
IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

INTERNATIONAL BUSINESS MACHINES
CORPORATION,

Plaintiff,

v.

GROUPON, INC.

Defendant.

)
)
)
)
)
)
)
)
)
)

C.A. No. ________________

JURY TRIAL DEMANDED

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff International Business Machines Corporation (“IBM”), for its Complaint for

Patent Infringement against Groupon, Inc. (“Groupon”) alleges as follows:

INTRODUCTION

1. IBM is a world leader in technology and innovation. IBM spends billions of

dollars each year on research and development, and those efforts have resulted in the issuance of

more than 60,000 patents worldwide. Patents enjoy the same fundamental protections as real

property. IBM, like any property owner, is entitled to insist that others respect its property and to

demand payment from those who take it for their own use. Groupon has built its business model

on the use of IBM’s patents. Moreover, despite IBM’s repeated attempts to negotiate, Groupon

refuses to take a license, but continues to use IBM’s property. This lawsuit seeks to stop

Groupon from continuing to use IBM’s intellectual property without authorization.

NATURE OF THE CASE

2. This action arises under 35 U.S.C. § 271 for Groupon’s infringement of IBM’s

United States Patent Nos. 5,796,967 (the “’967 patent”), 7,072,849 (the “’849 patent”),

5,961,601 (the “’601 patent”), and 7,631,346 (the “’346 patent”) (collectively the “Patents-In-

Suit”).

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 1 of 17 PageID #: 1

2

THE PARTIES

3. Plaintiff IBM is a New York corporation, with its principal place of business at 1

New Orchard Road, Armonk, New York 10504.

4. Defendant Groupon, Inc. is a Delaware corporation with a principle place of

business at 600 West Chicago Avenue, Suite 400, Chicago, Illinois 60654. Groupon may be

served through its registered agent for service, The Corporation Trust Company, Corporation

Trust Center 1209 Orange Street, Wilmington, Delaware 19801.

5. Groupon operates online local commerce marketplaces to connect merchants to

consumers by offering goods and services at a discount through the website www.groupon.com

and through Groupon mobile applications.

JURISDICTION AND VENUE

6. This action arises under the patent laws of the United States, including 35 U.S.C.

§ 271 et seq. The jurisdiction of this Court over the subject matter of this action is proper under

28 U.S.C. §§ 1331 and 1338(a).

7. Venue is proper in this Court pursuant to 28 U.S.C. §§ 1391(b) and (c) and

1400(b).

8. Personal jurisdiction exists over Groupon because Groupon conducts business in

Delaware, by at least offering for sale and selling products and services through its websites and

mobile applications, which are accessible in Delaware, and because infringement has occurred

and continues to occur in Delaware. Personal jurisdiction also exists over Groupon because

Groupon is a corporation organized under the laws of Delaware.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 2 of 17 PageID #: 2

3

FACTUAL BACKGROUND

A. IBM Is A Recognized Innovator.

9. IBM is recognized throughout the world as a pioneer in many aspects of science

and technology. On eight occasions, more times than any other company or organization, IBM

has been awarded the U.S. National Medal of Technology, the nation’s highest award for

technological innovation. During IBM’s over 100-year history, IBM’s employees have included

six Nobel laureates, five National Medal of Science recipients, and at least fourteen inventors in

the National Inventors Hall of Fame.

10. These and other IBM employees have introduced the world to technology that the

global community takes for granted today, including the dynamic random access memory—

DRAMs—found in nearly all modern computers; magnetic disk storage—hard disk drives—

found in computers and portable music players; and some of the world’s most powerful

supercomputers, including Deep Blue, the first computer to beat a reigning chess champion and

which is on display at the Smithsonian’s National Museum of American History in Washington,

D.C. IBM’s commitment to developing these types of advanced computing technologies has

helped to usher in the information age.

B. IBM Is Committed To Protecting Its Innovations Through The Patent System.

11. IBM’s research and development operations differentiate IBM from many other

companies. IBM annually spends billions of dollars for research and development. In addition

to yielding inventions that have literally changed the way in which the world works, IBM’s

research and development efforts have resulted in more than 60,000 patents worldwide. For over

two decades the United States Patent and Trademark Office (“USPTO”) has issued more patents

to IBM than to any other company in the world.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 3 of 17 PageID #: 3

4

12. Like the research upon which the patents are based, IBM’s patents also benefit

society. Indeed, the Supreme Court has recognized that the patent system encourages both the

creation and the disclosure of new and useful advances in technology. Such disclosure, in turn,

permits society to innovate further. And, as the Court has further recognized, as a reward for

committing resources to innovation and for disclosing that innovation, the patent system

provides patent owners with the exclusive right to prevent others from practicing the claimed

invention for a limited period of time.

C. IBM Routinely Licenses Its Patents In Many Fields, But Will Enforce Its Rights
Against Those Who Take Its Intellectual Property Unlawfully.

13. IBM’s commitment to creating a large patent portfolio underscores the value that

IBM places in the exchange of innovation, and disclosure of that innovation, in return for limited

exclusivity. Indeed, IBM has used its patent portfolio to generate revenue and other significant

value for the company by executing patent cross-license agreements. The revenue generated

through patent licensing enables IBM to continue to commit resources to innovation. Cross

licensing, in turn, provides IBM with the freedom to innovate and operate in a manner that

respects the technology of others.

14. Given the investment IBM makes in the development of new technologies and the

management of its patent portfolio, IBM and its shareholders expect companies to act

responsibly with respect to IBM’s patents. IBM facilitates this by routinely licensing its patents

in many fields and by working with companies that wish to use IBM’s technology in those fields

in which IBM grants licenses. When a company appropriates IBM’s intellectual property but

refuses to negotiate a license, IBM has no choice but to seek judicial assistance.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 4 of 17 PageID #: 4

5

D. IBM Invented Methods For Presenting Applications And Advertisements In An
Interactive Service While Developing The PRODIGY Online Service.

15. The inventors of the ’967 and ’849 patents developed the patented technology as

part of the efforts to launch the PRODIGY online service (“Prodigy”), a forerunner to today’s

Internet, in the late 1980s. The inventors believed that to be commercially viable, Prodigy would

have to provide interactive applications to millions of users with minimal response times. The

inventors believed that the “dumb” terminal approach that had been commonly used in

conventional systems, which heavily relied on host servers’ processing and storage resources for

performance, would not be suitable. As a result, the inventors sought to develop more efficient

methods of communication that would improve the speed and functionality of interactive

applications and reduce equipment capital and operating costs.

16. In light of the above considerations, the inventors developed novel methods for

presenting applications and advertisements in an interactive service that would take advantage of

the computing power of each user’s PC and thereby reduce demand on host servers, such as

those used by Prodigy. The inventors recognized that if applications were structured to be

comprised of “objects” of data and program code capable of being processed by a user’s PC, the

Prodigy system would be more efficient than conventional systems. By harnessing the

processing and storage capabilities of the user’s PC, applications could then be composed on the

fly from objects stored locally on the PC, reducing reliance on Prodigy’s server and network

resources.

17. Prodigy embodied inventions from the ’967 and ’849 patents when it launched in

the late 1980s, before the existence of the World Wide Web. The efficiencies derived from the

use of the patented technology permitted the implementation of one the first graphical user

interfaces for online services. The efficiencies also allowed Prodigy to quickly grow its user

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 5 of 17 PageID #: 5

6

base. By 1990, Prodigy had become one of the largest online service providers with hundreds of

thousands of users. The technological innovations embodied in these patents persist to this day

and are fundamental to the efficient communication of Internet content.

