
Bots Work Better than Human Beings: An Online System to Break Google’s
Image-based reCaptcha v2

Md Imran Hossen, Yazhou Tu, Md Fazle Rabby, Md Nazmul Islam
University of Louisiana at Lafayette

Hui Cao
Xi’an Jiaotong University

Xiali Hei
University of Louisiana at Lafayette

Abstract
The image-based captcha is currently the most widely used

captcha scheme to protect web services from automated at-
tacks. Among the main image-based captchas, Google’s re-
Captcha v2 is adopted by millions of websites. Its motto (prin-
ciple) is to create a task that is “Easy for humans, hard for bots.”
As technology advances, we want to investigate whether this
main principle is well conformed to or not. Previous works
show that most existing image-based captchas could be vul-
nerable to deep learning-based attacks. However, all of the
works are offline attacks/analysis, which could not provide
practical measurements of to what extent automated programs
can pass these captchas. In this paper, we design and imple-
ment the first fully online system (ImageBreaker) to break
Google’s most recent image-based reCaptcha v2. We lever-
age advanced object recognition technologies and browser
automation techniques to build our system, and the system
achieves the highest success rate at breaking reCaptcha v2
compared to other recent works. Notably, our online attack
tests can achieve a success rate of 92.40% while taking 14.86
seconds per captcha on average; the time includes the delay
we added to confuse the reCaptcha system, online image
downloading time, and the log-generation time. Our offline
attack tests achieve a success rate of 95.00% while taking
5.27 seconds per captcha, much higher than 79% success rate
in related work. Our online and offline success rates are both
higher than 92%, comparable with the success rates of six
captcha-solving services with thousands of human labors. If
considering time, our offline attack achieves the best perform-
ance. It shows that the implementation of reCaptcha v2 does
not conform to its motto well because we find that our bot
can also solve the captchas with dynamic images even better
than human labors. We also point out the design flaws and
present possible future direction and countermeasures to shed
light on the security of captchas.

1 Introduction
CAPTCHAs or Completely Automated Public Turing Test to
Tell Computers and Humans Apart are automated tests de-

signed to tell humans and computers apart. They rely on the
intuition that most humans can pass these tests, while cur-
rent computer programs cannot [53]. Since captchas have the
potential to distinguish human beings from bots with a high
probability, web administrators are relying more and more
upon captcha based services to protect critical web services
from bots and automated scripts. For example, captchas are
used to stop bots from creating fake accounts, posting auto-
matically submitted votes on online pools, etc. Once such a
critical security mechanism is broken, bots can gain access to
services they are not allowed. For this reason, it is crucial to
keep captchas secure and reliable.

The captchas have evolved over the years. Initially proven
to be robust against malicious attacks, text, and audio-based
captchas are now considered vulnerable to different machine
learning-based attacks [13,50,56]. Researchers have proposed
different techniques and alternative designs to strengthen the
security of the existing captchas [8, 31, 52]. However, text,
audio, and image-based captchas are still predominant and
widely used. Especially, image-based captchas have gained
widespread popularity in recent years.

Being deployed by more than 4.5 million websites,
Google’s image-based captcha service, reCaptcha v2, is the
most popular right now [4]. As most people find solving a
captcha challenge annoying, reCaptcha uses an advanced and
adaptive risk analysis engine to make an initial judgment on
whether a request is from a legitimate user or an automated
program. reCaptcha allows a legitimate user to pass the veri-
fication without having to solve a challenge. However, if the
system determines the user making the request is likely to
be an automated program, then reCaptcha will not allow the
user to continue until he/she solves challenges and pass the
verification.

Recently the security of the image-based captcha systems,
including reCaptcha v2, has come under scrutiny. Sivakorn
et al. used different deep learning-based image classifiers
technologies to break image-based reCaptcha v2 [48]. Like-
wise, Weng et al. developed several deep convolutional neural
network (CNN) based offline image classifiers to show vulner-

1

abilities of ten popular image-based captcha systems, includ-
ing Google reCaptcha 2015 and reCaptcha 2018, to machine
learning technologies [54]. However, we notice that the most
recent reCaptcha v2 showing good immunity to image classi-
fiers after we experiment with four state-of-art pre-trained im-
age classifiers: Xception [17], ResNet [29], VGG16 [47], and
InceptionV3 [49]. We have tested these models on 100 ran-
domly selected images from five frequently used categories
from original reCaptcha v2 challenges, and the best average
accuracy we obtain is less than 40%. The poor performance
of image classifiers on reCaptcha images is primarily due to
the wide variation of background in the recent images. For
example, relative simple images like an image of a stop sign
with grass in the background were used at the beginning of
reCaptcha v2. Right now, the images used by reCaptcha v2
usually have rich information and also frequently contain
multiple objects from a common scene, intelligent enough to
confuse even sophisticated image classification models.

Moreover, the most recent works on reCaptcha have only
demonstrated offline attacks to evaluate vulnerability; how-
ever, due to the adaptive capability of the latest reCaptcha risk
analysis engine, a successful offline attack does not necessar-
ily reflect a practical online attack. In an offline attack, the
attacker first collects some images from reCaptcha challenges.
Then the performance of the solver is assessed by its ability
to discern similar images that match with the target object
in a challenge. However, the advanced risk analysis engine
does not expose many of its adaptive properties unless the
program engages in captcha solving process. For instance,
reCaptcha often repeats identical or similar images to such
a program. Further, we observe reCaptcha randomly distorts
images by adding noise and blurriness in some cases when
our system is submitting and solving captchas. In some in-
stances, it asks us to solve captchas for some object when the
target object is not present in those images at all. Furthermore,
in more than two months of observation, we only encounter
13 object categories (see Table 1) while collecting inform-
ation from reCaptcha challenges using an automated script.
However, once our online system starts to break captchas,
we begin to notice categories that were not exposed to us
before. Additionally, it requires special strategies to handle
dynamic captchas (see Section 2) effectively. Many of these
aspects are overlooked in an offline attack. We also find that
simply collecting reCaptcha images for offline analysis does
not necessarily provide the images one would have got while
solving real captcha challenges. Besides, offline attacks are
evaluated based on assumptions that are not often correct.
For these reasons, offline attacks or analysis cannot provide
practical measurements of to what extent reCaptcha v2 can
be passed by automated programs. For the same reasons, an
effective online attack model is different and more challen-
ging than an offline attack, and it will have a higher impact
on the captcha security. Also, the success rates of offline bots
and online captcha-solving services using human labors are

not comparable due to real factors like IP blocking, captcha
cascading, captcha’s difficulty-level escalating, etc. To invest-
igate whether the bots can solve the captcha better than human
beings, an online captcha solving program to compare the
success rates of human labors and bots is desired.

In this paper, we conduct a comprehensive study of re-
Captcha v2. Through our security analysis, we find that the
essential flaw is that the design of reCaptcha v2 changes
the typical object recognition problem to an object category
verification problem. It reduces the problem to be easier;
thus, it reduces the difficulty level of the challenge for a
bot to solve. Through extensive experimentation, we eval-
uate the adaptive property of the imaged-based challenges
provided by reCaptcha v2. Our rigorous analysis reveals that
the most recent version of reCaptcha v2 does include wide
variations in challenge images rendering prior classifier based
attacks ineffective. We design and implement a novel and
sophisticated system that leverages advanced object detec-
tion and browser automation techniques to break Google’s
image-based reCaptcha v2, with high efficacy. Taking the
state-of-art object recognition technique, YOLOv3, as a basis,
we develop a sophisticated customized object detection and
localization pipeline that is very precise at recognizing the
target objects in reCaptcha challenges. Our online attack tests
achieve a weighted success rate of 92.40% while taking 14.86
secs per captcha on average; the time includes the delay we
added in the system, online image downloading time, and
the log-generation time. Our offline attack tests achieve a
weighted success rate around 95.00% taking 5.27 seconds for
each captcha on average, much higher than 79% success rate
in [54]. If using captcha-solving services with thousands of
human labors, within 5.27 seconds, the success rate range for
Google ReCaptcha 2018 is [85%-92%] in [54]. Our online
and offline success rates are both higher than 92%. It shows
that the motto of reCaptcha v2 “easy for human, hard for
bots” [11] is violated because we find that our bot can solve
their image-based captchas even better than human labors
1. We call for secure captcha designs that comply with the
motto.

