Bots Work Better than Human Beings: An Online System to Break Google’s Image-based reCaptcha v2

Md Imran Hossen, Yazhou Tu, Md Fazle Rabby, Md Nazmul Islam
University of Louisiana at Lafayette

Hui Cao
Xi’an Jiaotong University

Xiali Hei
University of Louisiana at Lafayette

Abstract

The image-based captcha is currently the most widely used captcha scheme to protect web services from automated attacks. Among the main image-based captchas, Google’s reCaptcha v2 is adopted by millions of websites. Its motto (principle) is to create a task that is “Easy for humans, hard for bots.” As technology advances, we want to investigate whether this main principle is well conformed to or not. Previous works show that most existing image-based captchas could be vulnerable to deep learning-based attacks. However, all of the works are offline attacks/analysis, which could not provide practical measurements of to what extent automated programs can pass these captchas. In this paper, we design and implement the first fully online system (ImageBreaker) to break Google’s most recent image-based reCaptcha v2. We leverage advanced object recognition technologies and browser automation techniques to build our system, and the system achieves the highest success rate at breaking reCaptcha v2 compared to other recent works. Notably, our online attack tests can achieve a success rate of 92.40% while taking 14.86 seconds per captcha on average; the time includes the delay we added to confuse the reCaptcha system, online image downloading time, and the log-generation time. Our offline attack tests achieve a success rate of 95.00% while taking 5.27 seconds per captcha, much higher than 79% success rate in related work. Our online and offline success rates are both higher than 92%, comparable with the success rates of six captcha-solving services with thousands of human labors. If considering time, our offline attack achieves the best performance. It shows that the implementation of reCaptcha v2 does not conform to its motto well because we find that our bot can also solve the captchas with dynamic images even better than human labors. We also point out the design flaws and present possible future direction and countermeasures to shed light on the security of captchas.

1 Introduction

CAPTCHAs or Completely Automated Public Turing Test to Tell Computers and Humans Apart are automated tests designed to tell humans and computers apart. They rely on the intuition that most humans can pass these tests, while current computer programs cannot [53]. Since captchas have the potential to distinguish human beings from bots with a high probability, web administrators are relying more and more upon captcha based services to protect critical web services from bots and automated scripts. For example, captchas are used to stop bots from creating fake accounts, posting automatically submitted votes on online pools, etc. Once such a critical security mechanism is broken, bots can gain access to services they are not allowed. For this reason, it is crucial to keep captchas secure and reliable.

The captchas have evolved over the years. Initially proven to be robust against malicious attacks, text, and audio-based captchas are now considered vulnerable to different machine learning-based attacks [13,50,56]. Researchers have proposed different techniques and alternative designs to strengthen the security of the existing captchas [8, 31, 52]. However, text, audio, and image-based captchas are still predominant and widely used. Especially, image-based captchas have gained widespread popularity in recent years.

Being deployed by more than 4.5 million websites, Google’s image-based captcha service, reCaptcha v2, is the most popular right now [4]. As most people find solving a captcha challenge annoying, reCaptcha uses an advanced and adaptive risk analysis engine to make an initial judgment on whether a request is from a legitimate user or an automated program. reCaptcha allows a legitimate user to pass the verification without having to solve a challenge. However, if the system determines the user making the request is likely to be an automated program, then reCaptcha will not allow the user to continue until he/she solves challenges and pass the verification.

Recently the security of the image-based captcha systems, including reCaptcha v2, has come under scrutiny. Sivakorn et al. used different deep learning-based image classifiers technologies to break image-based reCaptcha v2 [48]. Likewise, Weng et al. developed several deep convolutional neural network (CNN) based offline image classifiers to show vulner-
abilities of ten popular image-based captcha systems, including Google reCaptcha 2015 and reCaptcha 2018, to machine learning technologies [54]. However, we notice that the most recent reCaptcha v2 showing good immunity to image classifiers after we experiment with four state-of-art pre-trained image classifiers: Xception [17], ResNet [29], VGG16 [47], and InceptionV3 [49]. We have tested these models on 100 randomly selected images from five frequently used categories from original reCaptcha v2 challenges, and the best average accuracy we obtain is less than 40%. The poor performance of image classifiers on reCaptcha images is primarily due to the wide variation of background in the recent images. For example, relative simple images like an image of a stop sign with grass in the background were used at the beginning of reCaptcha v2. Right now, the images used by reCaptcha v2 usually have rich information and also frequently contain multiple objects from a common scene, intelligent enough to confuse even sophisticated image classification models.

Moreover, the most recent works on reCaptcha have only demonstrated offline attacks to evaluate vulnerability; however, due to the adaptive capability of the latest reCaptcha risk analysis engine, a successful offline attack does not necessarily reflect a practical online attack. In an offline attack, the attacker first collects some images from reCaptcha challenges. Then the performance of the solver is assessed by its ability to discern similar images that match with the target object in a challenge. However, the advanced risk analysis engine does not expose many of its adaptive properties unless the program engages in captcha solving process. For instance, reCaptcha often repeats identical or similar images to such a program. Further, we observe reCaptcha randomly distorts images by adding noise and blurriness in some cases when our system is submitting and solving captchas. In some instances, it asks us to solve captchas for some object when the target object is not present in those images at all. Furthermore, in more than two months of observation, we only encounter 13 object categories (see Table 1) while collecting information from reCaptcha challenges using an automated script. However, once our online system starts to break captchas, we begin to notice categories that were not exposed to us before. Additionally, it requires special strategies to handle dynamic captchas (see Section 2) effectively. Many of these aspects are overlooked in an offline attack. We also find that simply collecting reCaptcha images for offline analysis does not necessarily provide the images one would have got while solving real captcha challenges. Besides, offline attacks are evaluated based on assumptions that are not often correct. For these reasons, offline attacks or analysis cannot provide practical measurements of to what extent reCaptcha v2 can be passed by automated programs. For the same reasons, an effective online attack model is different and more challenging than an offline attack, and it will have a higher impact on the captcha security. Also, the success rates of offline bots and online captcha-solving services using human labors are not comparable due to real factors like IP blocking, captcha cascading, captcha’s difficulty-level escalating, etc. To investigate whether the bots can solve the captcha better than human beings, an online captcha solving program to compare the success rates of human labors and bots is desired.