E. IBM Invented Methods Of Preserving State Information In A Continuing
Conservation Between A Client And Server Networked Via A Stateless Protocol.

18. The inventor of the ’601 patent, Arun K. Iyengar, developed the patented

technology as part of IBM’s efforts to discover a better technique of preserving state information

in Internet communications. State information allows clients and servers to keep track of prior

communications during a conversation. For example, online merchants can use state information

to keep track of a client’s product and service selections while the client is shopping and then use

that information when the client decides to make a purchase. However, typical Internet

communication protocols, such as HTTP, are stateless, in other words, they do not have a built-in

mechanism to keep track of state information. At the time of the invention, engineers attempted

to solve this problem by passing state information as hidden variables within forms or by using

“Cookies.” Both of those methods had significant drawbacks and limited the types of

interactions that could preserve state information.

19. The inventor recognized the need for techniques to preserve state information that

supported a wide variety of network interactions. He thus developed novel methods of

recursively embedding state information into communications between clients and servers. For

example, the specification of the ’601 patent discloses program modules that modify hypertext

links in HTML pages in a way that preserves state information for the duration of a conversation.

By transforming Internet communications in this way, the patented technology of the ’601 patent

provides an efficient mechanism to build on previous communications between a server and a

client, such as between an online merchant and a customer.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 6 of 17 PageID #: 6

7

F. IBM Invented Methods For A Runtime User Account Creation Operation Using A
Single-Sign-On Process In A Federated Computer Environment.

20. The inventors of the ’346 patent developed the patented technology as part of

IBM’s efforts to improve single-sign-on technology. To access a protected resource at a service

provider on the Internet, a user typically has to authenticate him or herself with the service

provider. Single-sign-on technology facilitates a user’s connection to resources by requiring

only one authorization operation during a particular user session. However, conventional

technology at the time of the invention required that the user already have an account with the

service provider to use single-sign-on technology.

21. The inventors of the ’346 patent sought to develop single-sign-on technology that

would permit a new user of a service provider to access protected resources. They developed

novel methods for systems interacting within a federated computing environment to trigger a

single-sign-on operation on behalf of a user that would obtain access to a protected resource and

create an account for the user. The specification discloses how to structure a federated

computing environment and the sequence and content of interactions between different systems

that can support the patented methods. The ’346 patent thus extends the benefits of single-sign-

on technology.

G. Groupon Has Built Its Business By Infringing IBM’s Patents.

22. Groupon is a well-known company that operates online local commerce

marketplaces to connect merchants to consumers by offering goods and services at a discount

through its websites, including www.groupon.com, and through the Groupon mobile

applications, including those running on the Apple iOS, Microsoft Windows, BlackBerry, and

Google Android operating systems. Groupon has grown rapidly and now generates billions of

dollars of revenue per year.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 7 of 17 PageID #: 7

8

23. Rather than build its business on its own technologies, Groupon has appropriated

the inventions of the Patents-In-Suit. Websites under Groupon’s control, including at least

www.groupon.com, use the technology claimed by the Patents-In-Suit to implement online local

commerce marketplaces to connect merchants to consumers by offering goods and services at a

discount. Groupon’s mobile applications, including those running on the Apple iOS, Microsoft

Windows, BlackBerry, and Google Android operating systems, use the technology claimed by

the Patents-In-Suit to implement online local commerce marketplaces to connect merchants to

consumers by offering goods and services at a discount.

24. On November 1, 2011, IBM sent an email to inform Groupon that Groupon was

practicing the inventions of the ’967 and ’849 patents, among other patents. Since 2011, IBM

has tried to work with Groupon in an effort to negotiate a license agreement. On August 11,

2014, IBM sent a letter to inform Groupon that Groupon was practicing the inventions of

additional patents, including the ’346 patent. IBM has presented detailed examples of Groupon’s

infringement of the ’967, ’849, and ’346 patents.

25. On information and belief, Groupon received notice of the ’601 patent from the

complaint IBM filed on February 9, 2015 in this district, in the action of International Business

Machines Corporation v. Priceline Group Inc. et al, No. 1:15-cv-137-LPS-CJB (“Priceline

complaint”). Groupon knew or should have known that it infringed the ’601 patent based on the

allegations in the Priceline complaint.

26. Groupon has refused to engage in any meaningful discussions about reaching a

license agreement to end its infringement of IBM’s patents. Instead, Groupon has continued to

willfully infringe IBM’s patents so as to obtain the significant benefits of IBM’s innovations

without paying any compensation to IBM.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 8 of 17 PageID #: 8

9

27. Because IBM’s over three-year struggle to negotiate a license agreement that

remedies Groupon’s unlawful conduct has failed, IBM has been forced to seek relief through

litigation. Among other relief sought, IBM seeks royalties on the billions of dollars in revenue

that Groupon has received based on its unlawful infringement of IBM’s patented technology.

COUNT ONE

INFRINGEMENT OF THE ’967 PATENT

28. IBM is the owner of all right, title and interest in the ’967 patent. The ’967 patent

was duly and properly issued by the USPTO on August 18, 1998. The ’967 patent was duly

assigned to IBM. A copy of the ’967 patent is attached hereto as Exhibit A.

29. In violation of 35 U.S.C. § 271, Groupon has infringed, contributed to the

infringement of, and/or induced others to infringe one or more of the claims of the ’967 patent by

having made, designed, offered for sale, sold, provided, used, maintained, and/or supported its

websites, including www.groupon.com, and its mobile applications, including the Groupon

applications running on, for example, the Apple iOS, Microsoft Windows, BlackBerry, and

Google Android operating systems.

30. For example, Groupon infringes at least claim 1 of the ‘967 patent by, for

example:

a. presenting interactive applications (such as home, local, goods, etc.) on a

computer network (such as the Internet), the network including a multiplicity of user reception

systems (such as the computers or mobile devices of Groupon’s customers) at which respective

users may request a multiplicity of available applications (such as home, local, goods, etc.), the

respective reception systems including a monitor (such as a computer monitor or mobile screen

of a Groupon customer) at which the applications requested can be presented as one or more

screens of display (such as a display region of home, local, goods, etc.).

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 9 of 17 PageID #: 9

10

b. generating a screen display at a respective reception system for a

requested application (such as home, local, goods, etc.), the screen display being generated by

the respective reception system from data objects having a prescribed data structure (such as

woff and/or jpeg files), at least some of which objects may be stored at the respective reception

system (such as the computer or mobile device of a Groupon customer), the screen display

including a plurality of partitions (such as the webpage, the menu bar, and/or the content for

home, local, goods, etc.), the partitions being constructed from objects, the objects being

retrieved from the objects stored at the respective reception system (such as the computer or

mobile device of a Groupon customer), or if unavailable from the objects stored at the respective

reception system, then from the network (such as the Internet), such that at least some of the

objects may be used in more than one application (such as home, local, goods, etc.).

c. generating at least a first partition (such as the webpage and/or the content

for home, local, goods, etc.) for presenting applications (such as home, local, goods, etc.).

d. generating concurrently with the first partition at least a second partition

for presenting a plurality of command functions (such as the menu bar), the command functions

including at least a first group which are selectable to permit movement between applications

(such as home, local, goods, etc.).