We list the main contributions of this paper as follows:

• We conduct extensive security analysis on Google’s
image-based captcha service, reCaptha v2. We invest-
igate and document the internal workflow of different
types of captchas. Our findings also reveal adaptive prop-
erties of the advanced risk analysis engine that have not
examined prior research.
• We develop a novel and fully online system called Im-

ageBreaker by combining advanced computer vision and
browser automation techniques. Specifically, we develop
a highly effective customized object recognition system
based on YOLOv3 to identify and localize objects in

1An anonymized demo video of the attack is available at https://
youtu.be/l3sS_fTlK_8.

2

https://youtu.be/l3sS_fTlK_8
https://youtu.be/l3sS_fTlK_8

reCaptcha challenges. To the best of our knowledge, Im-
ageBreaker is the first real-time system that can break
Google’s image-based captcha, reCaptcha v2 with high
accuracy.

• We test our ImageBreaker against websites that use this
service. Our results show that for reCaptcha v2, the bots
could do better than human beings when solving the
captcha challenges.

• We also point out the design flaws and present the future
design direction and countermeasures to defend against
our bots according to our experiments.

2 Extensive Analysis
2.1 Background

The first version of reCaptcha used to display distorted texts
in an image, and users were asked to type the text in a text box
to solve the captcha. This type of captcha was predominant
for quite some years, and it was made segmentation-resistant
to counter attacks that previous text-based captchas suffered
from [35, 36]. However, the unprecedented advancement of
artificial intelligence has made it trivial to solve text-based
captchas even when the segmentation-resistant property is in
place [9,18]. To address the aforementioned issues, Google in
2014 introduces reCaptcha v2 (image-based) [46] also known
as “no captcha reCaptcha”. This version aims at high usability
and user-friendliness while remaining secure against spam
and bot. Indeed, Google claims this version to “easy for hu-
man” and “hard on bots”. They accomplished this goal by
building an advanced and adaptive risk analysis engine that
scores users’ requests from 0.0 to 1.0 based on different as-
pects of the users’ environment. Google has been updating the
reCaptcha v2 periodically to keep it robust against emerging
security threats. We analyze and test our attack on the most
recent version (as of August 2019) of reCaptcha v2 in this
paper.

2.2 Anatomy of a reCaptcha challenge

In this subsection, we analyze the security of image-based
reCaptcha v2 in a more realistic online setting.

Challenge widget. If a click in the checkbox widget returns
a low score and the advanced risk analysis engine suspect that
the request is from a bot, a new iframe element pops up on
the page where the actual challenge is being displayed (Fig. 1).
To pass the verification, the users must solve a challenge per
instruction provided in the challenge widget (Fig. 1).

The challenge widget can be divided into three sections:
top, middle, and bottom (Fig. 1). The top section contains the
text description (hint text) and instruction about how to solve
the challenge. The element that holds the instruction text can
be located by its identifier rc-imageselect-instructions.
The text description also contains the target object name. The
section in the middle holds the candidate images. The users
have to select images that contain the target object mentioned

Challenge
Description

Challenge
Image

Error
Message

Buttons

Object
Name

A Grid

Figure 1: Challenge widget

R=4

C=4

(0,0) (400,0)

(400,400)
(0,400)

(300,100)

w=

h=

(400,200)

W=400

H=400

H

R

W
C

G0 G1 G2 G3

G4 G5

G6

G7

G8 G9 G10 G11

G12 G13 G14 G15

Figure 2: Representing the challenge image as R×C rectan-
gular grids, where R is the number of rows in HTML table
holding the challenge image and C is the number of cells per
row.

the hint text. The last and bottom section holds multiple but-
tons. The first three buttons on the left have the following
functions: the reload button is used for getting a new captcha
challenge; the middle button with the microphone icon is
used for getting an audio challenge, and the third button or
help button contains instruction about solving the captcha.
The fourth button or the verify button on the right is used for
submitting the challenge.

To better understand the challenge, we focus our attention
to the middle section of the challenge widget that holds actual
challenge images. An HTML table inside a div element with
an ID rc-imageselect-target contains the actual candid-
ate images in the challenge where each cell (tr element) of
the table acts as a clickable button. Specifically, these candid-
ate images could be extracted by selecting img tags inside div
elements having a class name rc-imageselect-tile. For
the sake of simplicity, we call each cell as a grid (See Fig. 1).
Although it appears that each grid holds a unique image, the
src attribute of each image element refers to the same URL
in the initial challenge widget. reCaptcha uses CSS style to
show different parts of the same image on individual grids

3

in order. We could represent the challenge image as a set
of grids. If the HTML table has R rows and C cells per row
and the original image is of W ×H dimensions, then we can
consider the challenge image as R×C rectangular shape grids
(Fig. 2) each having width w = W

C and height h = H
R . We can

localize the grids precisely using the top-left and bottom-right
coordinates of them. Fig. 2 illustrates the whole process.

We encounter two variants of image-based captcha in our
experiment: static captcha and dynamic captcha. We define
them briefly now.
Static captcha. It is a simple image selection based captcha
challenge. Figure 3 shows an example of a static captcha. As
we can see, it requires the user to select the potential grids
holding the target object(s) and click verify (or submit)
button. If the reCaptcha backend considers the selections to
be correct, the user gets verified. Otherwise, it triggers a new
challenge.

Figure 3: Static captcha. The user simply selects the potential
grids holding the target object and clicks verify button.

Dynamic captcha. Initially, the challenge image is presented
the same way as a static captcha. However, once users click
on potential grids holding the target objects, new images get
loaded on the selected grids (Figure 4, second image). It
requires users to continue to click on all the potential grids
until there are no images with target object left in the chal-
lenge widget. Finally, the user clicks verify to submit the
challenge.

Dynamic captcha handling in an automated manner is a
relatively complex process compared to static captchas. We
need to keep track of the selected grids and download new
images when they get loaded. It requires careful program-
ming of the dynamic captcha handler script because we are
primarily interacting with asynchronous Javascript codes.

2.3 Adaptive challenges
reCaptcha uses adaptive challenges to restrict automated soft-
ware or bots from solving captchas. In our experiment, we
notice the vast diversity in challenge images. Once our system
engages in breaking the captchas, we start getting difficult
challenges. reCaptcha usually increases the difficulty level
for suspicious requests. Figure 5 shows several images with
distorted backgrounds. Nearly 10% of images we face belong

to these types. The target objects in these challenges often
have unusual shapes. For instance, the captcha may ask to
solve a challenge for a motorcycle; however, the challenge
image may only include part of a tire in it. The purpose is
to make the challenge ambiguous to confuse the automated
programs intentionally. Surprisingly, our system can identify
all of the objects showing in figure 5.

2.4 Image Repeatedness
We collect 6165 challenge images from reCaptcha protected
websites from 05-15-2019 to 07-22-2019. We find the fin-
gerprint of each image using difference hash (dhash). Our
analysis shows that only 6080 images have unique dhash val-
ues. It means there are 85 completely identical images. We
also find 228 similar images. We consider two images to be
similar if the bit difference (hamming distance) between their
hashes is less than 10.

We also attempt to solve 565 reCaptcha challenges using
our system from 07-25-2019 to 07-28-2019. Surprisingly,
we do not find any completely identical or nearly similar
images in the submitted challenges. It signals that once the bot
engages in captcha solving, reCaptcha tries refraining from
displaying the same image across multiple challenges. This
finding also reveals that simply collecting reCaptcha images
for offline analysis does not necessarily provide the images
one would have got while solving real captcha challenges.

2.5 Key findings on reCaptcha v2

We observe several key features as follows: 1) We find the dy-
namic captcha and adaptive challenge images not discussed in
previous works. 2) Five objects types including “traffic light”,
“bus”, and “car” are more than 73% of the recurred objects for
static captchas. 3) We only encounter five object categories in
dynamic captcha challenges. Further, four of these objects are
already present in the top five frequent objects in the static
captchas.

3 Threat Model
We assume that the adversary wants to access some web ser-
vices protected by reCaptcha using an automated script. We
also assume the attacker has the computational power to train
and deploy an object recognition system to build a captcha
breaker. A recent low to mid-range Graphical Processing Unit
(GPU) with 3-4 GB memory should provide sufficient compu-
tational power to launch the attack. The adversary may need
to change the Internet Protocol (IP) address of the device by
tunneling the internet traffic through some anonymity net-
works like I2P [1] and Tor [21] in case of reCaptcha risk
analysis engine or backend blacklists one of his IPs. When
we use Selenium framework and Python for browsing, our IP
is blocked for every 3-4 requests in a row. Then we switch
to puppeteer library, we can send more than 50 requests in
a minute and the engine would not block us. As a result, we
only use the same IP address for all the requests. Addition-
ally, we consider our attack to be a black-box approach as the

4

Dynamic
Captcha
indicator

Figure 4: Dynamic captcha. Clicking on grids with red border causes dynamic loading of new images on them. The user is
required to click on all potential grids holding the target object until no potential grids are left. The dynamic captcha indicator is

“Click verify once there are none left”.

traffic light bus motorcycle

Figure 5: Examples of challenge images with distorted back-
grounds or unusual object shapes.

attacker has to direct knowledge about reCaptcha backend.
However, the adversary can study the front-end HTML and
JavaScript source code and interact with the elements inside
reCaptcha checkbox and challenge widgets.

