficial for all 
looking to explore the nature of cognition, including 
those looking to replicate it’s computational ability. If 
the brain does use quantum mechanics for cognition, 
then replicating that ability could improve the accuracy 
of different types of neural network architectures, we’ll 
explore that in the next section.  
 
Quantum Deep Learning 
 
A. Classical Deep Learning 
 
The basic building for deep learning is the neural 
feedforward network (also known as the multilayer 
perceptron)[2]. a multilayer framework where each 
layer is a linear transformation preceded by a nonlinear' 
activation' feature. Mathematically, a single layer 
performs the transformation for an input vector  

     
Where ​W​ is a matrix, ​b​ is a vector, and ​φ​ is a nonlinear 
function. The objects ​W​ and​ b​, respectively referred to 
as the weight matrix and the bias vector, have their own 
parameters that are learned. The activation function ϕ 
typically does not contain any free parameters and acts 
on its inputs element-wise. 
 
The' deep' in deep learning emerges from stacking 
together various layers of this sort, so that one layer's 
output is used as an input for the next. Overall, each 
layer  will have its own autonomous parameters of 
weight and bias. A ​N​-layer neural network model is 
used to summarize all model parameters by the 
specified parameter. 
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Building machine learning models with multilayer 
neural networks is well motivated due to different 
theorems of universality. These theorems ensure that 
feedforward neural networks can approximate to an 
arbitrary degree of precision any continuous function on 
a closed and bounded subset of real numbers given 
sufficiently free parameters. While the original 
theorems showed that two layers were sufficient for the 
approximation of universal function, deeper networks 
with the same number of parameters can be more 
powerful and efficient than shallower networks. 
 
The theorems of universality[9] demonstrate the neural 
network model's authority to approximate features, but 
those theorems do not say anything about how this 
approximation can be found. The feature to be equipped 
is typically not clearly recognized, but its input-output 
relationship is to be inferred from the information. How 
can we tailor the parameters of the network to fit the 
information? The widely used workhorse for this is the 
stochastic gradient descent algorithm, which suits 
information with a neural network model by estimating 
derivatives of the parameters of the model–the weights 
and biases–and by using gradient descent to minimize 
some appropriate objective feature. Neural networks 
trained through stochastic gradient descent, combined 
with a sufficiently big dataset, have shown notable 
efficiency for a multitude of assignments across many 
application fields. 
 
B Continuous Variable Quantum Computing 
 
The classical bit's quantum analog is the qubit. 
A multi-qubit system's quantum states are standardized 
vectors in a complex Hilbert space. Over the years, 
several attempts have been produced to encode neural 
networks and neural-network-like structures into qubit 
systems, with different degrees of success. Two 
strategies can be distinguished. There are approaches 
that encode inputs into a multi qubit state's amplitude 
vector and then interpret unitary transformations as 
layers of neural networks. These models involve 
indirect methods to introduce the vital nonlinearity of 
the activation function[10], often leading to the 
algorithm's undeniable likelihood of failure. 
Other methods encode each input bit into a distinct 
qubit but have an overhead that stems from the need to 

binarize the ongoing values. In addition, the typical 
neural network design of multiplication of matrices and 
nonlinear activations becomes cumbersome to translate 
into a quantum algorithm, and the benefits of doing so 
are not always evident. Because of these limitations, 
qubit architectures may not be the most flexible 
quantum frameworks for encoding neural networks with 
constant real-evaluated inputs and outputs. 
 
Fortunately, qubits are not the only accessible medium 
for processing quantum information. An alternative 
architecture of quantum computing, the continuous 
variable (CV) model[5], fits much better with the 
ongoing image of neural networks underlying 
computation. CV formalism has a lengthy history and 
can be realized physically using optical devices, 
microwave, and ion traps. In the CV model, data is 
transmitted in quantum states of bosonic modes, often 
called qumodes, which form a quantum circuit's ‘wires’.  
 