31. IBM has been damaged by the infringement of its ’967 patent by Groupon. IBM

is entitled to recover from Groupon the damages sustained by IBM as a result of Groupon’s

wrongful acts.

32. The infringement by Groupon of the ’967 patent was deliberate and willful,

entitling IBM to increased damages under 35 U.S.C. § 284 and to attorney fees and costs

incurred in prosecuting this action under 35 U.S.C. § 285.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 10 of 17 PageID #: 10

11

COUNT TWO

INFRINGEMENT OF THE ’849 PATENT

33. IBM is the owner of all right, title and interest in the ’849 patent. The ’849 patent

was duly and properly issued by the USPTO on July 4, 2006. The ’849 patent was duly assigned

to IBM. A copy of the ’849 patent is attached hereto as Exhibit B.

34. In violation of 35 U.S.C. § 271, Groupon has infringed, contributed to the

infringement of, and/or induced others to infringe one or more of the claims of the ’849 patent by

having made, designed, offered for sale, sold, provided, used, maintained, and/or supported its

websites, including www.groupon.com, and its mobile applications, including the Groupon

applications running on, for example, the Apple iOS, Microsoft Windows, BlackBerry, and

Google Android operating systems. Groupon’s infringement is ongoing.

35. For example, Groupon infringes at least claim 1 of the ‘849 patent by, for

example:

a. presenting advertising obtained from a computer network (such as the

Internet), the network including a multiplicity of user reception systems (such as the computers

or mobile devices of Groupon’s customers) at which respective users can request applications

(such as home, local, goods, etc.), from the network, that include interactive services (such as

offering goods and services at a discount), the respective reception systems including a monitor

(such as a computer monitor or mobile screen of a Groupon customer) at which at least the visual

portion of the applications can be presented as one or more screens of display, the method

comprising the steps of:

b. structuring applications (such as home, local, goods, etc.) so that they may

be presented, through the network, at a first portion (such as the webpage and/or the content for

home, local, goods, etc.) of one or more screens of display; and

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 11 of 17 PageID #: 11

12

c. structuring advertising (such as advertising for coupon codes) in a manner

compatible to that of the applications so that it may be presented, through the network, at a

second portion (such as a banner) of one or more screens of display concurrently with

applications (such as home, local, goods, etc.), wherein structuring the advertising includes

configuring the advertising as objects (such as woff or jpeg files) that include advertising data

and;

d. selectively storing (such as by embedding a cache control parameter)

advertising objects at a store (such as the browser cache) established at the reception system.

36. IBM has been damaged by the infringement of its ’849 patent by Groupon and

will continue to be damaged by such infringement. IBM is entitled to recover from Groupon the

damages sustained by IBM as a result of Groupon’s wrongful acts.

37. The continued infringement by Groupon of the ’849 patent is deliberate and

willful, entitling IBM to increased damages under 35 U.S.C. § 284 and to attorney fees and costs

incurred in prosecuting this action under 35 U.S.C. § 285.

38. IBM has suffered and continues to suffer irreparable harm, for which there is no

adequate remedy at law, and will continue to do so unless Groupon is enjoined therefrom by this

Court.

COUNT THREE

INFRINGEMENT OF THE ’601 PATENT

39. IBM is the owner of all right, title and interest in the ’601 patent. The ’601 patent

was duly and properly issued by the USPTO on October 5, 1999. The ’601 patent was duly

assigned to IBM. A copy of the ’601 patent is attached hereto as Exhibit C.

40. In violation of 35 U.S.C. § 271, Groupon has infringed, contributed to the

infringement of, and/or induced others to infringe one or more of the claims of the ’601 patent by

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 12 of 17 PageID #: 12

13

having made, designed, offered for sale, sold, provided, used, maintained, and/or supported its

websites, including www.groupon.com, and its mobile applications, including the Groupon

applications for mobile devices running on, for example, the Apple iOS, Microsoft Windows,

BlackBerry, and Google Android operating systems. Groupon’s infringement is continuing.

41. For example, Groupon infringes at least claim 51 of the ’601 patent by, for

example:

a. preserving state information (such as identification variables about the

user and/or the user’s request) in a conversation via a stateless protocol (such as http or https)

between a client adapted to request services (such as requesting goods and services) from one or

more servers (such as Groupon’s website servers), the method comprising the steps of:

b. receiving a service request (such as a request to search for goods and

services, including for example “getaways”) including state information, via the stateless

protocol;

c. identifying all continuations (such as hyperlinks or other URL references)

in an output from said service (such as webpage requests or search results) and recursively

embedding the state information (such as inserting identification variables) in all identified

continuations, in response to said request; and

d. communicating a response including the continuations and embedded state

information, wherein the continuations enable another service request (such as the process of

reserving goods or services, including “getaways” or another HTTP request) and one of the

continuations must be invoked to continue the conversation.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 13 of 17 PageID #: 13

14

42. IBM has been damaged by the infringement of its ’601 patent by Groupon and

will continue to be damaged by such infringement. IBM is entitled to recover from Groupon the

damages sustained by IBM as a result of Groupon’s wrongful acts.

43. IBM has suffered and continues to suffer irreparable harm, for which there is no

adequate remedy at law, and will continue to do so unless Groupon is enjoined therefrom by this

Court.

COUNT FOUR

INFRINGEMENT OF THE ’346 PATENT

44. IBM is the owner of all right, title and interest in the ’346 patent. The ’346 patent

was duly and properly issued by the USPTO on December 8, 2009. The ’346 patent was duly

assigned to IBM. A copy of the ’346 patent is attached hereto as Exhibit D.

45. In violation of 35 U.S.C. § 271, Groupon has infringed, contributed to the

infringement of, and/or induced others to infringe one or more of the claims of the ’346 patent by

having made, designed, offered for sale, sold, provided, used, maintained, and/or supported its

websites, including www.groupon.com, and its mobile applications, including the Groupon

applications for mobile devices running on, for example, the Apple iOS, Microsoft Windows,

BlackBerry, and Google Android operating systems. Groupon’s infringement is continuing.

46. For example, Groupon infringes at least claim 1 of the ’346 patent by, for

example:

a. managing user authentication (such as verifying the identity of a Groupon

user) within a distributed data processing system (such as a computer network), wherein a first

system (such as Facebook and its network) and a second system (such as Groupon and its

network) interact within a federated computing environment (such as a computer network for

example the Internet including Facebook and Groupon) and support single-sign-on operations

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 14 of 17 PageID #: 14

15

(“Sign In” operations) in order to provide access to protected resources (such as the “BUY!”

option on Groupon), at least one of the first system and the second system comprising a

processor, the method comprising;

b. triggering a single-sign-on operation (such as launching an operation to

“Sign In” using Facebook) on behalf of the user in order to obtain access to a protected resource

that is hosted by the second system, wherein the second system requires a user account for the

user to complete the single-sign-on operation (such as requiring the user to have a Groupon

account) prior to providing access to the protected resource;

c. receiving from the first system at the second system an identifier

associated with the user (such as an email address, Facebook ID, or access token); and

d. creating a user account (such as a Groupon account) for the user at the

second system based at least in part on the received identifier associated with the user after

triggering the single-sign-on operation but before generating at the second system a response for

accessing the protected resource (such as the “BUY!” option), wherein the created user account

supports single-sign-on operations (such as “Sign In” operations at Groupon using a Facebook

account) between the first system and the second system on behalf of the user.

47. IBM has been damaged by the infringement of its ’346 patent by Groupon and

will continue to be damaged by such infringement. IBM is entitled to recover from Groupon the

damages sustained by IBM as a result of Groupon’s wrongful acts.