4 System Overview
To validate the design flaw of the reCaptcha v2 and investigate
whether the bot could do better than a human for image-based
captcha solving, we build a real captcha solving system called
ImageBreaker. ImageBreaker consists of three modules: In-
formation Gathering Module, Customized Object Detection
Module, and Solver Module. The modules interact with each
other, forming a completely online and fully automated sys-
tem to break Google’s image-based captcha service reCaptcha
v2. Figure 6 shows the workflow of the system. In this section,
we give a high-level overview of each module.

4.1 Information Gathering (IG) Module
The information gathering (IG) process starts once we are
inside the challenge widget. The IG module extracts the target
object name, determines the challenge type, and downloads
challenge image(s). It also determines the number of rows
R and cells C per row in HTML table holding the initial
challenge image. It passes these data/information to the cus-
tomized object recognition (COR) and Solver (S) modules.

4.2 Customized Object Recognition (COR) Module

This module detects and localizes objects in the challenge
image and maps them to the potential grids holding them. It
takes the initial challenge image I or the new image D as in-

put. Besides, it obtains values of R and C from the IG module.
First, the customized object recognition module calculates
coordinates of each grid relative to top-left corner (0,0) of the
image. Second, it sends the image to the base object detection
system, which does the detection and returns detected objects’
coordinates in the form of bounding boxes. It also returns the
confidence scores for the detected objects. Finally, our bound-
ing box to the grid mapping algorithm finds the potential grid
numbers for each bounding box. The bounding box to the
grid mapping algorithm yields a JSON array as output. The
output includes object name, confidence score, and potential
grid numbers for each detected object in the image.

4.3 Solver (S) Module

Two sub-modules, static solver and dynamic solver, constitute
the solver module. If the solver determines a challenge to
be of dynamic type, it delegates the tasks to the dynamic
solver. Otherwise, static solver gets assigned to the task. Every
time a captcha challenge gets submitted, they communicate
back and forth with the checkbox widget to check reCaptcha
verification status. The solver module terminates when the
program passes the verification.

5 Implementation Details

There are several challenges in developing a system that can
break captchas in real-time. First of all, we have to complete
all the interactions within a limited time. Second, a standard
object detection technique cannot fulfill the requirements of
our system. Third, we need to develop an efficient way to
handle dynamic captcha types. We discuss the challenges and
our approaches in detail as we progress in this section.

5.1 Data and Information Gathering

This module is responsible for collecting information and data
from the challenge widget. IG module is used extensively
by other modules, and it assists them in making decisions.
The following data/information is essential for the successful
completion of the dependent modules.

5

Section 5.1: Information Gatherig (IG)

5.1.1 Extract

target object name

5.1.2 Identify

challenge type

5.1.3 Get values

of R and C

5.1.4 Download

Image I

Section 5.2: Customized Object Recognition (COR)

5.2.1 Get dimensions (dims) of image I/D (from 5.1.4 or 5.3.2)

5.2.1 Represent image I/D as RxC (from 5.1.3)

rectangular shape grids (G)

5.2.1 Get coordinates of each G relative to image I/D

5.2.2 Run Base detector on Image I/D

5.2.2 Get bounding boxes

5.2.3 Do bounding box to grid mapping

5.2.3 Return result in JSON format

Section 5.3: Solver (S)

Dynamic?

Get challenge type from 5.1.2

Click on PGNs

Click verity

Check status

Term-
inate

#PGNs==0?

Filter JSON output from 5.2.3

Extract Potential Grid Numbers (PGNs) for the target object (5.1.1)

YesNo

Yes
Click on PGNs

Download newly loaded
images (NImgs)

Create blank image B
(B.dims=I.dims)

Put pixels from NImgs
to image B

Save as image D

S COR

5.3.1 Static Solver

Verified? NoYes

Get new
challenge

S

5.3.2 Dynamic Solver

No

Click verify

Check status

Term-
inate

Verified? NoYes

Get new
challenge

COR

S

Figure 6: The process workflow of the ImageBreaker system.

5.1.1 Extract target object name

A short description of the challenge, which also includes
the target object name, is available at the top of the chal-
lenge widget (Fig. 1) We call it as the challenge instruc-
tion text and locate the element holding this text by its’
identifier rc-imageselect-instructions. We then extract
the innerText inside this HTML element using JavaScript
getAttribute() method. It is a multi-line text string, and
the second line always refers to the target object name. We use
the regular expression to split the text using newline delimiter
and extract the second line to get the target object name. It
is important to note that the target object name may be in a
plural form. We set up simple rules to convert a plural noun
string (e.g., traffic lights) to a singular one (e.g., traffic light).

Identification of common objects. To determine what types
of object names commonly appear in the reCaptcha chal-
lenges, we compile a list of web pages protected by reCaptcha
for data collection purposes. We develop a script based on
Google’s puppeteer [3] library for driving a web browser in
an automated manner. The script visits a randomly selected
web page from the list and clicks on reCaptcha checkbox to
trigger the reCaptcha challenge. Once it is inside reCaptcha
challenge iframe, it extracts challenge instruction and down-
loads the image. In total, we make 6165 requests to 4 different
web pages and show the results in Table 1. Only encountering
13 object names, we list the recurrence frequencies of them.

5.1.2 Captcha type identification

As discussed in Section 2, the image-based reCaptcha has
two variants: a) static captcha and b) dynamic captcha. We
notice a consistent pattern in the challenge instruction that
we utilize to distinguish them. Specifically, the presence of
the phrase “click verify once there are none left” indicates a
dynamic captcha challenge. Otherwise, we are dealing with a
static captcha. Again, we use regular expression to see if the

Table 1: The recurrence frequency of encounter object names

Object names Recurrence number (RN) Frequency

bus 1374 22.29%

traffic light 938 15.21%

crosswalk 907 14.71%

fire hydrant 708 11.48%

bicycle 672 10.90%

car 623 10.11%

store front 589 9.55%

motorcycle 169 2.74%

stair 126 2.04%

chimney 34 0.55%

taxi 17 0.28%

tractor 7 0.11%

parking meter 1 0.02%

phrase is present in hint text or not and thus, determine the
captcha type.

5.1.3 Get values of R and C

We need the number of rows (R) and the number of cells (C)
per row of the HTML table holding the initial challenge im-
age to represent it as a set of grids. There is only a single
table element in the challenge widget. We locate this element
by getElementsByTagName() JavaScript method. The ac-
tual values of R and C can be determined by finding the total
number of tr tags and the number of td tags inside a tr tag,
respectively. However, we use a different strategy, which we
find to be more efficient, to determine the number of rows
and columns. During our experiment, we observe the class
attribute of the table element follows a particular pattern. Spe-
cifically, it follows the following pattern: “rc-imageselect-
table-XY” and the “XY” part corresponds to two different

6

(often same) digits. The first digit “X” determines the num-
ber of rows R in the table and “Y” indicates the number of
cells C in a row. Like before, we use the regular expression to
separate and find the “X” and “Y” from the string.

5.1.4 Download challenge image

We mentioned in Section 2 that when we trigger the challenge
widget for the first time, a single image is split into R×C
grids. In other words, the src attribute of the img tag inside
each cell points to the same image regardless of captcha types.
First, we find the cell elements in the table using the class
name attribute rc-imageselect-tile. We then select one
cell and find the img tag inside. Finally, we get the URL the
challenge image by extracting the src attribute of the img tag.
The IG module downloads the image from the URL and saves
it to a predefined location in our storage device.

5.2 Customized Object Recognition

Object recognition systems identify and localize objects in
images from pre-trained object classes. Since the identifica-
tion and localization of objects in challenge image alone is
not sufficient to map detected objects to grids, we need to de-
velop a customized object detection system. Our main object
detection task is delegated to a base detector. We also develop
an algorithm to map detected objects locations returned by the
base detector to the grids. The customized object recognition
module executes some steps (Fig. 6) sequentially to complete
the task. We now discuss each step in detail.