In this paper, we conduct a comprehensive study of reCaptcha v2. Through our security analysis, we find that the essential flaw is that the design of reCaptcha v2 changes the typical object recognition problem to an object category verification problem. It reduces the problem to be easier; thus, it reduces the difficulty level of the challenge for a bot to solve. Through extensive experimentation, we evaluate the adaptive property of the image-based challenges provided by reCaptcha v2. Our rigorous analysis reveals that the most recent version of reCaptcha v2 does include wide variations in challenge images rendering prior classifier based attacks ineffective. We design and implement a novel and sophisticated system that leverages advanced object detection and browser automation techniques to break Google’s image-based reCaptcha v2, with high efficacy. Taking the state-of-art object recognition technique, YOLOv3, as a basis, we develop a sophisticated customized object detection and localization pipeline that is very precise at recognizing the target objects in reCaptcha challenges. Our online attack tests achieve a weighted success rate of 92.40% while taking 14.86 secs per captcha on average; the time includes the delay we added in the system, online image downloading time, and the log-generation time. Our offline attack tests achieve a weighted success rate around 95.00% taking 5.27 seconds for each captcha on average, much higher than 79% success rate in [54]. If using captcha-solving services with thousands of human labors, within 5.27 seconds, the success rate range for Google ReCaptcha 2018 is [85%–92%] in [54]. Our online and offline success rates are both higher than 92%. It shows that the motto of reCaptcha v2 “easy for human, hard for bots” [11] is violated because we find that our bot can solve their image-based captchas even better than human labors. We call for secure captcha designs that comply with the motto.

We list the main contributions of this paper as follows:

- We conduct extensive security analysis on Google’s image-based captcha service, reCaptcha v2. We investigate and document the internal workflow of different types of captchas. Our findings also reveal adaptive properties of the advanced risk analysis engine that have not examined prior research.
- We develop a novel and fully online system called ImageBreaker by combining advanced computer vision and browser automation techniques. Specifically, we develop a highly effective customized object recognition system based on YOLOv3 to identify and localize objects in
reCaptcha challenges. To the best of our knowledge, ImageBreaker is the first real-time system that can break Google’s image-based captcha, reCaptcha v2 with high accuracy.

- We test our ImageBreaker against websites that use this service. Our results show that for reCaptcha v2, the bots could do better than human beings when solving the captcha challenges.
- We also point out the design flaws and present the future design direction and countermeasures to defend against our bots according to our experiments.

2 Extensive Analysis

2.1 Background

The first version of reCaptcha used to display distorted texts in an image, and users were asked to type the text in a text box to solve the captcha. This type of captcha was predominant for quite some years, and it was made segmentation-resistant to counter attacks that previous text-based captchas suffered from [35, 36]. However, the unprecedented advancement of artificial intelligence has made it trivial to solve text-based captchas even when the segmentation-resistant property is in place [9,18]. To address the aforementioned issues, Google in 2014 introduces reCaptcha v2 (image-based) [46] also known as “no captcha reCaptcha”. This version aims at high usability and user-friendliness while remaining secure against spam and bot. Indeed, Google claims this version to “easy for human” and “hard on bots”. They accomplished this goal by building an advanced and adaptive risk analysis engine that scores users’ requests from 0.0 to 1.0 based on different aspects of the users’ environment. Google has been updating the reCaptcha v2 periodically to keep it robust against emerging security threats. We analyze and test our attack on the most recent version (as of August 2019) of reCaptcha v2 in this paper.

2.2 Anatomy of a reCaptcha challenge

In this subsection, we analyze the security of image-based reCaptcha v2 in a more realistic online setting.

Challenge widget. If a click in the checkbox widget returns a low score and the advanced risk analysis engine suspect that the request is from a bot, a new iframe element pops up on the page where the actual challenge is being displayed (Fig. 1). To pass the verification, the users must solve a challenge per instruction provided in the challenge widget (Fig. 1).

The challenge widget can be divided into three sections: top, middle, and bottom (Fig. 1). The top section contains the text description (hint text) and instruction about how to solve the challenge. The element that holds the instruction text can be located by its identifier rc-imageselect-instructions. The text description also contains the target object name. The section in the middle holds the candidate images. The users have to select images that contain the target object mentioned in the hint text. The last and bottom section holds multiple buttons. The first three buttons on the left have the following functions: the reload button is used for getting a new captcha challenge; the middle button with the microphone icon is used for getting an audio challenge, and the third button or help button contains instruction about solving the captcha. The fourth button or the verify button on the right is used for submitting the challenge.

To better understand the challenge, we focus our attention to the middle section of the challenge widget that holds actual challenge images. An HTML table inside a div element with an ID rc-imageselect-target contains the actual candidate images in the challenge where each cell (tr element) of the table acts as a clickable button. Specifically, these candidate images could be extracted by selecting img tags inside div elements having a class name rc-imageselect-tile. For the sake of simplicity, we call each cell as a grid (See Fig. 1). Although it appears that each grid holds a unique image, the src attribute of each image element refers to the same URL in the initial challenge widget. reCaptcha uses CSS style to show different parts of the same image on individual grids.
in order. We could represent the challenge image as a set of grids. If the HTML table has R rows and C cells per row and the original image is of $W \times H$ dimensions, then we can consider the challenge image as $R \times C$ rectangular shape grids (Fig. 2) each having width $w = \frac{W}{C}$ and height $h = \frac{H}{R}$. We can localize the grids precisely using the top-left and bottom-right coordinates of them. Fig. 2 illustrates the whole process.

We encounter two variants of image-based captcha in our experiment: static captcha and dynamic captcha. We define them briefly now.

Static captcha. It is a simple image selection based captcha challenge. Figure 3 shows an example of a static captcha. As we can see, it requires the user to select the potential grids holding the target object(s) and click verify (or submit) button. If the reCaptcha backend considers the selections to be correct, the user gets verified. Otherwise, it triggers a new challenge.

![Figure 3: Static captcha. The user simply selects the potential grids holding the target object and clicks verify button.](image)

Dynamic captcha. Initially, the challenge image is presented the same way as a static captcha. However, once users click on potential grids holding the target objects, new images get loaded on the selected grids (Figure 4, second image). It requires users to continue to click on all the potential grids until there are no images with target object left in the challenge widget. Finally, the user clicks verify to submit the challenge.

Dynamic captcha handling in an automated manner is a relatively complex process compared to static captchas. We need to keep track of the selected grids and download new images when they get loaded. It requires careful programming of the dynamic captcha handler script because we are primarily interacting with asynchronous Javascript codes.

2.3 Adaptive challenges

reCaptcha uses adaptive challenges to restrict automated software or bots from solving captchas. In our experiment, we notice the vast diversity in challenge images. Once our system engages in breaking the captchas, we start getting difficult challenges. reCaptcha usually increases the difficulty level for suspicious requests. Figure 5 shows several images with distorted backgrounds. Nearly 10% of images we face belong to these types. The target objects in these challenges often have unusual shapes. For instance, the captcha may ask to solve a challenge for a motorcycle; however, the challenge image may only include part of a tire in it. The purpose is to make the challenge ambiguous to confuse the automated programs intentionally. Surprisingly, our system can identify all of the objects showing in figure 5.