48. The continued infringement by Groupon of the ’346 patent is deliberate and

willful, entitling IBM to increased damages under 35 U.S.C. § 284 and to attorney fees and costs

incurred in prosecuting this action under 35 U.S.C. § 285.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 15 of 17 PageID #: 15

16

49. IBM has suffered and continues to suffer irreparable harm, for which there is no

adequate remedy at law, and will continue to do so unless Groupon is enjoined therefrom by this

Court.

RELIEF REQUESTED

Wherefore, IBM respectfully requests that this Court enter judgment against the

Defendant as follows:

A. That the ’967 patent has been infringed by Groupon;

B. That Groupon’s infringement of the ’967 patent has been willful;

C. That the ’849 patent has been infringed by Groupon;

D. That Groupon’s infringement of the ’849 patent has been willful;

E. An injunction against further infringement of the ’849 patent;

F. That the ’601 patent has been infringed by Groupon;

G. That Groupon’s infringement of the ’601 patent has been willful;

H. An injunction against further infringement of the ’601 patent;

I. That the ’346 patent has been infringed by Groupon;

J. That Groupon’s infringement of the ’346 patent has been willful;

K. An injunction against further infringement of the ’346 patent;

L. An award of damages adequate to compensate IBM for the patent infringement

that has occurred, together with pre-judgment interest and costs;

M. An award of all other damages permitted by 35 U.S.C. § 284, including increased

damages up to three times the amount of compensatory damages found;

N. That this is an exceptional case and an award to IBM of its costs and reasonable

attorneys’ fees incurred in this action as provided by 35 U.S.C. § 285; and

O. Such other relief as this Court deems just and proper.

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 16 of 17 PageID #: 16

17

DEMAND FOR JURY TRIAL

IBM hereby demands trial by jury on all claims and issues so triable.

Respectfully submitted,

OF COUNSEL:

John M. Desmarais
Karim Oussayef
Robert C. Harrits
DESMARAIS LLP
230 Park Avenue
New York, NY 10169
Tel: (212) 351-3400

Dated: March 2, 2016
1217653 / 43155

POTTER ANDERSON & CORROON LLP

By: /s/ David E. Moore
David E. Moore (#3983)
Bindu A. Palapura (#5370)
Stephanie E. O’Byrne (#4446)
Hercules Plaza, 6th Floor
1313 N. Market Street
Wilmington, DE 19801
Tel: (302) 984-6000
dmoore@potteranderson.com
bpalapura@potteranderson.com
sobyrne@potteranderson.com

Attorneys for Plaintiff International Business
Machines Corporation

Case 1:16-cv-00122-LPS Document 1 Filed 03/02/16 Page 17 of 17 PageID #: 17

EXHIBIT A

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 1 of 147 PageID #: 18

United States Patent [19]

Filepp et al.

11111 11111111 III 11111 11111 11111 11111 11111 11111 11111 III 1111110111 RI liii

1JS00S796967A

[111 Patent Number: 5,796,967

[45] Date of Patent: Aug. 18, 1998

[541 METHOD FOR PRESENTING Dunwoody et al. "A Dynamic Profile of Window System
APPLICATIONS IN AN INTERACTIVE Usage". Computer Workstations Conference. pp. 90-99..
SERVICE 1988.

Gancarz. "Uwm: A User Interface for X Windows". Usenix
[75] Inventors: Robert Filepp. Springfield. N.J. :

Association Summer Conference Proceedings. 1986.Kenneth H. Appleman. White Plains;
Alexander W. Bidwell, New York. both Scheifler et al. "The X Windows System". ACM Transac-
of N.Y.; Allan M. Wolf, Ridgefield; tions on Graphics. vol. 5. No. 2. pp. 79-709.. Apr. 1986.
James A. Galambos. Westport. both of Microsoft Windows version 2.0 user's guide. pp. 88-91..
Conn. ; Sam Meo. New York. N.Y. 1987.

[73] Assignee: International Business Machines
Corporation. Armonk. N.Y.

[21] AppI. No.: 158,031

[22] Filed: Nov. 26, 1993

Related U.S. Application Data

[60] Division of Ser. No. 388,156, Jul. 28. 1989. Pat. No.
5,347,632. which is a continuation-in-part of Ser. No. 328,
790, Mar. 23, 1989, abandoned, which is a continuation-in-
part of Set No. 219,931, Jul. 15, 1988, abandoned.

[51] Eilt. CI.6 .. GO6F 13/00
[52] U.S. Cl 395/339; 395/200.08; 395/200.09
[58] Field of Search 395/155-159.

395/161 160. 200.03. 200.04. 200.05. 200.08,
601 326, 329-335. 339-349. 352-354.

356-.357

[56] References Cited

U.S. PATENT DOCUMENTS

4,821,211 4/1989 Torres 3951357
4,949,248 811990 Caro 3951200.09
4,953159 8/1990 Hayden et al 3951200.04
5,050,105 9/1991 Peters 395/346
5,220,657 6/1993 Bly et al 395/153
5,280,583 1/1994 Nakayama et al 395/153

OTHER PUBLICATIONS

McGregor. "Designing User Interface Tools for the X Win-
dow System". Compcon Spring '89 IEEE Computer Society
Int'l Conference. pp. 243-246.. 1989.

Header
Partition #1
250

Body
Partition #2
260

AD
Partition #3
260

25

"Microsoft Windows-Version 2.0". 1987. (Book 1; p.
viiixiii: Book 4. pp. 36.7.83).

Mastering WìndowsTM 3.0 by Robert Cowart. 1990. pp.
6-27.

Primary Examiner-Joseph H. Field
Attorne',; Agent, or Fir,n-Paul C. Scifo

[57] ABSTRACT

A method for presenting applications in an interactive ser-
vice featuring steps for generating screen displays of the
service applications at the reception systems of the respec-
tive users. Steps are provided for generating the application
displays as screens having a plurality of partitions. the
partitions being constructed from reusable elements. In
accord with the method. the screens include at least a first
partition at which an application may be presented and a
second. concurrently displayed partition including corn-
mand functions for managing the display. The method
further includes steps for providing command functions that
facilitate random navigation to new applications with a
variety of different procedures which the user can choose
from. In (preferred) one form. the functions are presented as
a command bar located at the bottom of the screen. Further.
the method includes steps for opening and closing windows
on the display to enable presentation of additional data
relating to the presented applications. Still further. the
method includes steps for providing additional partitions for
concurrently displaying other applications. which may
include advertising.

17 Claims, 16 Drawing Sheets

Presentation

ABC APPLES

APPLES ARE GOOD FOR YOU
APPLES COST EACH
I-low MANY APPLES DO YOU
WISH TO ORDER ?