5.2.1 Get R×C grid representation of image I (or image
D)

We determine and record the width W and height H of the
input image I from the IG module, or the image D from
the dynamic solver sub-module. We then use the dimensions
(W×H) of the challenge image I (or image D), and the values
of R and C to get the R×C grid representation of the image
as discussed in section 2 (Fig. 2).
5.2.2 Base object detector: YOLOv3
To determine the presence of objects and their locations in
an image, an object detection model learns from a set of an-
notated training images (possibly thousands of them). The
target locations of the detected objects are usually described
in term of bounding boxes. The bounding box is a rectangular
box and usually it is defined by x- and y-axis coordinates
upper-left corner, and x- and y-axis coordinates of the bottom-
right corner of the rectangle. Recent advancements in deep
learning and ubiquitousness of relatively low-cost comput-
ing devices such as Graphical Processing Units (GPUs), has
resulted in some powerful object detection systems. We exper-
imented with several advanced and state-of-art object recog-
nition systems such as mask-RCNN [27], Faster-RCNN [42],
and YOLOv3 [41]. We find most of the models, except for
YOLOv3, to be computationally expensive even when we take
advantage of a GPU. As our proposed system is fully online,
and the captcha challenge is time sensitive, we decide to use

YOLOv3. In our experiment, we find YOLOv3 extremely fast
while maintaining almost similar detection performance when
we compare it to the other detection systems. In some cases,
it seems to outperform few the state-of-arts. For these reasons,
we use YOLOv3 as a base object recognition and detection
system in our work.

5.2.2.1 Darknet and customized bounding box detec-
tion

Darknet is the framework for building, training, and making
predictions on YOLOv3-based models. The framework is
written in C. Darknet, by default, provides class name and
confidence score of the detected object when making a pre-
diction. Since we also need coordinates of the bounding box
for localization, we made modifications to the Darknet source
to extract this information. In a YOLOv3 model, a bounding
box is determined by the coordinates of the center, width,
and height, respectively. However, we redefine the bounding
box in terms of top-left and bottom-right corner coordinates
for the ease of calculation. We express center coordinates,
width, and height of a bounding box as (cx,cy), w and h,
respectively. Now the top-left corner coordinates can be ex-
pressed as (tx = (cx− bw)/2, ty = (cy− bh)/2). Similarly,
the bottom-right corner coordinates will be (bx=(cx+bw)/2,
by = (cy+bh)/2).

5.2.2.2 Training YOLOv3 models
We use two datasets to train two separate YOLOv3 object
detection models. We first briefly describe the datasets and
then provide a short description of the training process.

MSCOCO. The Microsoft Common Objects in COntext, or
popularly known as MSCOCO dataset [6] includes 330,000
images in 80 common object categories. It is proposed in
[34] to provide a rich dataset for object recognition. Since
MSCOCO already contains frequently appeared objects in
reCaptcha challenge, we use this dataset to train our object
recognition and detection system.

Customized dataset. To detect object categories that are not
available in MSCOCO, we develop a customized dataset con-
taining four object categories: crosswalk, storefront, stair, and
chimney. We build a web crawler to scrape and fetch images
from images.google.com. We also use some images from
original reCaptcha challenges. Our final dataset includes 3286
manually annotated images.

Building the models. The network architecture of the
YOLOv3 object detection model is defined in a configura-
tion (cfg) file. The default cfg file for YOLOv3 has 106 layers.
Most of these are convolutional layers, and other layers in-
clude shortcut, upsample, route, and yolo layers. We make two
configuration files for the two models, one for MSCOCO data-
set, and another one for the custom dataset. The MSCOCO
YOLOv3 model has 80 object classes and our custom model
has 4 object classes.

7

Training. We train the models using Darknet. Darknet reads
models architecture and different parameters related to train-
ing from the configuration. It loads training images and their
annotations from the data file. We train the model for MS-
COCO dataset for roughly three weeks with batch size equals
256. The custom model is trained only for two days with
batch size equals 32. We stop the training when the losses
converge.

The performance of an object detection model usually de-
scribes in term of mean average precision (mAP). During
training, Darknet saves trained weights after every 1000 it-
erations. We evaluate the weights on the testing dataset and
choose the weight file that provides the highest mAP. Our fi-
nal models have mAP of 58.7 and 71.2 for MSCOCO dataset
and the custom datasets, respectively.

Testing or predictions. We now make predictions on image I
or image D (from dynamic solver) using our object detection
models. We select the trained weights for MSCOCO if the
target object name in captcha challenge matches with one of
the object classes in MSCOCO dataset. Otherwise, we choose
our custom model. We set the detection threshold to 0.2, e.g.,
the model discards any objects whose confidence scores are
below 20% while making predictions. The output of predic-
tions includes the object name, bounding box coordinates,
and confidence score for each detected object.

5.2.3 Bounding box to grid mapping

Once we have the bounding boxes for each detected objects
in the image, we need to map them to their corresponding
grids. Our bounding box to the grid mapping algorithm uses
the coordinates of the bounding box to identify potential grid
numbers (PGNs) for each bounding box. Finally, it returns
the result in JSON format. The result includes object name,
confidence score (returned by the base detector), and potential
grid numbers for each bounding box.

Bounding box to grid mapping algorithm. Algorithm 1 de-
picts the pseudocode for the bounding box to grid mapping
algorithm. It takes bounding boxes and grids as input and
returns the result in JSON format as output. In line 1 we ini-
tialize a JSON array object. There are two for loops (from
line 2-6). The outer loop takes one bounding box (bbox) at
a time, and the inner loop goes through all the grids to see
whether the bounding box itself or part of it is present in any
grids or not. We get the top-left (tx, ty) and bottom-right (bx,
by) coordinates of a particular bounding box in line 3. The
bbox_belong_to_grid function (line 5) takes bounding box
i, and grid j as input and returns True if it can map the bound-
ing box to the grid using their coordinates; otherwise it returns
False. If line 5 returns true, it pushes a JSON object with three
keys namely, on (for object name), cs (for confidence score)
and PGNs (for potential grid numbers) respectively to the
result (line 6). The bbox[i].on returns the object name, and
bbox[i].cs returns confidence score for bounding box i , re-

spectively. The key PGNs is an array since one bounding box
may be mapped to multiple grids. Figure 7 shows a challenge
image with detected bounding boxes and the JSON output
(filtered for the target object “bus”) returned by the algorithm.

Challenge and our strategy. The actual shape of an object
may not be rectangular like the bounding boxes. Besides, an
object may not always occupy the whole bounding box. These
two factors can result in some false positives in the bound-
ing box to grid mapping algorithm. Although it is difficult
to completely eliminate the false positives, we employ some
strategies in our actual implementation code to keep the im-
pact as minimal as possible. For example, if a bounding box
has only a tiny portion (say 5% of its total width or height)
residing inside a grid, we discard the grid from potential grids.

Algorithm 1: Bounding box to Grid Mapping
Input: bounding boxes and grids
Output: object name (on), confidence score (cs), and

PGNs in JSON format

1 result← initialize JSON array
2 for i← 0 to #bboxes−1 do

// get bounding box coordinates

3 tx, ty,bx,by← get_bbox_coords(bboxi)
4 for j← 0 to #grids−1 do

// the bounding box (or part of it) is located

inside the grid

5 if bbox_belong_to_grid(bboxi,grid j) = True
then

// push object name, confidence score and

PGNs to the result

6 result.push({“on” : “$bbox[i].on”,“cs” :
bbox[i].cs,“PGNs” : push(j)})

5.3 Solver

The solver module handles both static captchas and dynamic
captchas. It gets the target object name and challenge type
(static or dynamic) from the IG module. Since handling static
and dynamic captchas requires different strategies, we develop
two sub-modules to manage them separately.

5.3.1 Static Solver

This sub-module solves static captcha challenges. First, it
filters JSON output returned by the COR module to extract
potential grid number (PGNs) for the target object in the chal-
lenge. Second, it locates potential grids using their CSS iden-
tifiers. Third, it performs mouse click actions on those grids.
Finally, it finds submit (or verify) button which is defined
by ID recaptcha-verify-button and does a mouse click
on it. Once clicking on the verify button is done, three possible
things can happen: a) it can get verified; b) reCaptcha may trig-
ger errors; and c) a new challenge may get loaded. We check
the reCaptcha verification status by switching to the check-

8

Figure 7: Left: A challenge images with detected bounding
boxes. Right: Filtered JSON output returned by the bounding
box to grid mapping algorithm. The target object is a bus.

box widget and finding recaptcha-accessible-status. If
our system passed the verification, we terminate the program.
Otherwise, out system will get a new captcha challenge.