2.4 Image Repeatedness

We collect 6165 challenge images from reCaptcha protected websites from 05-15-2019 to 07-22-2019. We find the fingerprint of each image using difference hash (dhash). Our analysis shows that only 6080 images have unique dhash values. It means there are 85 completely identical images. We also find 228 similar images. We consider two images to be similar if the bit difference (hamming distance) between their hashes is less than 10.

We also attempt to solve 565 reCaptcha challenges using our system from 07-25-2019 to 07-28-2019. Surprisingly, we do not find any completely identical or nearly similar images in the submitted challenges. It signals that once the bot engages in captcha solving, reCaptcha tries refraining from displaying the same image across multiple challenges. This finding also reveals that simply collecting reCaptcha images for offline analysis does not necessarily provide the images one would have got while solving real captcha challenges.

2.5 Key findings on reCaptcha v2

We observe several key features as follows: 1) We find the dynamic captcha and adaptive challenge images not discussed in previous works. 2) Five objects types including “traffic light”, “bus”, and “car” are more than 73% of the recurred objects for static captchas. 3) We only encounter five object categories in dynamic captcha challenges. Further, four of these objects are already present in the top five frequent objects in the static captchas.

3 Threat Model

We assume that the adversary wants to access some web services protected by reCaptcha using an automated script. We also assume the attacker has the computational power to train and deploy an object recognition system to build a captcha breaker. A recent low to mid-range Graphical Processing Unit (GPU) with 3-4 GB memory should provide sufficient computational power to launch the attack. The adversary may need to change the Internet Protocol (IP) address of the device by tunneling the internet traffic through some anonymity networks like I2P [1] and Tor [21] in case of reCaptcha risk analysis engine or backend blacklists one of his IPs. When we use Selenium framework and Python for browsing, our IP is blocked for every 3-4 requests in a row. Then we switch to puppeteer library, we can send more than 50 requests in a minute and the engine would not block us. As a result, we only use the same IP address for all the requests. Additionally, we consider our attack to be a black-box approach as the
attacker has to direct knowledge about reCaptcha backend. However, the adversary can study the front-end HTML and JavaScript source code and interact with the elements inside reCaptcha checkbox and challenge widgets.

4 System Overview
To validate the design flaw of the reCaptcha v2 and investigate whether the bot could do better than a human for image-based captcha solving, we build a real captcha solving system called ImageBreaker. ImageBreaker consists of three modules: Information Gathering Module, Customized Object Detection Module, and Solver Module. The modules interact with each other, forming a completely online and fully automated system to break Google’s image-based captcha service reCaptcha v2. Figure 6 shows the workflow of the system. In this section, we give a high-level overview of each module.

4.1 Information Gathering (IG) Module
The information gathering (IG) process starts once we are inside the challenge widget. The IG module extracts the target object name, determines the challenge type, and downloads challenge image(s). It also determines the number of rows R and cells C per row in HTML table holding the initial challenge image. It passes these data/information to the customized object recognition (COR) and Solver (S) modules.

4.2 Customized Object Recognition (COR) Module
This module detects and localizes objects in the challenge image and maps them to the potential grids holding them. It takes the initial challenge image I or the new image D as input. Besides, it obtains values of R and C from the IG module. First, the customized object recognition module calculates coordinates of each grid relative to top-left corner (0,0) of the image. Second, it sends the image to the base object detection system, which does the detection and returns detected objects’ coordinates in the form of bounding boxes. It also returns the confidence scores for the detected objects. Finally, our bounding box to the grid mapping algorithm finds the potential grid numbers for each bounding box. The bounding box to the grid mapping algorithm yields a JSON array as output. The output includes object name, confidence score, and potential grid numbers for each detected object in the image.

4.3 Solver (S) Module
Two sub-modules, static solver and dynamic solver, constitute the solver module. If the solver determines a challenge to be of dynamic type, it delegates the tasks to the dynamic solver. Otherwise, static solver gets assigned to the task. Every time a captcha challenge gets submitted, they communicate back and forth with the checkbox widget to check reCaptcha verification status. The solver module terminates when the program passes the verification.

5 Implementation Details
There are several challenges in developing a system that can break captchas in real-time. First of all, we have to complete all the interactions within a limited time. Second, a standard object detection technique cannot fulfill the requirements of our system. Third, we need to develop an efficient way to handle dynamic captcha types. We discuss the challenges and our approaches in detail as we progress in this section.

5.1 Data and Information Gathering
This module is responsible for collecting information and data from the challenge widget. IG module is used extensively by other modules, and it assists them in making decisions. The following data/information is essential for the successful completion of the dependent modules.
5.1 Extract target object name

A short description of the challenge, which also includes the target object name, is available at the top of the challenge widget (Fig. 1) We call it as the challenge instruction text and locate the element holding this text by its identifier re-imageselect-instructions. We then extract the innerText inside this HTML element using JavaScript method. It is a multi-line text string, and the second line always refers to the target object name. We use the regular expression to split the text using newline delimiter and extract the second line to get the target object name. It is important to note that the target object name may be in a plural form. We set up simple rules to convert a plural noun string (e.g., traffic lights) to a singular one (e.g., traffic light).

Identification of common objects. To determine what types of object names commonly appear in the reCaptcha challenges, we compile a list of web pages protected by reCaptcha for data collection purposes. We develop a script based on Google’s puppeteer [3] library for driving a web browser in an automated manner. The script visits a randomly selected web page from the list and clicks on reCaptcha checkbox to trigger the reCaptcha challenge. Once it is inside reCaptcha challenge iframe, it extracts challenge instruction and downloads the image. In total, we make 6165 requests to 4 different web pages and show the results in Table 1. Only encountering 13 object names, we list the recurrence frequencies of them.

5.1.2 Captcha type identification

As discussed in Section 2, the image-based reCaptcha has two variants: a) static captcha and b) dynamic captcha. We notice a consistent pattern in the challenge instruction that we utilize to distinguish them. Specifically, the presence of the phrase “click verify once there are none left” indicates a dynamic captcha challenge. Otherwise, we are dealing with a static captcha. Again, we use regular expression to see if the phrase is present in hint text or not and thus, determine the captcha type.

5.1.3 Get values of R and C

We need the number of rows (R) and the number of cells (C) per row of the HTML table holding the initial challenge image to represent it as a set of grids. There is only a single table element in the challenge widget. We locate this element by getElementsByTagName() JavaScript method. The actual values of \(R \) and \(C \) can be determined by finding the total number of tr tags and the number of td tags inside a tr tag, respectively. However, we use a different strategy, which we find to be more efficient, to determine the number of rows and columns. During our experiment, we observe the class attribute of the table element follows a particular pattern. Specifically, it follows the following pattern: “re-imageselect-table-XY” and the “XY” part corresponds to two different
(often same) digits. The first digit “X” determines the number of rows R in the table and “Y” indicates the number of cells C in a row. Like before, we use the regular expression to separate and find the “X” and “Y” from the string.

