Re-architecting storage infrastructure

...for the future of the enterprise

The Register®

Who's on the panel

lain Thompson

The Register

Roland Dreier

Pure Storage

Agenda

Application storage challenges

What is NVMe and NVMe-oF?

Rethinking Data Centre infrastructure

Where to go from here

The Demands of the Modern Enterprise

"53% OF MOBILE USERS LEAVE A SITE THAT TAKES OVER 3 SECONDS TO LOAD"

"79% OF WEB SHOPPERS WHO HAVE TROUBLE WITH WEB SITE PERFORMANCE SAY THEY WON'T RETURN TO THE SITE TO BUY AGAIN"

"1 SECOND OF LOAD LAG TIME WOULD COST AMAZON \$1.6 BILLION IN SALES PER YEAR"

Application differences can create silos

WIDE RANGE OF IO PROFILES LEAD TO DIFFERENT DEPLOYMENT ARCHITECTURES

	TRANSACTIONAL DATABASE	VIRTUALIZED PRIVATE CLOUD	SCALE-OUT DATABASES	ANALYTICS / DATA WAREHOUSE	BIG DATA / AI / ML	TEST / DEVELOPMENT
	SQL Server Epic Maria DB	mware * Microsoft Hyper-V	cassandra mongo DB	& kafka	Spark ³	
IO PROFILE	RANDOM	RANDOM & SEQUENTIAL	RANDOM	SEQUENTIAL	RANDOM & SEQUENTIAL	RANDOM
IO SIZE	SMALL	SMALL TO LARGE	SMALL & MEDIUM	LARGE	LARGE	SMALL & LARGE
TYPICAL ARCHITECTURE	SAN	SAN	DAS	DAS /SAN / CLOUD	DAS	DAS / CLOUD

But each architecture has trade-offs

Pure Storage focus areas

The challenge of DAS

INFLEXIBLE ARCHITECTURE APP APP APP APP STORAGE CANNOT SCALE STORAGE AND COMPUTE SEPARATELY

INEFFICIENT CONSOLIDATION

Figure 1: Sample resource utilization on servers hosting a Flashbased key-value store service at Facebook, normalized over a 6 month period. Flash and CPU utilization vary over time and scale according to separate trends.

STRANDED CPU / STORAGE

MINIMAL DATA SERVICES

NO SNAPS / REPLICATION
NO GLOBAL
DEDUPLICATION
NO THIN PROVISIONING

INCREASED COMPLEXITY

DISRUPTIVE UPGRADES COMPLEX MANAGEMENT

What is NVMe? NVMe-oF? How can it help?

MODERN STANDARDS FOR CONNECTING & ACCESSING FLASH WITHIN A STORAGE ARRAY AND ACROSS THE NETWORK

Phase 1: Optimizing App Access to Flash

FlashArray Benefits with DirectFlash, NVMe

SAS vs DIRECTFLASH with NVMe

INCREASE IN IOPS PER GB

TBs PER RU

Up to

20%

CAPACITY
EFFICIENCY

INCREASED
WRITE BANDWIDTH

NVMe Application Benefits

(SAS vs NVMe with DIRECTFLASH)

ORACLE

2.9X

FASTER ORACLE DATA WAREHOUSE DSS WRITE BANDWIDTH

3.7X 40%

FASTER DELTA MERGE WRITE BANDWIDTH

SAP HANA SAP Certified Hardware for SAP HANA®

LOWER LOG-WRITE LATENCY **Epic**

HEALTHCARE EMR APPLICATION

45% 27%

LOWER READ LATENCY

HIGHER **EPIC IOPS**

Phase 2: Optimizing network fabric

NVMe-oF Performance Benefits

END-TO-END NVMe PERFORMANCE WITH ENTERPRISE CLASS DATA SERVICES

UP TO UP TO UP TO

50%
20%
25%
LATENCY REDUCTION COMPARED TO ISCSI
UP TO
UP TO
HOST CPU OFFLOAD
COMPARED TO FC

NVME OVER FABRICS via RDMA over CONVERGED ETHERNET PURITY 5.2 + FLASHARRAY//X + RDMA ENABLED CARD

NVMe-oF DirectFlash Benefits vs DAS

END-TO-END NVMe PERFORMANCE

DAS LATENCY

NVMe CONCURRENCY

CONSISTENT PERFORMANCE

EFFICIENCY AT SCALE

SCALE CPU & STORAGE SEPARATELY

ENTERPRISE DATA SERVICES

INCREASED CPU/ STORAGE DENSITY PER RACK

OPERATIONAL GAINS

SIMPLE SETUP, SEAMLESS SCALE

SNAPSHOTS FOR INSTANT SCALE

CLOUD DATA MOBILITY

Rethinking Data Center Infrastructure: DAS Consolidation

Pure Storage DirectFlash Fabric Roadmap

Summary

NVMe and NVMe-oF = FASTER APPS AND DATA SERVICES

250μs LATENCY = DAS PERFORMANCE

MORE CORES = MORE RESULTS

INCREASED EFFICIENCY = LOWER COSTS

Further Reading

eBook: NVMe over Fabrics for Noobs

http://reg.cx/2TZb

Blog: Pure Delivers NVMe-oF with DirectFlash Fabric http://reg.cx/2TZc

Web: Pure Storage FlashArray//X

http://reg.cx/2TZd