5.3.2 Dynamic Solver

When dynamic captcha gets triggered for the first time, we
handle it the way similar to static captcha except for the fact
that we do not click verify button. After clicking on the
potential grid, new images appear on the selected grids. The
dynamic captcha handler extracts the src attribute of each
img tag inside those grids and downloads the images. Now
we can send each image individually to the base detector and
see whether the target object is present in them or not. We
can then click on the grids holding images with the target
object. Although this approach is simple and can solve the
challenge, we found it to be inefficient and time-consuming.
It is not a practical approach since we need to run the base
detector on each image separately, which is a computation-
ally expensive process. We develop a strategy to address this
problem efficiently. First, we create a blank image B, which
has the same dimensions as initial challenge Image I. Second,
we extract pixels from each image and put these pixels to
the proper parts of the blank image B. We want to mention
that the dynamically loaded images on selected grids have the
same dimensions of the shape of the grids. Since our system
keeps track of the potential grid numbers at each phase, and
it knows the coordinates of the grids, it can place the pixels
from new images correctly to the blank image. Third, it sends
this image to the COR module to get the object detection
results. The COR then sends the result back to the Solver,
and dynamic Solver extracts potential grid numbers for the
target object. Fourth, it clicks on potential grids. This process
gets repeated until the PNGs become zero. Finally, we click
verify button, check reCaptcha status, and check any errors.

6 Evaluation
In this section, we evaluate our system in an online setting
against websites using reCaptcha v2. We also evaluate the
offline performance of our model.

Implementation and Evaluation Platform. We use the
puppeteer-firefox, a node library, to drive the Firefox web
browser. The core functionalities of information gathering
and solver modules are developed using JavaScript. We train
and test the base detector with the darknet framework spe-
cifically modified to meet our need. Our bounding box to grid
mapping algorithm is written in C to save time.

We use Selenium and Python in the initial prototype of our
system. However, we find Selenium’s Python interface to be
slow and inflexible for our task. Then, we get rid of all of the
Selenium and Python dependencies from our codebase and
develop our final system using JavaScript and C for higher
efficiency. We develop and test our system on a server with 6
IntelR© XeonR© E5-2667 CPUs, an NVIDIA GeForce RTX 2070
GPU, and 96GB of RAM running the Arch Linux operating
system. We compile the Darknet framework against the GPU
with CUDA version 10.2 and cuDNN version 7.5.

Table 2: Static captcha (online attacks) : the average response
time and accuracy of different type of cases

Object name RN Freq. Success rate avg. RT (sec)

traffic light 98 32.45 94.90 13.98

car 40 13.25 95.00 14.40

bus 32 10.60 93.75 15.35

crosswalk 28 9.27 85.71 15.32

fire hydrant 25 8.28 100.00 14.20

bicycle 25 8.28 96.00 15.12

motorcycle 17 5.63 88.24 15.76

vehicle 13 4.30 84.62 14.73

parking meter 10 3.31 90.00 13.97

boat 6 1.99 83.33 13.95

stair 5 1.66 60.00 14.14

chimney 3 0.99 66.67 14.83

Weighted avg. / / 92.38 14.56

Online attack. Google has kept the internal working of re-
Captcha backend hidden. The javascript code is also obfus-
cated to prevent reverse engineering by attackers. There is no
direct way to evaluate the attacks in such a scenario. Besides,
the risk analysis engine is adaptive, which often let users
pass the verification even if they make some mistakes. While
some times, it continues to ask the users to solve the captcha
challenges when they select objects correctly, we keep the
problem simple by defining a success metric.

We consider an attack to be successful when our system
passes the verification. When our system needs to solve mul-
tiple challenges, we define an attack to be successful if the
interactions between the system and the reCaptcha widget
do not trigger any error. If our system makes a wrong grid
selection, it will trigger the error for both static captcha and
dynamic captcha. Additional, if it fails to detect an object,
an error will be triggered as well. We regard these events

9

as failures. Further, we find that there are at least two po-
tential grids with the target object in challenge images for
static captcha in most cases. Hence, if our system detects less
than two potential girds, we set it as a failure. We need to
solve a single dynamic captcha in more than one step (Fig.
4). We consider every step as a unique challenge to keep the
evaluation process straightforward.

We collect and compile a list of sites defended by re-
Captcha. Our system submitted 565 challenges in total. In
every attempt, when it submits the challenge by clicking on
the verify or submit button, it reads the current status of
the challenge as described in Section 2. If the status indic-
ates that it has passed the verification, the program terminates
and starts the next request. Otherwise, it starts processing
the next challenge. The system also logs captcha types, the
time required to solve a challenge, the total time to pass the
verification, and the number of failed attempts.

Table 2 shows evaluation results for static captchas. We
encounter 321 challenges and submit 302 challenges. The
system has broken the challenges with 92.38% weighted ac-
curacy while taking 14.56 seconds per challenge on average.
As we can see from the table, we encounter just 16 object cat-
egories in our experiment. It suggests that reCaptcha v2 has
minimal object classes. A more concerning issue is that the
top 5 categories make more than 73% of total challenges. We
discard four objects that appear less frequently (5.92%) like a
statue, bridge, mountain, and tractor. ImageBreaker reloads
and gets a new captcha when it encounters any of these dis-
carded object types in a challenge since our object detection
models do not include these objects.

Table 3: Dynamic captcha (online attacks): the average re-
sponse time and accuracy of different type of cases

Object name RN Freq. Success rate avg. RT (sec)

car 71 26.89 92.96 15.06

bus 62 23.48 88.71 15.19

bicycle 47 17.80 93.62 15.18

fire hydrant 44 16.67 95.45 15.68

crosswalk 40 15.15 92.50 15.21

Weighted avg. / / 92.42 15.23

Table 3 depicts success rate and average response time for
different object categories in dynamic captcha challenges. The
weighted average success rate and response time per captcha
are 92.42% and 15.23 seconds, respectively. We discover a
surprising finding for dynamic captcha: we observe only five
object categories while solving the 263 dynamic captchas.
Moreover, all these objects are present in the static captcha
challenges. Combining the results in Table 2 and 3, the
weighted average success rate for static and dynamic captcha
is (302× 92.38%+ 263× 92.42%)/565=92.40%. Similarly,
the weighted average response time is 14.86 seconds. If us-
ing captcha-solving services with thousands of human labors,

within 14.86 seconds, the success rate range for Google Re-
Captcha 2018 is [85%-92%] [54]. Our success rate 92.40% is
higher than the highest success rate 92% of the six captcha-
solving service using human labors. It shows that the motto of
captcha – “Easy for humans, hard for bots” is not always valid
any more because we find the bot can also solving the captcha
with dynamic image even better than the human labors.

6.1 Offline attack evaluation

We randomly select 300 challenge images from 12 object
categories for offline verification. The images are collected
from real captcha challenges submitted by our system. We
also make sure that the recurrence frequency for each object
category reflects the actual recurrence frequency in the online
evaluation. We conduct offline experiments and compare the
results with our manually verified results to evaluate the off-
line success rate of our model. Only when the PGN(s) got by
our solver are exactly match the manually verified PGN(s),
we think it is successful.

Previously, Sivakorn et al. [48] reported that reCaptcha
provides flexibility in its solution. The authors mentioned
that one wrong selection, along with at least two correct ones,
would be sufficient to pass the verification. They evaluated
their results on the offline challenge database while consider-
ing this flexibility. However, in our online attack, we find none
of the assumptions about solution flexibility reported in that
paper hold. While those assumptions may be correct in some
cases for human solvers, in most cases (more than 65%), any
sense of perceived flexibility considerably diminishes when
reCaptcha identifies bot-like activities in a client’s request.
Therefore, we set a hard limit while evaluating our results for
offline verification. Particularly, we consider a solution to be
correct only when our system makes no wrong selection.

The final results are shown in Table 4. Our program breaks
the challenges with a weighted success rate of 95.00% while
taking 5.27 seconds per challenge on average. It can be no-
ticed that our custom object detection model does poorly for
stair and chimney. The poor performance on both of these
objects is due to a limited number of images (3000) in the
training of our model. Overall, the accuracy of our offline at-
tack model is much better than 79% in [54]. If using captcha-
solving services with thousands of human labors, within 5.27
seconds, the success rate range for Google ReCaptcha 2018
is [88%-92%] [54]. The success rate of our offline attacks
is 95.00%, much accurate than human labors within a short
time. Without time limit, our success rate is the same as the
service “imagetyperz”, however, “imagetyperz" needs 41.68
seconds to achieve its success rate 95.00%, much slower than
our solver. Overall, it shows that the motto of captcha – “Easy
for humans, hard for bots” has not been well conformed to
because we find that the bot can also solve the captcha with
dynamic image even better than human labors. Table 5 com-
pares the success rate of our results to six captcha-solving
services using human labors.