5.1.4 Download challenge image

We mentioned in Section 2 that when we trigger the challenge widget for the first time, a single image is split into $R \times C$ grids. In other words, the src attribute of the img tag inside each cell points to the same image regardless of captcha types. First, we find the cell elements in the table using the class name attribute $\text{rc-imageselect-tile}$. We then select one cell and find the img tag inside. Finally, we get the URL the challenge image by extracting the src attribute of the img tag. The IG module downloads the image from the URL and saves it to a predefined location in our storage device.

5.2 Customized Object Recognition

Object recognition systems identify and localize objects in images from pre-trained object classes. Since the identification and localization of objects in challenge image alone is not sufficient to map detected objects to grids, we need to develop a customized object detection system. Our main object detection task is delegated to a base detector. We then use the dimensions of the grid to map detected objects locations returned by the base detector to the grids. The customized object recognition module executes some steps (Fig. 6) sequentially to complete the task. We now discuss each step in detail.

5.2.1 Get $R \times C$ grid representation of image I (or image D)

We determine and record the width W and height H of the input image I from the IG module, or the image D from the dynamic solver sub-module. We then use the dimensions $(W \times H)$ of the challenge image I (or image D), and the values of R and C to get the $R \times C$ grid representation of the image as discussed in section 2 (Fig. 2).

5.2.2 Base object detector: YOLOv3

To determine the presence of objects and their locations in an image, an object detection model learns from a set of annotated training images (possibly thousands of them). The target locations of the detected objects are usually described in terms of bounding boxes. The bounding box is a rectangular box and usually it is defined by x- and y-axis coordinates upper-left corner, and x- and y-axis coordinates of the bottom-right corner of the rectangle. Recent advancements in deep learning and ubiquitousness of relatively low-cost computing devices such as Graphical Processing Units (GPUs), has resulted in some powerful object detection systems. We experimented with several advanced and state-of-art object recognition systems such as mask-RCNN [27], Faster-RCNN [42], and YOLOv3 [41]. We find most of the models, except for YOLOv3, to be computationally expensive even when we take advantage of a GPU. As our proposed system is fully online, and the captcha challenge is time sensitive, we decide to use YOLOv3. In our experiment, we find YOLOv3 extremely fast while maintaining almost similar detection performance when we compare it to the other detection systems. In some cases, it seems to outperform few the state-of-arts. For these reasons, we use YOLOv3 as a base object recognition and detection system in our work.

5.2.2.1 Darknet and customized bounding box detection

Darknet is the framework for building, training, and making predictions on YOLOv3-based models. The framework is written in C. Darknet, by default, provides class name and confidence score of the detected object when making a prediction. Since we also need coordinates of the bounding box for localization, we made modifications to the Darknet source to extract this information. In a YOLOv3 model, a bounding box is determined by the coordinates of the center, width, and height, respectively. However, we redefine the bounding box in terms of top-left and bottom-right corner coordinates for the ease of calculation. We express center coordinates, width, and height of a bounding box as (cx, cy), w and h, respectively. Now the top-left corner coordinates can be expressed as $(tx = (cx - bw)/2, ty = (cy - bh)/2)$. Similarly, the bottom-right corner coordinates will be $(bx = (cx + bw)/2, by = (cy + bh)/2)$.

5.2.2.2 Training YOLOv3 models

We use two datasets to train two separate YOLOv3 object detection models. We first briefly describe the datasets and then provide a short description of the training process.

MSCOCO. The Microsoft Common Objects in COntext, or popularly known as MSCOCO dataset [6] includes 330,000 images in 80 common object categories. It is proposed in [34] to provide a rich dataset for object recognition. Since MSCOCO already contains frequently appeared objects in reCaptcha challenge, we use this dataset to train our object recognition and detection system.

Customized dataset. To detect object categories that are not available in MSCOCO, we develop a customized dataset containing four object categories: crosswalk, storefront, stair, and chimney. We build a web crawler to scrape and fetch images from images.google.com. We also use some images from original reCaptcha challenges. Our final dataset includes 3286 manually annotated images.

Building the models. The network architecture of the YOLOv3 object detection model is defined in a configuration (cfg) file. The default cfg file for YOLOv3 has 106 layers. Most of these are convolutional layers, and other layers include shortcut, upsample, route, and yolo layers. We make two configuration files for the two models, one for MSCOCO dataset, and another one for the custom dataset. The MSCOCO YOLOv3 model has 80 object classes and our custom model has 4 object classes.
Training. We train the models using Darknet. Darknet reads models architecture and different parameters related to training from the configuration. It loads training images and their annotations from the data file. We train the model for MSCOCO dataset for roughly three weeks with batch size equals 256. The custom model is trained only for two days with batch size equals 32. We stop the training when the losses converge.

The performance of an object detection model usually describes in term of mean average precision (mAP). During training, Darknet saves trained weights after every 1000 iterations. We evaluate the weights on the testing dataset and choose the weight file that provides the highest mAP. Our final models have mAP of 58.7 and 71.2 for MSCOCO dataset and the custom datasets, respectively.

Testing or predictions. We now make predictions on image I or image D (from dynamic solver) using our object detection models. We select the trained weights for MSCOCO if the target object name in captcha challenge matches with one of the object classes in MSCOCO dataset. Otherwise, we choose our custom model. We set the detection threshold to 0.2, e.g., the model discards any objects whose confidence scores are below 20% while making predictions. The output of predictions includes the object name, bounding box coordinates, and confidence score for each detected object.

5.2.3 Bounding box to grid mapping

Once we have the bounding boxes for each detected objects in the image, we need to map them to their corresponding grids. Our bounding box to the grid mapping algorithm uses the coordinates of the bounding box to identify potential grid numbers (PGNs) for each bounding box. Finally, it returns the result in JSON format. The result includes object name, confidence score (returned by the base detector), and potential grid numbers for each bounding box.

Bounding box to grid mapping algorithm. Algorithm 1 depicts the pseudocode for the bounding box to grid mapping algorithm. It takes bounding boxes and grids as input and returns the result in JSON format as output. In line 1 we initialize a JSON array object. There are two for loops (from line 2-6). The outer loop takes one bounding box (bbox) at a time, and the inner loop goes through all the grids to see whether the bounding box itself or part of it is present in any grids or not. We get the top-left (tx, ty) and bottom-right (bx, by) coordinates of a particular bounding box in line 3. The $bbox_belong_to_grid$ function (line 5) takes bounding box i, and grid j as input and returns True if it can map the bounding box to the grid using their coordinates; otherwise it returns False. If line 5 returns true, it pushes a JSON object with three keys namely, on (for object name), cs (for confidence score) and $PGNs$ (for potential grid numbers) respectively to the result (line 6). The $bbox[i].on$ returns the object name, and $bbox[i].cs$ returns confidence score for bounding box i, respectively. The key $PGNs$ is an array since one bounding box may be mapped to multiple grids. Figure 7 shows a challenge image with detected bounding boxes and the JSON output (filtered for the target object “bus”) returned by the algorithm.