L 1

AD

.-
ACTOl

NEXT

I

291

RACK
292

PATH

293
MENU
294 295

JUMP
296

HELP EXrt

297 298

Command Bar -

Partition 290 SPECFIC DISPLAY SCREEN EXAMPLE

Display
Field 2

271

Display
Field i.-
270
(Input)

- Display
Field 3
272

265

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 2 of 147 PageID #: 19

U.S. Patent Aug. 18, 1998 Sheet 1 of 16 5,796,967

information Layer

Swftch/fuIe Server

loo

lo

/

200

lo
/

FIG. i

400

20

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 3 of 147 PageID #: 20

11
0

F
I
G

2
H

ig
h

F
un

ct
io

n
[ic

er
S

ys
te

m
L
!
m

G
at

ew
ay

S
ys

te
m

s
F

ile
 S

er
ve

r

13
0

B
us

in
es

s
S

up
po

rt
S

ys
te

m 10
0

C
ac

he
/C

on
ce

nt
ra

to
r

30
1

I

1
1
1
1
1
1
1

L
I

I
i
i
i
i

L
L
í

4
0
0

1
1
T
H

4
2
4

I
C

ac
he

/C
on

ce
nt

ra
to

r
I
-
1

I

7o
i3

00
E
:
;
i

:í
Jo

5
2

40
1

14
16

40
5

a
i
-

42
6

t
:
i
k
-

42
8

-
20

10

e
D

r
j

r
D rD I
J u
'

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 4 of 147 PageID #: 21

U.S. Patent Aug. 18, 1998 Sheet 3 of 16

p255

Header Partition 250

Body Partition Body Partition
260 260

Window
Partition

275

AD Partition 280

LNextlIBockII Po] IMenuIIActionhlJumpIl Help
(L t I

I FExit I

5,796,967

Command
Bar 290
J

291 292 293 294 295 296 297'\ \ \ ' \ \
298

FIG. 3a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 5 of 147 PageID #: 22

U.S. Patent Aug. 18, 1998 Sheet 4 of 16 5,796,967

Header-
PartlUon #1
250

Body-
Partition #2
260

AD-
Partition #3
280

Command Bar
Partition 290

255
Presentation

ABC APPLES

APPLES ARE GOOD FOR YOU
APPLES COST EACH

HOW MANY APPLES DO YOU
WISH TO ORDER ?

AD
AC11ON

NEXT
291

CK
292

PATH
293

MENU
294

(
295

JUMP
296

HELP
297

EXIT

298

SPECIFIC DISPLAY SCREEN EXAMPLE

FIG. 3b

Display

Field 2
.-271

Dis p 1 ay

.-
Field i

270
(Input)

- Display

Field 3
272

285

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 6 of 147 PageID #: 23

US. Patent Aug. 18, 1998 Sheet 5 of 16 5,796,967

5
551

(

OBJECT STRUCTURE

552 552

(
552

fu
..

HEADER SEGMENT SEGMENT SEGMENT

1YPE LENGTH DATA

553 554 555 '

FIG. 4a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 7 of 147 PageID #: 24

5
5
1

r
-

-
%

I
I

B
Y
T
E

i
B
Y
T
E
S

2
-
7

B
Y
T
E
S

8
-
1
1

B
Y
T
E

1
2

B
Y
T
E

1
3

B
Y
t
E
S

1

4
-
1
5

B
Y
T
E

1
6

B
Y
T
E

1
7

B
Y
T
E

1
8

O
B
J
E
C
T

A
C
C
E
S
S

O
B
J
E
C
T

O
B
J
E
C
T

O
B
J
E
C
T

O
B
J
E
C
T

O
B
J
E
C
T

N
U
M
B
E
R

O
B
J
E
C
T

ID
C

O
N

T
R

O
L

S
E

T
LO

C
.

1Y
P

E
LE

N
G

T
H

S
T

O
R

A
G

E
O

F
V

E
R

S
IO

N
LE

N
G

T
H

IN
S
E
T

C
O

N
T

R
O

L
O
B
J
E
C
T
S

C
O

N
T

R
O

L
IN

 S
E

T

F
I
G
.

4
b

'
a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 8 of 147 PageID #: 25

O
B

JE
C

T
T

Y
PE

S 50
0

IP
A

G
E

 T
E

M
P

LA
T

E
 O

B
JI

50
6

W
IN

D
O

W
 O

B
JE

C
T

J

FI
G

.
4c

S
E

G
M

E
N

T
 T

Y
P

E
S

/51
2

J
C

U
S

T
O

M
 C

U
R

S
O

R
I

51
8

[F
LD

 L
E

V
L

P
G

M
 C

A
LL

 J

r50
2

I
P

A
G

E
 F

O
R

M
A

T
 O

W
 I

r50
8

I
P

R
O

G
R

A
M

 O
B

JE
C

T
I

51
4

I
C

U
S

T
O

M
 T

E
X

T
I

ç-
52

0
J

K
E

Y
W

O
R

D
/N

A
V

IG
A

T
N

 I

,,5
24

r5
26

I P
G

 E
LM

N
T

 S
E

LE
C

T
O

R
 C

A
LL

 I
I P

A
G

E
 F

O
R

M
A

T
 C

A
LL

 I

53
0

I P
R

E
S

E
N

T
A

T
IO

N
 D

A
T

A
]

I1
__

51
3

I
C

O
M

P
R

E
S

S
IO

N
 D

E
S

.
I

,-
51

9
i

C
U

S
T

O
M

 C
U

R
S

O
R

 T
Y

P
E

 2
1

I-
. 5

25
I

IM
B

E
D

D
E

D
 E

LE
.

I
ç-

 5
31

i
T

A
B

LE
 S

T
R

U
C

T
U

R
E

I
53

7
I

S
Y

S
T

E
M

 T
A

B
LE

 C
A

LL
J

flP
R

O
G

R
A

M
 C

A
LL

I
,-

51
5

I
A

R
R

A
Y

 D
E

F
.

I
.-

52
1

I
C

U
S

T
O

M
 G

R
A

P
H

IC
I

f-
 5

27
I

IN
V

E
N

T
O

R
Y

 C
O

N
T

R
O

L
I

f-
 5

33
I

IM
B

E
D

D
E

D
 O

B
JE

C
T

I

r- I

,5
O

4
C

l)
I

I P
A

G
E

 E
LE

M
E

N
T

 O
R

Ji

,-
51

O
I

A
D

V
E

R
T

IS
E

M
E

N
T

 O
W

 I

51
6

I
F

IE
LD

 D
E

F
IN

IT
IO

N
i

_5
22

-

I
P

A
G

E
 E

LE
M

E
N

T
 C

A
LL

 I
X

7_
_

52
8

I
P

A
R

T
ItI

O
N

 D
E

F
'N

J

,_
-5

34
I

P
R

O
G

R
A

M
 D

A
T

A
J

,.-
51

7
J

F
IE

LD
 D

E
F

. T
Y

P
E

 2
I

I-
52

3
L

E
X

T
E

R
N

A
L

R
E

F
.

J

I-
52

9
L

P
A

G
E

 F
O

R
M

A
T

 D
E

F
.

I

,_
-5

35
I

T
A

B
LE

 E
N

T
R

Y
]

,-
.5

40
I

P
A

G
E

 D
E

F
A

U
LT

I

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 9 of 147 PageID #: 26

U.S. Patent Aug. 18, 1998 Sheet 8 of 16 5,796,967

OBJECTS: COMPOSITION AND RELATIONSHIPS ,5OO
524

I PAGE TEMPLATE OBJECTS r522 PAGE 1

KORD PAGE FORMAT CALL PROGM CALLS CALLS CALL i

532 PAGE ELEMENT I(526 (ELEMENT SELECTOR

502

PAGE FORMAT OBJECTS

PARTITION DEF1NITIONS -
PAGE DEFAULTS ---

508

PROGRAM OBJECTS

PR0CRAMS534
TABLES 534

506

WINDOW OBJECTS

PARTITION DEFINITION'
PAGE ELEMENT CALL
CUSTOM TEXT- 514
CUSTOM CURSOR512
PRESENTATION DATA
FIELD DEFINITIONS
ARRAY DEFINITIONS
PROGRAM CALLS

'532

528

504 or 510

p

PAGE ELEMENT OBJECTS

PARTITION DEFINITION
CUSTOM TEXT 514
CUSTOM CURSOR--512
PRESENTATION DATA 530
FiELD DEFINITIONS --.. 5 1 6
ARRAY DEFINITIONS-.