10

Table 4: Offline attacks: the average response time and accur-
acy of different types of cases

Object name RN Freq. Success rate Avg. RT (sec)

traffic light 70 23.33 98.57 4.85

car 50 16.67 98.00 4.96

bus 40 13.33 87.50 5.82

fire hydrant 35 11.67 97.14 5.70

bicycle 30 10.00 100.00 5.16

crosswalk 20 6.67 90.00 5.21

motorcycle 15 5.00 100.00 4.99

vehicle 15 5.00 93.33 5.68

parking meter 10 3.33 90.00 5.34

boat 8 2.67 100.00 6.19

stair 4 1.33 50.00 5.93

chimney 3 1.00 66.67 5.26

Weighted avg. / / 95 5.27

Table 5: Comparisons between our results and six captcha-
solving services with human labors [54]

Attack target Success rate avg. RT

ruokuai reCaptcha 2018 91 6.97

hyocr reCaptcha 2018 85 7.05

2captcha reCaptcha 2018 88 4.27

AntiCaptcha reCaptcha 2018 92 5.69

DeCaptcha reCaptcha 2018 62 31.12

imagetyperz reCaptcha v2 95 41.68

Our offline attack reCaptcha v2 95 5.27

Our online attack reCaptcha v2 92.40 14.86
(with delay)

7 Countermeasures
Image-based captchas are based on the assumptions that there
are certain tasks related to image recognition that humans are
good at, but current computers are not. However, recent ad-
vances in computer vision show that machines are as good as,
if not better than humans in image recognition domain [28,32].
Consequently, captchas relying on simple image recognition
will eventually fail to generate robust Turing tests for bots.
Since reCaptcha v2 falls into that category, it would require
radical change to its current design to prevent kind of attacks
we show in this paper. A robust captcha design would ac-
knowledge the current state of AI and use the limitations to
its advantage. To this end, we discuss the design flaws of re-
Captcha v2 and propose a general design direction. However,
it is outside of the paper to provide a formal security analysis
for our potential design direction. We also recommend some
countermeasures as a temporary deterrent to automated at-
tacks on reCaptcha v2 and similar image-based captchas in
this section.

Design flaws. In [54], the authors point out the design flaws
of selection-based captcha are: using a limit number of object
categories, machine-encoded text hints, and easily recogniz-
able candidate images. However, we have different visions.
First, we argue that the essential flaw is that the design of
reCaptcha v2 changes the normal object recognition problem
to an object category verification problem. It reduces the prob-
lem to be easier. For example, it gives the object category and
asks the bot to check whether the grids contain that object.
The design reduces the difficulty level of the challenge for
a bot to solve. Thus, we argue that enlarging the size of the
object categories only makes the model training more time-
consuming, and it could not eradicate the design flaws. The
second argument we want to make is that adding noise to
the candidate images and never reusing the candidate images
again are not helpful as well. Through our experiments, we
find that our system could solve the adaptive challenges; also,
our ImageBreaker could solve the captchas without repeated
images as well.
Web Driver fingerprinting and restriction. A secure
captcha system should be able to detect and prevent the use
of web driver and browser automation software which are
used to drive automated programs. We notice reCaptcha can
identify when our script is based on Selenium [5], a popular
web driver that is also used by most prior works on reCaptcha.
It also blocks our program from accessing reCaptcha chal-
lenges every time after we make four to five requests in a
row. However, it has allowed our automated script based on
the puppeteer framework [3] to solve the captchas. We also
experiment with another relatively new browser automation
framework name TestCafe [2], which is not detected by re-
Captcha. It indicates the reCaptcha risk analysis engine can-
not recognize and fingerprint web drivers and other browser
automation frameworks universally. Since humans should
only solve captchas, access to reCaptcha challenges by any
third-party scripts should be restricted. It can be done by
developing an advanced technique to detect web-driver and
browser automation frameworks.
Adding constraints to the challenge instruction. Current
reCaptcha v2 system asks users to select images (grids) con-
taining some object in the instruction of the challenge. As we
have seen in this paper, the bots can easily pass the verifica-
tion by identifying and selecting grids with the target object.
The captcha challenges could be hardened by adding more
constraints to the challenge instruction or make them difficult
to been understood by a machine. These constraints should
be intuitive for humans but hard for bots. For example instead
of saying, “select all the images with traffic light”, we can
say “select all the images with traffic light in green arrow.
A human can identify such an object without much effort.
However, it is not a trivial task for the machine anymore since
object detection models are not usually designed to identify
objects with this kind of constrains. If the images have both
normal traffic light and traffic light with a green arrow for

11

that particular example, the computer will have a hard time
distinguishing between these two. One can still develop and
train an object detection model to identify objects with such
restrictions. However, it will not be as straightforward as it is
now.

Adding anti-bot resistance in obtaining challenge instruc-
tion. A bot cannot select the correct grids without extracting
the target object’s name from the challenge instruction. A
robust captcha system must make sure that the target object’s
name is not easily obtained. For instance, the name of the
object or the instruction itself could be embedded in an image
to augment anti-bot resistance. Even though machine learning
models can be trained to extract textual information from the
image, it can still slow down the bots as a temporary solution.

Expanding the size of challenge object categories. Ideally,
a secure image-based captcha should have an unlimited num-
ber of object categories. While it may not be possible to in-
corporate that many object types in a real-word captcha, it
should include a relatively large number of object types to de-
ter automated attacks. Besides, we find 8 of these objects are
already present in MSCOCO dataset. If the object categories
are not readily available in public image datasets with labels
like MSCOCO [34], Open Images [33], and ImageNet [44],
it will make the attacks more difficult because the adversary
needs to manually collect, label, and annotate thousands of
images with significant efforts. However, this method only
makes the training time-consuming and cannot lower the suc-
cess rate of our bot. Thus, it is a temporary solution as well.

Use geometry of the object to disable machine learning.
In this paper, we reduce captcha solving to an object cat-
egory verification problem. Although object recognition is
still considered to be a hard AI problem, a captcha system
based on mere object category verification does not guarantee
significant robustness against attacks than an image classi-
fication based captcha. Our attack on reCaptcha v2 in this
paper and the earlier successful attacks on captchas like AR-
TiFICIAL [43] and IMAGINATION [20], explain why object
recognition alone cannot promise a more secure design. How-
ever, we can enhance the robustness of object recognition
captchas against computer-based attacks by exploiting the
shape, size, and orientation of the objects. For instance, if a
rectangular bounding box is drawn around a tilted fire hydrant
with relatively large size in an image, it will result in some
false positives. The false positives occur because we are es-
sentially selecting grids based on bounding box’s coordinates
when part of the actual object may not present in all those
grids. Likewise, a secure image recognition captcha should
use objects with diverse shapes and sizes, and take advantage
of the geometric properties of the objects to misdirect the
computers.

Figure 8: Some failed instances. Red rectangle indicates grids
with undetected target object. Blue rectangle is a grid where
the target object is present and also detected.

Adversarial Machine Learning. Machine learning models,
including deep neural networks (DNNs), have been reported
to be vulnerable to adversarial examples [10, 12, 15, 26, 39].
By adding a small noise to a legitimate input, which is often
imperceptible to human eyes, adversaries can trick a learned
DNN model into misclassifying. This technique can be ap-
plied to reCaptcha challenge images as well. However, the
attacker can use adversarial training [51] or similar meth-
ods [38, 55] to make the system robust against such attacks.
Moreover, most of the current research work only explored the
vulnerability of DNNs against adversarial examples in image
classification domain. However, most real-world computer
vision tasks are based on object detection systems. Eykholt
et al. [23] showed that a stop sign could go undetected by
YOLO v2 [40] and Faster-RCNN [42] detectors by creating
an adversarial poster or physical stickers on it. It is a simple
example, and to what degree object recognition models are
susceptible to adversarial inputs is still an open research prob-
lem. In general, practical attacks against object detection mod-
els are more challenging than image classifiers because there
can be multiple bounding boxes in a single image or scene.