Challenges and our strategy. The actual shape of an object may not be rectangular like the bounding boxes. Besides, an object may not always occupy the whole bounding box. These two factors can result in some false positives in the bounding box to grid mapping algorithm. Although it is difficult to completely eliminate the false positives, we employ some strategies in our actual implementation code to keep the impact as minimal as possible. For example, if a bounding box has only a tiny portion (say 5% of its total width or height) residing inside a grid, we discard the grid from potential grids.

Algorithm 1: Bounding box to Grid Mapping

<table>
<thead>
<tr>
<th>Input: bounding boxes and grids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: object name (on), confidence score (cs), and PGNs in JSON format</td>
</tr>
</tbody>
</table>

1. $result \leftarrow$ initialize JSON array
2. for $i \leftarrow 0$ to $\#bboxes - 1$ do
 // get bounding box coordinates
3. $tx, ty, bx, by \leftarrow\ bbox_coords(bbox_i)$
4. for $j \leftarrow 0$ to $\#grids - 1$ do
 // the bounding box (or part of it) is located inside the grid
5. if $bbox_belong_to_grid(bbox_i, grid_j) = True$
 then
 // push object name, confidence score and PGNs to the result
6. $result.push({"on": "$bbox[i].on", "cs": $bbox[i].cs", "PGNs": push(j)}))$

5.3 Solver

The solver module handles both static captchas and dynamic captchas. It gets the target object name and challenge type (static or dynamic) from the IG module. Since handling static and dynamic captchas requires different strategies, we develop two sub-modules to manage them separately.

5.3.1 Static Solver

This sub-module solves static captcha challenges. First, it filters JSON output returned by the COR module to extract potential grid number (PGNs) for the target object in the challenge. Second, it locates potential grids using their CSS identifiers. Third, it performs mouse click actions on those grids. Finally, it finds submit (or verify) button which is defined by ID $recaptcha-verify-button$ and does a mouse click on it. Once clicking on the verify button is done, three possible things can happen: a) it can get verified; b) reCaptcha may trigger errors; and c) a new challenge may get loaded. We check the reCaptcha verification status by switching to the check-
box widget finding recaptcha-accessible-status. If our system passed the verification, we terminate the program. Otherwise, our system will get a new captcha challenge.

5.3.2 Dynamic Solver

When dynamic captcha gets triggered for the first time, we handle it the way similar to static captcha except for the fact that we do not click verify button. After clicking on the potential grid, new images appear on the selected grids. The dynamic captcha handler extracts the src attribute of each img tag inside those grids and downloads the images. Now we can send each image individually to the base detector and see whether the target object is present in them or not. We can then click on the grids holding images with the target object. Although this approach is simple and can solve the challenge, we found it to be inefficient and time-consuming. It is not a practical approach since we need to run the base detector on each image separately, which is a computationally expensive process. We develop a strategy to address this problem efficiently. First, we create a blank image B, which has the same dimensions as initial challenge Image I. Second, we extract pixels from each image and put these pixels to the proper parts of the blank image B. We want to mention that the dynamically loaded images on selected grids have the same dimensions of the shape of the grids. Since our system keeps track of the potential grid numbers at each phase, and it knows the coordinates of the grids, it can place the pixels from new images correctly to the blank image. Third, it sends this image to the COR module to get the object detection results. The COR then sends the result back to the Solver, and dynamic Solver extracts potential grid numbers for the target object. Fourth, it clicks on potential grids. This process gets repeated until the PNGs become zero. Finally, we click verify button, check reCaptcha status, and check any errors.

6 Evaluation

In this section, we evaluate our system in an online setting against websites using reCaptcha v2. We also evaluate the offline performance of our model.

Implementation and Evaluation Platform. We use the puppeteer-firefox, a node library, to drive the Firefox web browser. The core functionalities of information gathering and solver modules are developed using JavaScript. We train and test the base detector with the darknet framework specifically modified to meet our need. Our bounding box to grid mapping algorithm is written in C to save time.

We use Selenium and Python in the initial prototype of our system. However, we find Selenium’s Python interface to be slow and inflexible for our task. Then, we get rid of all of the Selenium and Python dependencies from our codebase and develop our final system using JavaScript and C for higher efficiency. We develop and test our system on a server with 6 Intel® Xeon® E5-2667 CPUs, an NVIDIA GeForce RTX 2070 GPU, and 96GB of RAM running the Arch Linux operating system. We compile the Darknet framework against the GPU with CUDA version 10.2 and cuDNN version 7.5.

Table 2: Static captcha (online attacks) : the average response time and accuracy of different type of cases

<table>
<thead>
<tr>
<th>Object name</th>
<th>RN</th>
<th>Freq.</th>
<th>Success rate</th>
<th>avg. RT (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic light</td>
<td>98</td>
<td>32.45</td>
<td>94.90</td>
<td>13.98</td>
</tr>
<tr>
<td>car</td>
<td>40</td>
<td>13.25</td>
<td>95.00</td>
<td>14.40</td>
</tr>
<tr>
<td>bus</td>
<td>32</td>
<td>10.60</td>
<td>93.75</td>
<td>15.35</td>
</tr>
<tr>
<td>crosswalk</td>
<td>28</td>
<td>9.27</td>
<td>85.71</td>
<td>15.32</td>
</tr>
<tr>
<td>fire hydrant</td>
<td>25</td>
<td>8.28</td>
<td>100.00</td>
<td>14.20</td>
</tr>
<tr>
<td>bicycle</td>
<td>25</td>
<td>8.28</td>
<td>96.00</td>
<td>15.12</td>
</tr>
<tr>
<td>motorcycle</td>
<td>17</td>
<td>5.63</td>
<td>88.24</td>
<td>15.76</td>
</tr>
<tr>
<td>vehicle</td>
<td>13</td>
<td>4.30</td>
<td>84.62</td>
<td>14.73</td>
</tr>
<tr>
<td>parking meter</td>
<td>10</td>
<td>3.31</td>
<td>90.00</td>
<td>13.97</td>
</tr>
<tr>
<td>boat</td>
<td>6</td>
<td>1.99</td>
<td>83.33</td>
<td>13.95</td>
</tr>
<tr>
<td>stair</td>
<td>5</td>
<td>1.66</td>
<td>60.00</td>
<td>14.14</td>
</tr>
<tr>
<td>chimney</td>
<td>3</td>
<td>0.99</td>
<td>66.67</td>
<td>14.83</td>
</tr>
<tr>
<td>Weighted avg.</td>
<td></td>
<td></td>
<td>92.38</td>
<td>14.56</td>
</tr>
</tbody>
</table>
as failures. Further, we find that there are at least two potential grids with the target object in challenge images for static captcha in most cases. Hence, if our system detects less than two potential grids, we set it as a failure. We need to solve a single dynamic captcha in more than one step (Fig. 4). We consider every step as a unique challenge to keep the evaluation process straightforward.