528 PROGRAM CALLS --.
522k I

532

530
516

515 FIG. 4d

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 10 of 147 PageID #: 27

U.S. Patent Aug. 18, 1998 Sheet 9 of 16 5,796,967

551
PAGE TEMPLATE OBJECT

T PAGE PAGE

I

FORMAT ELEMENT
CALL

J?
CALL

PAGE FORMAT OBJECT

DESCRIBES PARTONS
ON SCREEN

502/ - - .)

THESE POINTERS ARE
EITHER SYMBOLIC(THE
OBJECT OF THE POINTED-
TO OBJECT) OR
DISPLACEMENTS WITHIN A
CONTAINING OBJECT

I PAGE ELEMENT OBJECT

I DEFINES PRESENTATION DATA FOR A GIVEN PARTITION
'J FIELD DEFINmONS, PROGRAM LOGtC TO BE EXECUTED

PROGRAM OBJECT

PROGRAM LOGIC TO BE INTERPRETED
AS A RESULT OF AN EVENT, e.g. FIELD POST-PROCESSOR

FIG. 5a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 11 of 147 PageID #: 28

U.S. Patent Aug. 18, 1998 Sheet 10 of 16 5,796,967

I
PAGECOMPOSITION AND PROCESSING

I
ç500 526

I
PAGE TEMPLATE I = t PAGE FORMAT CALL

------ 532
PROGRAM CALL

I
PAGE FORMAT OBJECTI PROGRAM CALL

WINDOW CALL
512

PROGRAM CALL

I N ITLALIZ

250

SELECTOR

i 2 55
PAGE ELEMENT CALL 532

260 EJI__

PROGRAM CALL

280 PAGE ELEMENT CALL
=

/ // /

I EVENT I PROGRAM ID I PARAMETERS I

5O8 PARAMETER DRIVEN , ,i
APPLICATION j WINDOW OBJECT (504_______________
PROGRAMS, EG:

IPROGRAM OBJECTI MODELS COMMON HAGE ELEMENT OBJECT I-.

I
PAGE ELEMENT OBJECT r

i
CODE

\ \>LOGIC
INTERPRETER

PRESENTATION DATA

PAGE ELEMENT POSTPROCESSOR I FIELD DEFINITION I"
1

PAGE ELEMENT INITIALIZER LL FIELD DEFINITION

\ FIELD DEFINITION

F 1G . 5b [D POSTPROCESSOR I

FIELD INITIALIZER I

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 12 of 147 PageID #: 29

U.S. Patent Aug. 18, 1998 Sheet 11 of 16 5,796,967

INITIALIZE
(A) RS

(B)

(2)
TRIGGER FROGRAM
OBJECTÇPO-id)

INTERPRET PRE-PROC

SELECTORS
INITIALIZERS

FIG. 6
R.S. PROTOCOL

(la)
NAV Logon PTO-id

PROCESS OBJECTS

REQUEST OBJS.
PARSE OBJS.

INTERPRET SECS
BUILD PPT
TRIGGER PRE-PROC
MNGE WINDOW STACK
X-FER PRES. DATA

(lb) (F)
NAV'PTO-1d)frJTERPRET POST-

(i c)
OPEN WINDOW

('WO-id)
i d)

PROCESS PARAMS.
GENERATE TRANS.
OPEN WINDOW
CLOSE WINDOW
NAVIGATE TO PAGE
(w/o RETURN)

(3)
PAGE/OPEN WINDOW
PROCESSING
COMPLETE

\J
WAIT FOR EVENT

(D) USER INPUT
I SYSTEM GENERATED

(4)
EVENT

PROCESS EVENT

TRANS PHYS. -LOG EVENT

'E' UPDATE DISPLAY FIELDS
' I (PEVs)

FUNCTION CALL
TRIGGER FUNCTION
FILTER
TRIGGER POST-PROC

(5) TRIGGER
PROGRAM
OBJECT (PO-id)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 13 of 147 PageID #: 30

U.S. Patent AUg. 18, 1998 Sheet 12 of 16 5,796,967

420f1

4t

PARTITIONED APPLICATIONS

. LINKED PAGE TEMPLATE OBJECTS

s PAGE ELEMENT OBJECTS

. PROGRAM OBJECTS AND PROCESSORS

s TRANSACTION MESSAGE

SERVICE SOFTWARE KERNAL

LOGICAL OPERATING SYSTEM

PC SPECIFiC MULTI - TASKER

PC SPECIFIC OPERATING SYSTEM

400

RECEPTION SYSTEM LAYERS

FIG. 7

410

430

J
432

433/
p.- 451

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 14 of 147 PageID #: 31

U.S. Patent Aug. 18, 1998 Sheet 13 of 16

Function Key Echo!
Data Keyboard Cursor Movement

Manager

434
/ Open/Close

Window
Navigate

Presentation
Data

.

Object

interpreter

Object Response Object
Processor

(Build PPT-
open/close

I

Object window

I Storage 437__
t

I

Facility Object Scanner

.-Ì-

__A (porse segments

439 Application
Record

level Object
I object request Data

Store
Non-local 441
object

I440 request
f Data i

.4 Collection I

Object
I flnfn Iafn I Manager

I

Return

Object Manager!
CommunicatIons

Manaaer Interface
Send DIA f
Messages 43

Link Communications
Manager

Receive Queue

Receive DIA
Messages;
TOCS Objects

*M rr

5,796,967

L) IS IO

Manager

461

Request
436 pre-

and
Request post-
firing of process-
TBOL or
filters & firing
post-
process-
ors

r TBOL i
j Interpreter

I

Object '\ Field
438 Dota

Manager
Object id
request ' 442

uest Next Queue

444 FIG. 8

Fatal
Error

Manager

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 15 of 147 PageID #: 32

U.S. Patent Aug. 18, 1998 Sheet 14 of 16 5,796,967

551
\526'PAGE PAGE _-522

PTO OBJECT FORMAT ELEMENT
HEADER CALL CALL500

\i t i i i i i i i i

0BI. ID -J
ABCI
OBJ LENGTH
OBJ CONTROL -
S1YPE - 553
554-StING -
555-ABCF
553-STYPE -
554-SLENG
555-ABCX

PAGE r:
FORMAT IB
OBJECT

551 "l_.