Potential design direction . It is difficult to find a problem
which is “easy for human, hard on bots”. Since natural lan-
guage understanding is one of the three biggest open problems
in natural language processing in 2018 [7], we propose to use
a mapping from a short-story text to a descriptive image. The
short-story text can be abstracted as a story of m relationships
among n objects. It is hard to identify the m relationships
among n objects precisely. For example, the short-story text
challenge is “A cat is chasing a rat near a green willow.” We
can generate many candidate descriptive images telling a
similar but different short story from the challenge. The chal-
lenging part of designing such a captcha is to generate the
short-story texts and candidate descriptive images. However,
generating a text-to-image challenge is easier than solving
such a challenge for bots. Image Captioning technologies
could help to solve such a captcha, however, they are still far
from mature [30]. Also, the designers need to make sure that
the problem to solve could not be reduced into a verification
problem easily.

8 Limitation and Future Work
During experiments, our object recognition system could not
work well to identify some objects in the reCaptcha challenge

12

images. After analyzing the failed cases, we noticed that most
misdetections occurred when the test images were noisy and
blurry. Our object detection models can identify objects from
moderately distorted images — however, heavy distortions
cause misdetections in many cases. Figure 8 shows some
instances where it happened. It is apparent from the figure
that identifying objects from such distorted images is challen-
ging even for humans. Besides, adding too much noise and
blurriness degrades the usability of the captcha system.

We think our ImageBreaker could be improved to address
the issues mentioned above by adding noisy and blurry images
in the training dataset. Image augmentation techniques also
could be utilized to generate adversarial training samples from
the existing datasets. We plan to do this in our future work.
Also, we only tested Google reCaptcha v2. In the future, we
will test other existing image-based captchas and make our
online solver be a general security strength testing tool for
image-based captchas.

9 Related Work
The text and audio-based captchas are now considered broken
since they are highly prone to automated attacks, espe-
cially against machine learning-based attacks. Image-based
captchas have gained popularity in recent years as they are
more accessible and user-friendly to humans and relatively
difficult for computers to solve. However, the assumption that
machines are not good at recognizing semantic information
from images is incorrect. It leads to various high profile at-
tacks on image-based captchas deployed in real-world. In
this section, we discuss related attacks on image-, text-, and
audio-based captchas.
Image-based captcha. Golle et al. [25] designed a support
vector machine classifier to break the Asirra CAPTCHA [22]
where users were required to distinguish between images of
cats and dogs. Zhu et al. [59] provided a systematic study of
13 existing image recognition captchas (IRCs). They assessed
security and practicality of these captcha schemes in real-life
applications. Their research showed that most of the IRCs
studied did not meet real-world security requirements and
thus prone to automated attacks. The authors also proposed
the design of a novel IRC scheme called Cortcha based on
their findings.

In 2016, Sivakorn et al. [48] revealed flaws in reCaptcha
advanced risk analysis engine which would allow an attacker
to influence the system to bypass captcha challenges in some
instances. They also design an attack to break the image-
based reCaptcha challenges. The authors used different deep
learning technologies to perform the attack. It is worth men-
tioning that Google has changed the image-based reCaptcha
in the same year. Their attack methodologies are not suf-
ficient to solve recent reCaptcha challenges automatically.
More recently, Zhao et al. [58] in 2018 evaluated the security
of 10 real-world image captchas, including ReCaptcha 2018.
They developed several convolutional neural network (CNN)
based image classifiers to break captcha systems. Their attack

achieved 79% accuracy in solving image-based ReCaptcha
2018. However, the authors only evaluated the attack on off-
line images with a limited number of object categories.

Text-based captcha. Ye et al. leverage Generative Ad-
versarial Networks to solve text-based captchas automatic-
ally [57]. The authors first train a base solver to generate
synthetic captchas and then perform fine-tuning on the ba-
sic model by applying transfer learning. As a result, their
scheme does not require a large volume of captchas to train
an effective solver. A major limitation of work is that it only
works for fixed-length characters. Gao et al. built a captcha
breaker based on 2D Log-Gabor filter [24]. They evaluated
their attacks on a wide range of text-based captchas ser-
vices.Bursztein et al. used machine-learning-based classifiers
to build a generic attack for text-based captchas [13]. Their
scheme solves text captcha in a single step by applying ma-
chine learning to attack the segmentation and the recognition
problems simultaneously. Other notable attacks on text-based
captchas include [16, 35, 56].

Audio-based captcha. Audio captchas are most vulnerable
to different attacks and extensively studied in the literature.
The scheme in [14] can break 75% of eBay audio captchas.
Darnstädt et al. [19] utilized active and semi-supervised learn-
ing methods to build a low-cost system breaker for audio
captchas. The authors of [50] analyzes the security of audio
captcha using machine learning algorithms such as AdaBoost,
SVM, and k-NN. Sano et al. [45] used hidden Markov (HMM)
models to build a system to break audio captchas. Few other
important works on audio captchas are [16, 37].

10 Conclusions

We designed and implemented a completely online system
to break the image-based reCaptcha v2 in this paper. We
utilized state-of-art object recognition and advanced browser
automation technologies to build the system. Our system
achieved a weighted success rate of 92.40% when breaking
reCaptcha challenges online. It took only 14.86 seconds on a
weighted average per captcha while doing so. Our attack on
reCaptcha v2 shows that it is highly vulnerable to machine
learning-based attacks, especially to advanced object detec-
tion algorithms like YOLOv3. Based on our extensive analysis
and findings, we also provided several countermeasures to de-
fend captchas against such attacks. We hope our future design
direction will shed light on secure captcha designs. We also
believe it is the time to reconsider the assumption that most
existing image-based captchas are designed on: computers
are not as good as human beings to solve visual captchas to
pass the Turing test.

Ethics. During our experiment, we did not target any parts of
the test web pages except the reCaptcha widgets. Specifically,
we limit our interactions to two reCaptcha iframe objects
only. Besides, we have reported our findings to Google.

13

References
[1] I2P Anonymous Network. https://geti2p.net/en/.

Last accessed 21 July 2019.

[2] A node.js tool to automate end-to-end web testing | test-
cafe. https://devexpress.github.io/testcafe/.
Last accessed 29 July 2019.

[3] Puppeteer | Tools for Web Developers | Google De-
velopers. https://developers.google.com/web/
tools/puppeteer/. Last accessed 22 July 2019.

[4] reCAPTCHA Usage Statistics. https:
//trends.builtwith.com/widgets/reCAPTCHA.
Last accessed 21 July 2019.

[5] Selenium - Web Browser Automation. https://
www.seleniumhq.org/. Last accessed 29 July 2019.

[6] COCO - Common Objects in Context. http://
cocodataset.org/#overview, 2019. Last accessed
8 Aug 2019.

[7] Deep Learning Indaba 2018. Frontiers of natural
language processing. https://www.kamperh.com/
slides/ruder+kamper_indaba2018_talk.pdf,
2018.

[8] Elias Athanasopoulos and Spiros Antonatos. Enhanced
captchas: Using animation to tell humans and computers
apart. In Herbert Leitold and Evangelos P. Marka-
tos, editors, Communications and Multimedia Security,
pages 97–108, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[9] Paul Baecher, Niklas Büscher, Marc Fischlin, and Ben-
jamin Milde. Breaking recaptcha: A holistic approach
via shape recognition. In SEC, 2011.

[10] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. Lecture Notes in Computer Science,
page 387–402, 2013.

[11] Andrew Braun. Captchas: Why we need them, how
they’re evolving, and how you can solve them more eas-
ily. https://www.maketecheasier.com/captchas-
why-we-need-them/, 2018. Last accessed 12 July
2018.

[12] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. ArXiv,
abs/1712.04248, 2017.

[13] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki,
and John C. Mitchell. The end is nigh: Generic solv-
ing of text-based captchas. In Proceedings of the
8th USENIX Conference on Offensive Technologies,
WOOT’14, Berkeley, CA, USA, 2014. USENIX Asso-
ciation.

[14] Elie Bursztein and Steven Bethard. Decaptcha: Break-
ing 75% of ebay audio captchas. In Proceedings of
the 3rd USENIX Conference on Offensive Technologies,
WOOT’09, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

[15] Nicholas Carlini and David Wagner. Towards evalu-
ating the robustness of neural networks. 2017 IEEE
Symposium on Security and Privacy (SP), May 2017.

[16] Kumar Chellapilla and Patrice Y. Simard. Using ma-
chine learning to break visual human interaction proofs
(hips). In Proceedings of the 17th International Con-
ference on Neural Information Processing Systems,
NIPS’04, pages 265–272, Cambridge, MA, USA, 2004.
MIT Press.

[17] Francois Chollet. Xception: Deep learning with depth-
wise separable convolutions. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul
2017.