We collect and compile a list of sites defended by reCaptcha. Our system submitted 565 challenges in total. In every attempt, when it submits the challenge by clicking on the verify or submit button, it reads the current status of the challenge as described in Section 2. If the status indicates that it has passed the verification, the program terminates and starts the next request. Otherwise, it starts processing the next challenge. The system also logs captcha types, the time required to solve a challenge, the total time to pass the verification, and the number of failed attempts.

Table 2 shows evaluation results for static captchas. We encounter 321 challenges and submit 302 challenges. The system has broken the challenges with 92.38% weighted accuracy while taking 14.56 seconds per challenge on average. As we can see from the table, we encounter just 16 object categories in our experiment. It suggests that reCaptcha v2 has minimal object classes. A more concerning issue is that the top 5 categories make more than 73% of total challenges. We discard four objects that appear less frequently (5.92%) like a statue, bridge, mountain, and tractor. ImageBreaker reloads and gets a new captcha when it encounters any of these discarded object types in a challenge since our object detection models do not include these objects.

Table 3: Dynamic captcha (online attacks): the average response time and accuracy of different type of cases

<table>
<thead>
<tr>
<th>Object name</th>
<th>RN</th>
<th>Freq.</th>
<th>Success rate</th>
<th>avg. RT (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>71</td>
<td>26.89</td>
<td>92.96</td>
<td>15.06</td>
</tr>
<tr>
<td>bus</td>
<td>62</td>
<td>23.48</td>
<td>88.71</td>
<td>15.19</td>
</tr>
<tr>
<td>bicycle</td>
<td>47</td>
<td>17.80</td>
<td>93.62</td>
<td>15.18</td>
</tr>
<tr>
<td>fire hydrant</td>
<td>44</td>
<td>16.67</td>
<td>95.45</td>
<td>15.68</td>
</tr>
<tr>
<td>crosswalk</td>
<td>40</td>
<td>15.15</td>
<td>92.50</td>
<td>15.21</td>
</tr>
<tr>
<td>Weighted avg.</td>
<td>/</td>
<td>/</td>
<td>92.42</td>
<td>15.23</td>
</tr>
</tbody>
</table>

Table 3 depicts success rate and average response time for different object categories in dynamic captcha challenges. The weighted average success rate and response time per captcha are 92.42% and 15.23 seconds, respectively. We discover a surprising finding for dynamic captcha: we observe only five object categories while solving the 263 dynamic captchas. Moreover, all these objects are present in the static captcha challenges. Combining the results in Table 2 and 3, the weighted average success rate for static and dynamic captcha is (302 × 92.38% + 263 × 92.42%)/565=92.40%. Similarly, the weighted average response time is 14.86 seconds. If using captcha-solving services with thousands of human labors, within 14.86 seconds, the success rate range for Google ReCaptcha 2018 is [85%-92%] [54]. Our success rate 92.40% is higher than the highest success rate 92% of the six captcha-solving service using human labors. It shows that the motto of captcha – “Easy for humans, hard for bots” is not always valid any more because we find the bot can also solve the captcha with dynamic image even better than the human labors.

6.1 Offline attack evaluation

We randomly select 300 challenge images from 12 object categories for offline verification. The images are collected from real captcha challenges submitted by our system. We also make sure that the recurrence frequency for each object category reflects the actual recurrence frequency in the online evaluation. We conduct offline experiments and compare the results with our manually verified results to evaluate the offline success rate of our model. Only when the PGN(s) got by our solver are exactly match the manually verified PGN(s), we think it is successful.

Previously, Sivakorn et al. [48] reported that reCaptcha provides flexibility in its solution. The authors mentioned that one wrong selection, along with at least two correct ones, would be sufficient to pass the verification. They evaluated their results on the offline challenge database while considering this flexibility. However, in our online attack, we find none of the assumptions about solution flexibility reported in that paper hold. While those assumptions may be correct in some cases for human solvers, in most cases (more than 65%), any sense of perceived flexibility considerably diminishes when reCaptcha identifies bot-like activities in a client’s request. Therefore, we set a hard limit while evaluating our results for offline verification. Particularly, we consider a solution to be correct only when our system makes no wrong selection.

The final results are shown in Table 4. Our program breaks the challenges with a weighted success rate of 95.00% while taking 5.27 seconds per challenge on average. It can be noticed that our custom object detection model does poorly for stair and chimney. The poor performance on both of these objects is due to a limited number of images (3000) in the training of our model. Overall, the accuracy of our offline attack model is much better than 79% in [54]. If using captcha-solving services with thousands of human labors, within 5.27 seconds, the success rate range for Google ReCaptcha 2018 is [88%-92%] [54]. The success rate of our offline attacks is 95.00%, much accurate than human labors within a short time. Without time limit, our success rate is the same as the service “imagetyperz”, however, “imagetyperz” needs 41.68 seconds to achieve its success rate 95.00%, much slower than our solver. Overall, it shows that the motto of captcha – “Easy for humans, hard for bots” has not been well conformed to because we find that the bot can also solve the captcha with dynamic image even better than the human labors. Table 5 compares the success rate of our results to six captcha-solving services using human labors.
Table 4: Offline attacks: the average response time and accuracy of different types of cases

<table>
<thead>
<tr>
<th>Object name</th>
<th>RN</th>
<th>Freq.</th>
<th>Success rate</th>
<th>Avg. RT (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic light</td>
<td>70</td>
<td>23.33</td>
<td>98.57</td>
<td>4.85</td>
</tr>
<tr>
<td>car</td>
<td>50</td>
<td>16.67</td>
<td>98.00</td>
<td>4.96</td>
</tr>
<tr>
<td>bus</td>
<td>40</td>
<td>13.33</td>
<td>87.50</td>
<td>5.82</td>
</tr>
<tr>
<td>fire hydrant</td>
<td>35</td>
<td>11.67</td>
<td>97.14</td>
<td>5.70</td>
</tr>
<tr>
<td>bicycle</td>
<td>30</td>
<td>10.00</td>
<td>100.00</td>
<td>5.16</td>
</tr>
<tr>
<td>crosswalk</td>
<td>20</td>
<td>6.67</td>
<td>90.00</td>
<td>5.21</td>
</tr>
<tr>
<td>motorcycle</td>
<td>15</td>
<td>5.00</td>
<td>100.00</td>
<td>4.99</td>
</tr>
<tr>
<td>vehicle</td>
<td>15</td>
<td>5.00</td>
<td>93.33</td>
<td>5.68</td>
</tr>
<tr>
<td>parking meter</td>
<td>10</td>
<td>3.33</td>
<td>90.00</td>
<td>5.34</td>
</tr>
<tr>
<td>boat</td>
<td>8</td>
<td>2.67</td>
<td>100.00</td>
<td>6.19</td>
</tr>
<tr>
<td>stair</td>
<td>4</td>
<td>1.33</td>
<td>50.00</td>
<td>5.93</td>
</tr>
<tr>
<td>chimney</td>
<td>3</td>
<td>1.00</td>
<td>66.67</td>
<td>5.26</td>
</tr>
<tr>
<td>Weighted avg.</td>
<td>/</td>
<td>/</td>
<td>95</td>
<td>5.27</td>
</tr>
</tbody>
</table>