PAGE
ELEMENT
OBJECT
PART 2

502

. . ;-.530 ,-516

\

\

ç_

ADSLOT

SLENG
I

STYPE

I

1522

PACE PAJE I)
522-

ELEMENT ELEMENT
CALL CALL

t I i

y.
ILJjj5

___________ ci rkir' .4

-J.--,.
-, \ 504

'PAGE k
ELEMENT

f NAPLPS
OBJECT J B PRESENTATION
PARTITION1 IC DATA

551 't. 530

,-516 ,-516 ,-532
A NAPLPS FiELD FIELD FLD. IPROG. IPROGRAM
B PRESNT. DEF. FOR DEF. FOR FOR I ICALL FOR
C DATA INPUT DISPLAY DiSPLAY PART. I

FLD. POST
Y FIELD3 i 2 INITIALIZER I

1PROCESSOR

(ABC!) -.J-{--
(ABCJ)

-55I
PROGRAMIA PROGRAM
OBJECT,4 B LOGIC

508 534

:;EE::::
551

PRoGRAMF PROGRAM
OBJECT lB LOGIC
508 JC 534

55,

FIG. 9

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 16 of 147 PageID #: 33

U.S. Patent Aug. 18, 1998 Sheet 15 of 16 5,796,967

FIG. lo
PAGE PROCESSING TABLE (ppt)

PAGE LEVEL DATA
I

CHAIN
\\STACK

ELEME>,///

WINDOW

I
DATA

N
11.INDOW LEVEL DATA I

I

ELEMENT LEVEL DATA WINDOW LEVEL DAtA']
WINDOW LEVEL DATA

I\
I

ELEMENT LEL
WINDOW LEL DATA

DATA

\
I

ELEMENT LEL DATA

NELEMENT LEL

/N ELEME

DATA

NT LEVEL DATA
J

L FIELD LEVEL DATA j / /
\ / I

FIELD LEVEL DATA I\
I

FIELD LEVEL DATA] \
i

FIELD LEVEL DATA

'N FIELD LEVEL DATA

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 17 of 147 PageID #: 34

U.S. Patent Aug. 18, 1998

FIG. li

Fetch PTO
associated with string

User selects field and
triggers post-processors
associated with nearest

alphabetic JUMPword

I NAViGATE I

Sheet 16 of 16 5,796,967

User approximation
of application/interest

User invokes
"JUMP" function

Staged PEO JUMPwindow"
opened on display; cursor
¡n I/O field; user types

approximation of
application nome

t. irat cnoracter OT
user-typed string

compared on cached
table

Table for P10-related
mneumonics for first

character fetched from
network

.ocol string-search cod
searches retrieved table

for matching string

Y Letter
string unique

Window for " INDEX"
option ooened

1-Tesent tetche
table as. cursoroble

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 18 of 147 PageID #: 35

5.796.967

METHOD FOR PRESENTING
APPLICATIONS IN AN INTERACTIVE

SERVICE

RELATED APPUCATTONS

This is a division of application Ser. No. 3 88. 156 filed Jul.
28. 1989. which issued Sep. 13. 1994. as U.S. Pat. No.
5.347.632. application Ser. No. 388.156 being a continua-
tion in part of application Ser. No. 328.790. filed Mar. 23.
1989. abandoned. which itself was a continuation in part of
application Ser. No. 219,931. filed Jul. 15, 1988 abandoned.

BACKGROUND OF THE INVENTION

1.Field of Use
This invention relates generally to a method for present-

ing applications in a distributed processing. interactive corn-
puter network intended to provide very large numbers of
simultaneous users; e.g. millions. access to an interactive
service having large numbers; e.g. . thousands, of applica-
fions which include pre-created. interactive text/graphic
sessions; and more particularly. to a method for presenting
applications, the method featuring step for generating a
screen display at respective user reception systems. the
screen display including a plurality of partitions for concur-
rently presenting at least a user-requested application and a
group of command functions for managing the display. the
group of command functions including a subgroup of fune-
tions for randomly selecting applications for display with a
variety of different procedures. the method also including
steps for opening and closing windows on the display for
presenting data relating to the displayed applications. and
further partitions for concurrently displaying. for example.
an additional application which may include advertising.

2. Prior Art
Interactive computer networks are not new. Traditionally

they have included conventional. hierarchical architectures
wherein a ceniral, host computer responds to the information
requests of multiple users. An illustration would be a time-
sharing network in which multiple users. each at a remote
terminal. log onto a host that provides data and software
resource for sequentially receiving user data processing
requests. executing them and supplying responses back to
the users.

While such networks have been successful in making the
processing power of large computers available to many
users. problems have existed with them. For example. in
such networks, the host has been required to satisfy ail the
user data processing requests. As a result. processing bottle-
necks arise at the host that cause network slowdowns and
compel expansion in computing resources; i.e. , bigger and
more complex computer facilities. where response times are
sought to be held low in the face of increasing user popu-
lations.

Host size and complexity. however. are liabilities for
interactive networks recently introduced to offer large nwn-
bers of the public access to transactional services such as
home shopping. banking. and invesiment maintenance. as
well as informational services concerning entertainment,
business and personal matters. As can be appreciated. corn-
merciai interactive networks will have to provide attractive
services at low cost and with minimal response times in
order to be successful. Unlike military and governmental
networks where. because of the compulsory nature of the
service performed. costs. content and efficiency are of sec-
ondary concern. in commercial services. since use is pre-

2

dominantly elective. and paid for by the consumer. costs will
have to be held low. content made interesting and response
times reduced in order to attract and hold both users who
would subscribe to the service and merchandisers who

5 would rely on it as a channel of distribution for their good
and services.

In this regard. it has been foundparticularly important that
the service interface: i.e.. screen presentation and manipu-
lation facility. enable the user to quickly and easily under-

lo stand and control what is displayed. Since an interactive
services represent an array of informational and transac-
tional services intended to be embraced in a matrix of
entertainment. it is essential that the user find the service
simple and enjoyable to work with. If the user finds the

15 service awkward in expression or difficult to manipulate.
interest and participation soon wane. rendering it impossible
to maintain the broad base subscriber and merchandiser
support necessary to sustain viability.

However. providing clarity ofpresentation and ease of use
20 along with comprehensive services and economy of

expiession. a combination essential to success. is difficult. In
the past service offerors have relied on full-screen.
continuous-stream displays that scroll past the user and
require user recall for integration of multi-screen matter. In

25 addition. the command structure for controlling such ser-
vices has tended to be either ponderous. discrete. full-screen
menus that interrupt subject matter presentation and stream
of impression, or csyptic. key-combination commands that
rely on user memory for application. Accordingly. interact-

30 ing with such services can be more work than play. tending.
at best to blunt enthusiasm. or at worst discourage it. Still
further, the over reliance on user memory tends not only to
color the experience as laborious, but also to both slowdown
presentation as users attempt to fully understand the matter

35 on the first pass. or require the user review the material in
several passes so that a clear impression can be taken. both
of which drive up the service usage costs rendering the
service commercially unattractive.

40 SUMMARY OF INVENTION

Accordingly. it is an object of this invention to provide a
method for presenting applications in an interactive service
which enables clarity of application expression.

s
another object of this invention to provide a method

4 for presenting applications in an interactive service which
enables ease of service manipulation.

It is still another object of this invention to provide a
method for presenting applications in an interactive service

50
that places reduced reliance on user memory for application
comprehension and exercise of service control commands.

It is yet another object of this invention to provide a
method for presenting applications in an interactive service
which enables concurrent. on-screen display of applications

55
and service control commands.

It is a further object of this invention to provide a method
for presenting applications in an interactive service which
enables forward and reverse movement between multiple
application display screens.

60 It is a still further object of this invention to provide a
method for presenting applications in an interactive service
which permits multiple procedures for navigating to succes-
sive applications.