Continuous-variable quantum data can be encoded 
using the representation of the wavefunction and the 
formulation of quantum mechanics in phase space. In 
the former, I specify a single continuous variable, say ​x​, 
and represent the qumode state by means of a 
complex-evaluated function of this variable called the 
wavefunction​ ψ(x)​. In concrete terms, we can interpret​ x 
as a coordinate of position, and ​ψ(x)​^2   as the density 
of probability of a particle at ​x​. I can also use a 
wavefunction based on a conjugate momentum variable, 
π(p), from basic quantum theory. Instead of position and 
momentum, ​x​ and ​p ​can be pictured equally as the real 
and imaginary parts, such as light, of a quantum field. 
 
I treat the conjugate variables ​x​ and​ p​ on an equal 
footing in the phase space picture, giving a connection 
to the classical Hamiltonian mechanics. The state of a 
single qumode is thus encoded with two real-value 
variables (x, p). Qumode states are depicted in the phase 
space called ​quasiprobability distributions​ as 
real-valued features ​F(​x, p​)​. Quasi relates to the reality 
that with classical probability distributions, these 
features share some, but not all, characteristics. In 
particular, the features of quasiprobability can be 
negative. 
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While standardization forces qubit systems to have a 
unitary geometry, standardization gives the CV image a 
much looser constraint, namely that the ​F(​x, p​)​ function 
has an integral unit over phase space. Qumode states 
also have a representation as vectors or density matrices 
in infinite Hilbert space. These basic states depict the 
particle-like nature of qumode structures[5], with the 
amount of electrons being denoted by ​n​. This is similar 
to how it is possible to expand square-integrable 
features using a countable basis set like sines or cosines. 
Equivalent projections are given by the phase space and 
Hilbert space formulations. Thus, from both a wave-like 
and particle-like viewpoint, CV quantum systems can 
be studied. We're going to focus primarily on the 
former. 
 
In the CV model, there's a key difference between 
Gaussian quantum doors and non-Gaussian ones. The 
Gaussian gates are the "easy" operations for a quantum 
computer with a CV in many ways. The easiest 
Gaussian single-mode doors are ​rotation​, ​displacement​, 
and ​squeezing​. The fundamental Gaussian two-mode 
door is the (phaseless) beamsplitter (which can be 
understood as a two-qumod rotation). More explicitly, 
the following phase space transformations are produced 
by these Gaussian doors: 

 
Notice that most of these Gaussian operations have 
names suggestive of a linear character. Indeed, there is a 
natural correspondence between Gaussian operations 
and affine transformations on phase space. For a system 
of N modes, the most general Gaussian transformation 
has the effect  
 

 

This native affine structure will be the key for building 
quantum neural networks. 

 
is the ​2N × 2N​ symplectic form. A generic symplectic 
matrix​ M​ can be split into a type of singular-value 
decomposition – known as the Euler or Bloch-Messiah 
decomposition – of the form  

 
A matrix ​K​ with these two properties must have the 
form  

 
With  

 
I will also need later the fact that if C is an arbitrary 
orthogonal matrix, then C ⊕ C is both orthogonal and 
symplectic. Importantly, the intersection of the 
symplectic and orthogonal groups on 2N dimensions is 
isomorphic to the unitary group on N dimensions. This 
isomorphism allows us to perform the transformations 
via the unitary action of passive linear optical 
interferometers. Every Gaussian transformation on N 
modes (Eq. (7)) can be decomposed into a CV circuit 
containing only the basic gates mentioned above. 
Looking back to Eqs. (3)- (6), I can recognize that 
interferometers made up of ​R ​and ​BS​ gates are sufficient 
to generate the orthogonal transformations, while S 
gates are sufficient to give the scaling transformation ​Σ 
⊕ Σ −1​ . Finally, displacement gates complete the full 
affine transformation.  
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D Network Architecture 
 
In this section, I present a scheme for quantum neural 
networks using this CV framework. It is inspired from 
two sides. The main idea is the following: the fully 
connected neural network architecture provides a 
powerful and intuitive approach for designing 
variational circuits in the CV model. I will introduce the 
most general form of the quantum neural network, 
which is the analogue of a classical fully connected 
network. In Table I, I give a high-level matching 
between neural network concepts and their CV 
analogues. 