Table 5: Comparisons between our results and six captcha-solving services with human labors [54]

<table>
<thead>
<tr>
<th>Attack target</th>
<th>Success rate</th>
<th>avg. RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ruokuai</td>
<td>reCaptcha 2018</td>
<td>91</td>
</tr>
<tr>
<td>hyocr</td>
<td>reCaptcha 2018</td>
<td>85</td>
</tr>
<tr>
<td>2captcha</td>
<td>reCaptcha 2018</td>
<td>88</td>
</tr>
<tr>
<td>AntiCaptcha</td>
<td>reCaptcha 2018</td>
<td>92</td>
</tr>
<tr>
<td>DeCaptcha</td>
<td>reCaptcha 2018</td>
<td>62</td>
</tr>
<tr>
<td>imagetyperz</td>
<td>reCaptcha v2</td>
<td>95</td>
</tr>
<tr>
<td>Our offline attack</td>
<td>reCaptcha v2</td>
<td>95</td>
</tr>
<tr>
<td>Our online attack</td>
<td>reCaptcha v2</td>
<td>92.40</td>
</tr>
<tr>
<td>(with delay)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Countermeasures

Image-based captchas are based on the assumptions that there are certain tasks related to image recognition that humans are good at, but current computers are not. However, recent advances in computer vision show that machines are as good as, if not better than humans in image recognition domain [28,32]. Consequently, captchas relying on simple image recognition will eventually fail to generate robust Turing tests for bots. Since reCaptcha v2 falls into that category, it would require radical change to its current design to prevent kind of attacks we show in this paper. A robust captcha design would acknowledge the current state of AI and use the limitations to its advantage. To this end, we discuss the design flaws of reCaptcha v2 and propose a general design direction. However, it is outside of the paper to provide a formal security analysis for our potential design direction. We also recommend some countermeasures as a temporary deterrent to automated attacks on reCaptcha v2 and similar image-based captchas in this section.

Design flaws. In [54], the authors point out the design flaws of selection-based captchas are: using a limit number of object categories, machine-encoded text hints, and easily recognizable candidate images. However, we have different visions. First, we argue that the essential flaw is that the design of reCaptcha v2 changes the normal object recognition problem to an object category verification problem. It reduces the problem to be easier. For example, it gives the object category and asks the bot to check whether the grids contain that object. The design reduces the difficulty level of the challenge for a bot to solve. Thus, we argue that enlarging the size of the object categories only makes the model training more time-consuming, and it could not eradicate the design flaws. The second argument we want to make is that adding noise to the candidate images and never reusing the candidate images again are not helpful as well. Through our experiments, we find that our system could solve the adaptive challenges; also, our ImageBreaker could solve the captchas without repeated images as well.

Web Driver fingerprinting and restriction. A secure captcha system should be able to detect and prevent the use of web driver and browser automation software which are used to drive automated programs. We notice reCaptcha can identify when our script is based on Selenium [5], a popular web driver that is also used by most prior works on reCaptcha. It also blocks our program from accessing reCaptcha challenges every time after we make four to five requests in a row. However, it has allowed our automated script based on the puppeteer framework [3] to solve the captchas. We also experiment with another relatively new browser automation framework name TestCafe [2], which is not detected by reCaptcha. It indicates the reCaptcha risk analysis engine cannot recognize and fingerprint web drivers and other browser automation frameworks universally. Since humans should only solve captchas, access to reCaptcha challenges by any third-party scripts should be restricted. It can be done by developing an advanced technique to detect web-driver and browser automation frameworks.

Adding constraints to the challenge instruction. Current reCaptcha v2 system asks users to select images (grids) containing some object in the instruction of the challenge. As we have seen in this paper, the bots can easily pass the verification by identifying and selecting grids with the target object. The captcha challenges could be hardened by adding more constraints to the challenge instruction or make them difficult to been understood by a machine. These constraints should be intuitive for humans but hard for bots. For example instead of saying, “select all the images with traffic light”, we can say “select all the images with traffic light in green arrow”. A human can identify such an object without much effort. However, it is not a trivial task for the machine anymore since object detection models are not usually designed to identify objects with this kind of constraints. If the images have both normal traffic light and traffic light with a green arrow for
that particular example, the computer will have a hard time distinguishing between these two. One can still develop and train an object detection model to identify objects with such restrictions. However, it will not be as straightforward as it is now.

Adding anti-bot resistance in obtaining challenge instruction. A bot cannot select the correct grids without extracting the target object’s name from the challenge instruction. A robust captcha system must make sure that the target object’s name is not easily obtained. For instance, the name of the object or the instruction itself could be embedded in an image to augment anti-bot resistance. Even though machine learning models can be trained to extract textual information from the image, it can still slow down the bots as a temporary solution.

Expanding the size of challenge object categories. Ideally, a secure image-based captcha should have an unlimited number of object categories. While it may not be possible to incorporate that many object types in a real-word captcha, it should include a relatively large number of object types to deter automated attacks. Besides, we find 8 of these objects are already present in MSCOCO dataset. If the object categories are not readily available in public image datasets with labels like MSCOCO [34], Open Images [33], and ImageNet [44], it will make the attacks more difficult because the adversary needs to manually collect, label, and annotate thousands of images with significant efforts. However, this method only makes the training time-consuming and cannot lower the success rate of our bot. Thus, it is a temporary solution as well.

Use geometry of the object to disable machine learning. In this paper, we reduce captcha solving to an object category verification problem. Although object recognition is still considered to be a hard AI problem, a captcha system based on mere object category verification does not guarantee significant robustness against attacks than an image classification based captcha. Our attack on reCaptcha v2 in this paper and the earlier successful attacks on captchas like ARTIFICIAL [43] and IMAGINATION [20], explain why object recognition alone cannot promise a more secure design. However, we can enhance the robustness of object recognition captchas against computer-based attacks by exploiting the shape, size, and orientation of the objects. For instance, if a rectangular bounding box is drawn around a tilted fire hydrant with relatively large size in an image, it will result in some false positives. The false positives occur because we are essentially selecting grids based on bounding box’s coordinates when part of the actual object may not present in all those grids. Likewise, a secure image recognition captcha should use objects with diverse shapes and sizes, and take advantage of the geometric properties of the objects to misdirect the computers.