[18] Claudia Cruz Pérez, Oleg Starostenko, Fernando
Uceda Ponga, Vicente Alarcon-Aquino, and Leobardo
Reyes-Cabrera. Breaking recaptchas with unpredictable
collapse: Heuristic character segmentation and recogni-
tion. pages 155–165, 06 2012.

[19] Malte Darnstädt, Hendrik Meutzner, and Dorothea Ko-
lossa. Reducing the cost of breaking audio captchas by
active and semi-supervised learning. In Proceedings
of the 2014 13th International Conference on Machine
Learning and Applications, ICMLA ’14, pages 67–73,
Washington, DC, USA, 2014. IEEE Computer Society.

[20] Ritendra Datta, Jia Li, and James Z. Wang. Imagina-
tion: A robust image-based captcha generation system.
In Proceedings of the 13th Annual ACM International
Conference on Multimedia, MULTIMEDIA ’05, pages
331–334, New York, NY, USA, 2005. ACM.

[21] Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The second-generation onion router. In Pro-
ceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, Berkeley, CA, USA,
2004. USENIX Association.

14

https://geti2p.net/en/
https://devexpress.github.io/testcafe/
https://developers.google.com/web/tools/puppeteer/
https://developers.google.com/web/tools/puppeteer/
https://trends.builtwith.com/widgets/reCAPTCHA
https://trends.builtwith.com/widgets/reCAPTCHA
https://www.seleniumhq.org/
https://www.seleniumhq.org/
http://cocodataset.org/#overview
http://cocodataset.org/#overview
https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf
https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf
https://www.maketecheasier.com/captchas-why-we-need-them/
https://www.maketecheasier.com/captchas-why-we-need-them/

[22] Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared
Saul. Asirra: A captcha that exploits interest-aligned
manual image categorization. In Proceedings of 14th
ACM Conference on Computer and Communications
Security (CCS). Association for Computing Machinery,
Inc., October 2007.

[23] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Florian Tramèr, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Physical adversarial
examples for object detectors. In Proceedings of the
12th USENIX Conference on Offensive Technologies,
WOOT’18, Berkeley, CA, USA, 2018. USENIX Asso-
ciation.

[24] Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang,
Lei Lei, Mengyun Tang, Ping Zhang, Xin Zhou, Xuqin
Wang, and Jiawei Li. A simple generic attack on text
captchas. In NDSS, 2016.

[25] Philippe Golle. Machine learning attacks against the
asirra captcha. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS
’08, pages 535–542, New York, NY, USA, 2008. ACM.

[26] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In
International Conference on Learning Representations,
2015.

[27] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross
Girshick. Mask r-cnn. 2017 IEEE International Confer-
ence on Computer Vision (ICCV), Oct 2017.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. 2015
IEEE International Conference on Computer Vision
(ICCV), Dec 2015.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Re-
cognition (CVPR), Jun 2016.

[30] Md Zakir Hossain, Ferdous Sohel, Mohd Fairuz
Shiratuddin, and Hamid Laga. A comprehensive sur-
vey of deep learning for image captioning. https:
//arxiv.org/pdf/1810.04020.pdf, 2018.

[31] Niloy J. Mitra, Hung-Kuo Chu, Tong-Yee Lee, Lior
Wolf, Hezy Yeshurun, and Daniel Cohen-Or. Emerging
images. ACM Trans. Graph., 28(5):163, 2009.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 1097–1105, USA,
2012. Curran Associates Inc.

[33] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio
Ferrari. The open images dataset v4: Unified image
classification, object detection, and visual relationship
detection at scale, 2018.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects
in context. Lecture Notes in Computer Science, page
740–755, 2014.

[35] Greg Mori and Jitendra Malik. Recognizing objects
in adversarial clutter: Breaking a visual captcha. In
Proceedings of the 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
CVPR’03, pages 134–141, Washington, DC, USA, 2003.
IEEE Computer Society.

[36] Gabriel Moy, Nathan Jones, Curt Harkless, and Ran-
dall Potter. Distortion estimation techniques in solving
visual captchas. In Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, CVPR’04, pages 23–28, Washington,
DC, USA, 2004. IEEE Computer Society.

[37] Jeffrey P. Bigham and Anna C. Cavender. Evaluating
existing audio captchas and an interface optimized for
non-visual use. pages 1829–1838, 04 2009.

[38] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
2016 IEEE Symposium on Security and Privacy (SP),
May 2016.

[39] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial
settings. 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 372–387, 2015.

[40] Joseph Redmon and Ali Farhadi. Yolo9000: Better,
faster, stronger. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jul 2017.

[41] Joseph Redmon and Ali Farhadi. Yolov3: An incre-
mental improvement. arXiv, 2018.

15

https://arxiv.org/pdf/1810.04020.pdf
https://arxiv.org/pdf/1810.04020.pdf

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with
region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149,
Jun 2017.

[43] Yong Rui and Zicheng Liu. Artifacial: automated re-
verse turing test using facial features. Multimedia Sys-
tems, 9:493–502, 06 2004.

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale
visual recognition challenge. Int. J. Comput. Vision,
115(3):211–252, December 2015.

[45] Shotaro Sano, Takuma Otsuka, Katsutoshi Itoyama,
and Hiroshi Okuno. Hmm-based attacks on google’s
recaptcha with continuous visual and audio symbols.
Journal of Information Processing, 23:814–826, 11
2015.

[46] Vinay Shet. Google online security blog: Are
you a robot? introducing “no captcha recaptcha".
https://security.googleblog.com/2014/12/are-
you-robot-introducing-no-captcha.html, 2014.
Last accessed 21 July 2019.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition,
2014.

[48] Suphannee Sivakorn, Iasonas Polakis, and Angelos D.
Keromytis. I am robot: (deep) learning to break se-
mantic image captchas. 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), Mar 2016.

[49] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Jun 2016.

[50] Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis V. Ahn.
Breaking audio captchas. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 1625–1632.
Curran Associates, Inc., 2009.

[51] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J.
Goodfellow, Dan Boneh, and Patrick D. McDaniel.
Ensemble adversarial training: Attacks and defenses.
ArXiv, abs/1705.07204, 2017.

[52] Erkam Uzun, Simon Pak Ho Chung, Irfan Essa, and
Wenke Lee. rtcaptcha: A real-time captcha based live-
ness detection system. In NDSS, 2018.

[53] Luis von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically. Com-
mun. ACM, 47(2):56–60, February 2004.

[54] Haiqin Weng, Binbin Zhao, Shouling Ji, Jianhai Chen,
Ting Wang, Qinming He, and Raheem Beyah. Towards
understanding the security of modern image captchas
and underground captcha-solving services. Big Data
Mining and Analytics, 2:118–144, 06 2019.

[55] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan L. Yuille. Mitigating adversarial effects
through randomization. ArXiv, abs/1711.01991, 2017.

[56] Jeff Yan and Ahmad Salah El Ahmad. A low-cost attack
on a microsoft captcha. In Proceedings of the 15th ACM
Conference on Computer and Communications Security,
CCS ’08, pages 543–554, New York, NY, USA, 2008.
ACM.

[57] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu,
Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng
Wang. Yet another text captcha solver: A generative
adversarial network based approach. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 332–348,
New York, NY, USA, 2018. ACM.

[58] Binbin Zhao, Haiqin Weng, Shouling Ji, Jianhai Chen,
Ting Wang, Qinming He, and Reheem Beyah. Towards
evaluating the security of real-world deployed image
captchas. In AISec@CCS, 2018.

[59] Bin B. Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning
Xu, Meng Yi, and Kaiwei Cai. Attacks and design of
image recognition captchas. In Proceedings of the 17th
ACM Conference on Computer and Communications
Security, CCS’10, pages 187–200, New York, NY, USA,

2010. ACM.

16

https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html

	Introduction
	Extensive Analysis
	Background
	Anatomy of a reCaptcha challenge
	Adaptive challenges
	Image Repeatedness
	Key findings on reCaptcha v2

	Threat Model
	System Overview
	Information Gathering (IG) Module
	Customized Object Recognition (COR) Module
	Solver (S) Module

	Implementation Details
	Data and Information Gathering
	Extract target object name
	Captcha type identification
	Get values of R and C
	Download challenge image

	Customized Object Recognition
	Get R C grid representation of image I (or image D)
	Base object detector: YOLOv3
	Darknet and customized bounding box detection
	Training YOLOv3 models

	Bounding box to grid mapping

	Solver
	Static Solver
	Dynamic Solver

	Evaluation
	Offline attack evaluation

	Countermeasures
	Limitation and Future Work
	Related Work
	Conclusions