 
A general CV quantum neural network is built up as a 
sequence of layers, with each layer containing every 
gate from the universal gate set. Specifically, a layer L 
consists of the successive gate sequence shown in Fig. 
1: 

 

The collective gate variables​ (θ, φ, r, α,λ)​ form the free 
parameters of the network, where ​λ​ can be optionally 
kept fixed. 
 
The sequence of Gaussian transformations shown above 
is sufficient to parameterize every possible unitary 
affine transformation on N qumodes. This sequence 
thus has the role of a ‘fully connected’ matrix 
transformation. Interestingly, adding a nonlinearity uses 
the same component that adds universality: a 
non-Gaussian gate Φ. Using ​z = (​x, p​)​, I can write the 
combined transformation in a form reminiscent of Eq. 
(1), namely 

 
Thanks to the CV encoding, I get a nonlinear functional 
transformation while still keeping the quantum circuit 
unitary. Similar to the classical setup, I can stack 
multiple layers of this type end-to-end to form a deeper 
network. The quantum state output from one layer is 
used as the input for the next. Different layers can be 
made to have different widths by adding or removing 
qumodes between layers. Removal can be accomplished 
by measuring or tracing out the extra qumodes. This 
architecture can also accept classical inputs. I can do 
this by fixing some of the gate arguments to be set by 
classical data rather than free parameters. This scheme 
can be thought of as an embedding of classical data into 
a quantum feature space [10]. The output of the network 
can be obtained by performing measurements and/or 
computing expectation values. The choice of 
measurement operators is flexible; different choices 
(homodyne, heterodyne, photon-counting, etc.) may be 
better suited for different situations. 
 
Experiment & Results 
 
I tested the continuous variable quantum model by 
selecting a threshold probability necessary to classify 
transactions as real or fake from a Kaggle dataset using 
the “Strawberry Fields” quantum simulation framework 
in Python.  A receiver operating characteristic (ROC) 
curve can be built by varying the classification 
threshold, where each point in the curve is 
parameterized by a threshold value. An optimal 
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classifier has a true negative rate of 1 and a false 
negative rate of 0. My classifier has a region below the 
0.953 ROC curve compared to the ideal 1. It is 
imperative to minimize the false negative rate to detect 
fraudulent credit card transactions. i.e. the rate of 
misclassification of a fraudulent transaction as genuine. 
In contrast, minimizing the false favorable rate is less 
essential–these are the instances where real transactions 
are classified as fraudulent. Typically, such instances 
can be resolved by sending cardholders verification 
emails. 
 
The findings here demonstrate a classical-quantum 
neural hybrid proof-of-principle network capable of 
performing classification for a real practical interest 
issue. While it is simple to build a classical neural 
network to outperform this hybrid model, owing to the 
need to simulate the quantum network on a classical 
computer, this network is limited in width and depth. 
Exploring the efficiency of hybrid networks in 
combination with a physical quantum computer are the 
next steps in the research pipeline. 
 
Conclusion 
 
In this paper, I posit that the intersection of quantum 
information processing and machine learning is an 
exciting, unexplored area of research that deserves 
further investigation. The cognition behind biological 
neural networks are still largely not understood for 
“X-Problems”, and there is a need for a new type of 
mathematics that address non-commutativity to help 
solve them. Based on the findings of Fisher[11], I 
support the theory that the brain uses quantum 
mechanical properties like superposition and 
entanglement for cognition, something that Turing 
computers are not capable of doing with sufficient time 
complexity. To demonstrate a proof of concept 
architecture in this vein, I provided a quantum neural 
network architecture that leverages and explores the 
continuous-variable formalism of quantum computing 
through both theoretical exposure and numerical tests. 
This system can be regarded as an analog of the latest 
neural network proposals encoded using classical 
light[31], with the extra component that this network 
leverages the electromagnetic field's quantum 
characteristics. I expect that specific neural networks 

will also be solely inspired from the quantum side in 
future applications. Exploring the role that basic ideas 
of quantum physics–such as symmetry, interference, 
enmeshment, and the principle of uncertainty–perform 
within the context of quantum neural networks would 
also interesting research directions. 
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