Adversarial Machine Learning. Machine learning models, including deep neural networks (DNNs), have been reported to be vulnerable to adversarial examples [10, 12, 15, 26, 39]. By adding a small noise to a legitimate input, which is often imperceptible to human eyes, adversaries can trick a learned DNN model into misclassifying. This technique can be applied to reCaptcha challenge images as well. However, the attacker can use adversarial training [51] or similar methods [38, 55] to make the system robust against such attacks. Moreover, most of the current research work only explored the vulnerability of DNNs against adversarial examples in image classification domain. However, most real-world computer vision tasks are based on object detection systems. Eykholt et al. [23] showed that a stop sign could go undetected by YOLO v2 [40] and Faster-RCNN [42] detectors by creating an adversarial poster or physical stickers on it. It is a simple example, and to what degree object recognition models are susceptible to adversarial inputs is still an open research problem. In general, practical attacks against object detection models are more challenging than image classifiers because there can be multiple bounding boxes in a single image or scene.

Potential design direction. It is difficult to find a problem which is “easy for human, hard on bots”. Since natural language understanding is one of the three biggest open problems in natural language processing in 2018 [7], we propose to use a mapping from a short-story text to a descriptive image. The short-story text can be abstracted as a story of \(m \) relationships among \(n \) objects. It is hard to identify the \(m \) relationships among \(n \) objects precisely. For example, the short-story text challenge is “A cat is chasing a rat near a green willow.” We can generate many candidate descriptive images telling a similar but different short story from the challenge. The challenging part of designing such a captcha is to generate the short-story texts and candidate descriptive images. However, generating a text-to-image challenge is easier than solving such a challenge for bots. Image Captioning technologies could help to solve such a captcha, however, they are still far from mature [30]. Also, the designers need to make sure that the problem to solve could not be reduced into a verification problem easily.
images. After analyzing the failed cases, we noticed that most misdetections occurred when the test images were noisy and blurry. Our object detection models can identify objects from moderately distorted images — however, heavy distortions cause misdetections in many cases. Figure 8 shows some instances where it happened. It is apparent from the figure that identifying objects from such distorted images is challenging even for humans. Besides, adding too much noise and blurriness degrades the usability of the captcha system.

We think our ImageBreaker could be improved to address the issues mentioned above by adding noisy and blurry images in the training dataset. Image augmentation techniques also could be utilized to generate adversarial training samples from the existing datasets. We plan to do this in our future work. Also, we only tested Google reCaptcha v2. In the future, we will test other existing image-based captchas and make our online solver be a general security strength testing tool for image-based captchas.

9 Related Work
The text and audio-based captchas are now considered broken since they are highly prone to automated attacks, especially against machine learning-based attacks. Image-based captchas have gained popularity in recent years as they are more accessible and user-friendly to humans and relatively difficult for computers to solve. However, the assumption that machines are not good at recognizing semantic information from images is incorrect. It leads to various high profile attacks on image-based captchas deployed in real-world. In this section, we discuss related attacks on image-, text-, and audio-based captchas.

Image-based captcha. Golle et al. [25] designed a support vector machine classifier to break the Asirra CAPTCHA [22] where users were required to distinguish between images of cats and dogs. Zhu et al. [59] provided a systematic study of 13 existing image recognition captchas (IRCs). They assessed security and practicality of these captcha schemes in real-life applications. Their research showed that most of the IRCs studied did not meet real-world security requirements and thus prone to automated attacks. The authors also proposed the design of a novel IRC scheme called Cortcha based on their findings.

In 2016, Sivakorn et al. [48] revealed flaws in reCaptcha advanced risk analysis engine which would allow an attacker to influence the system to bypass captcha challenges in some instances. They also design an attack to break the image-based reCaptcha challenges. The authors used different deep learning technologies to perform the attack. It is worth mentioning that Google has changed the image-based reCaptcha in the same year. Their attack methodologies are not sufficient to solve recent reCaptcha challenges automatically. More recently, Zhao et al. [58] in 2018 evaluated the security of 10 real-world image captchas, including ReCaptcha 2018. They developed several convolutional neural network (CNN) based image classifiers to break captcha systems. Their attack achieved 79% accuracy in solving image-based ReCaptcha 2018. However, the authors only evaluated the attack on offline images with a limited number of object categories.

Text-based captcha. Ye et al. leverage Generative Adversarial Networks to solve text-based captchas automatically [57]. The authors first train a base solver to generate synthetic captchas and then perform fine-tuning on the basic model by applying transfer learning. As a result, their scheme does not require a large volume of captchas to train an effective solver. A major limitation of work is that it only works for fixed-length characters. Gao et al. built a captcha breaker based on 2D Log-Gabor filter [24]. They evaluated their attacks on a wide range of text-based captchas services. Bursztein et al. used machine-learning-based classifiers to build a generic attack for text-based captchas [13]. Their scheme solves text captcha in a single step by applying machine learning to attack the segmentation and the recognition problems simultaneously. Other notable attacks on text-based captchas include [16, 35, 56].

Audio-based captcha. Audio captchas are most vulnerable to different attacks and extensively studied in the literature. The scheme in [14] can break 75% of eBay audio captchas. Darnstädt et al. [19] utilized active and semi-supervised learning methods to build a low-cost system breaker for audio captchas. The authors of [50] analyzes the security of audio captcha using machine learning algorithms such as AdaBoost, SVM, and k-NN. Sano et al. [45] used hidden Markov (HMM) models to build a system to break audio captchas. Few other important works on audio captchas are [16, 37].

10 Conclusions
We designed and implemented a completely online system to break the image-based reCaptcha v2 in this paper. We utilized state-of-art object recognition and advanced browser automation technologies to build the system. Our system achieved a weighted success rate of 92.40% when breaking reCaptcha challenges online. It took only 14.86 seconds on a weighted average per captcha while doing so. Our attack on reCaptcha v2 shows that it is highly vulnerable to machine learning-based attacks, especially to advanced object detection algorithms like YOLOv3. Based on our extensive analysis and findings, we also provided several countermeasures to defend captchas against such attacks. We hope our future design direction will shed light on secure captcha designs. We also believe it is the time to reconsider the assumption that most existing image-based captchas are designed on: computers are not as good as human beings to solve visual captchas to pass the Turing test.

Ethics. During our experiment, we did not target any parts of the test web pages except the reCaptcha widgets. Specifically, we limit our interactions to two reCaptcha iframe objects only. Besides, we have reported our findings to Google.
References

[58] Binbin Zhao, Haiqin Weng, Shouling Ji, Jianhai Chen, Ting Wang, Qinning He, and Raheem Beyah. Towards evaluating the security of real-world deployed image captchas. In *ASIcc@CCS*, 2018.