And. it is still further object of this invention to provide
65 a method for presenting applications in an interactive service

that enables concurrent display of multiple applications. at
least one of which may include advertising.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 19 of 147 PageID #: 36

5396.967

Briefly. the method for presenting applications in an
interactive service in accordance with this invention
achieves the above-noted and other objects by featuring
steps for generating a screen displays at respective user
reception systems. the screen display including a plurality of
partitions for concurrently presenting at least a user-
requested application and a group of command functions for
managing the display. In accordance with the invention. the
command functions include a subgroup of functions that
facilitate random navigation to new applications. at the
user's behest. employing a variety of different procedures.
As well. the method includes steps for opening and closing
windows on the display to enable presentation of additional
data relating to the presented applications. Still further. the
method includes steps for providing additional partitions for
concurrently displaying other applications. which may
include advertising.

In preferred form. the method features steps for presenting
the command function in a command bar fixed-located on
the display screen; e.g. . at the screen bottom. concurrently
with the displayed application so that the user can conduct
display control functions while viewing an application.
Additionally. in preferred form. the command bar features
functions for progressing forward and backward in the
application. thus reducing the need for user reliance on
memory or repeat of the entire application to aid compre-
hension.

Also in preferred form. the method features steps for
presenting a subgroup of commands at the command bar for
enabling the user to randomly navigate to other available
applications. Particularly. the navigation subgroup includes
a command entitled "Path" which enables the user to
sequence through a list of user-designated preferred
applications. that. in effect. "program". progress through the
service. thus enabling the user to easily and quickly review
the service. as for example. on a daily basis. for news.
financial. sports. business and other information.

Still further. the method features a navigation subgroup
command entitled "Jump" which opens a window at the
display concurrent with the application. which enables the
user to select a new application for display based on a review
of the available applications using either a string-descriptor
search. an alphabetical search. a subject category search or
a physical analogy; e.g.. application to departments of a
store. etc. Also in preferred form, the method features steps
for opening windows over the currently displayed applica-
tion to present further information concerning the applica-
tion or facilitate the undertaking of interactive operation
with respect to the application. As will be appreciated. this
again reduces need for user reliance on memory. as it enables
the providing of a reference that keeps the user oriented in
progressing through a service session.

Additionally. the method of the present invention enables
yet additional application to be concurrently presented at the
display screen; as for example applications concerning
advertising which may be of interest to the user. In these
advertising-related application. the user can either obtain
additional information or, if desired. undertake Iransactional
event as for example. buying goods or services.

DESCRIPTION OF THE DRAWINGS

The above and further objects. features and advantages of
the invention will become clear from the following more
detailed description when read with reference to the accom-
panying drawings in which:

FIG. i is a block diagram of the interactive computer
network in which the application-presentation method of the
present invention may be employed;

4
FIG. 2 is a schematic diagram of the network illustrated

in FIG. 1:
FIGS. 3a and 3b are plan views of a display screen for a

user reception system employed in a network in which the
s application-presentation method of the present invention

may be practiced;
FIGS. 4L 4b. 4e and 4d are schematic drawings that

illustrate the structure of objects. and object segments that
may be used in a network in which the application-

lo presentation method of the present invention may be
employed;

FIG. Sa is a schematic diagram that illustrates the con-
figuration of the page template object which might be used

5
for presentation of an application in a network in which the

method of the present invention
may be practiced;

FIG. Sb is a schematic diagram that illustrates page
composition which might be used for presentation of appli-

20
cations in a network in which the application-presentation
method of the present invention may be practiced:

FIG. 6 is a schematic diagram that illustrates the protocol
which might be used by a reception system for supporting
applications in a network in which the application-

25
presentation method of the present invention may be prac-
ticed;

FIG. 7 is a schematic diagram that illustrates major layers
for a reception system which might be used for supporting
applications in a network in which the application-

30 presentation method of the present invention may be prac-
ticed;

FIG. 8 is a block diagram that illustrates native code
modules for a reception system which might be used for
supporting applications in a network in which the

35 application-presentation method of the present invention
may be practiced;

FIG. 9 is a schematic diagram that illustrates an example
of a partitioned application to be processed by a reception
system which might be used for supporting applications in

40 a network in which the application-presentation method of
the present invention may be practiced:

FIG. 10 illustrates generation of a page with a page
processing table for a reception system which might be used
for supporting applications in a network in which the

45 application-presentation method of the present invention
may be practiced;

FIG. 11 is a flow diagram for an aspect of the navigation
method of a reception system which might be used for

50
supporting applications in a network in which the
application-presentation method of the present invention
may be practiced.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

55
GENERAL SYSTEM DESCRIPTION

FIGS. i and 2 show a network in which the method of the
current invention for presenting applications might be used.
As seen the network. designated 10. includes a plurality of

60 reception units within a reception layer 401 for displaying
information and providing transactional services. In this
arrangement. many users each access network 10 with a
conventional personal computer; e.g. . one of the IBM or
IBM-compatible type. which has been provided with appli-

65 cation software to constitute a reception system (RS) 400.
As seen in FIG. 1. interactive network 10 uses a layered

structure that includes an information layer 100. a switch/file

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 20 of 147 PageID #: 37

5.796.967

5

server layer 200. and cache/concentrator layer 300 as well as
reception layer 41. This structure maintains active appli-
cation databases and delivers requested parts of the data-
bases on demand to the plurality of RSs 400. shown in FIG.
2. As seen in FIG. 2. cache/concentrator layer 300 includes
a plurality of cache/concentrator units 392. each of which
serve a plurality of RS 400 units over lines 301.
Additionally. switchifile server layer 200 is seen to include
a server unit 205 connected to multiple cache/concentrator
units 302 over lines 201. Still further. server unit 205 is seen
to be connected to information layer 100 and its various
elements, which act as means for producing. supplying and
maintaining the network databases and other information
necessary to support network 10. Continuing. switch/filer
layer 200 is also seen to include gateway systems 210
connected to server 205. Gateways 210 couple layer 200 to
other sources of information and data e.g. . other computer
systems. As will be appreciated by those skilled in the art.
layer 200. like layers 401 and 300. could also include
multiple servers. gateways and information layers in the
event even larger numbers of users were sought to be served.

Continuing with reference to FIG. 2. in preferred form.
each RS 400 is seen to include a personal computer 405
having a CPU 410 including a microprocessor (as for
example. one of the types made by ll'TEL Corporation in its
X'86 family of microprocessors). companion RAM and
ROM memory and other associated elements. such as moni-
tor 412 with screen 414 and a keyboard 424. Further.
personal computer 405 may also include one or two floppy
disk drives 416 for receiving diskettes 426 containing appli-
cation software used to support the interactive service and
facilitate the interactive sessions with network 10.
Additionally. personal computer 405 would include operat-
ing systems software e.g.. MS-DOS. supplied on diskettes
428 suitable for the personal computer being used. Personal
computer 405 still further may also include a hard-disk drive
420 for storing the application software and operating sys-
tem software which may be transferred from diskettes 426
and 428 respectfully.

Once so configured. each RS 400 provides: a common
interface to other elements of interactive computer network
10; a common environment for application processing; and
a common protocol for user-application conversation which
is independent of the personal computer brand used. RS 400
thus constitutes a universal terminal for which only one
version of all applications on network 10 need be prepared.
thereby rendering the applications interpretable by a variety
of brands of personal computers.

RS 400 formulated in this fashion is capable of commu-
nication with the host system to receive information con-
taming either of two types of data, namely objects and
messages. Objects have a uniform. self-defining format
known to RS 400, and include data types. such as interpret-
able programs and presentation data for display at monitor
screen 414 of the user's personal computer 405. Applica-
tions presented at RS 400 are partitioned into objects which
represent the minimal units available from the higher levels
of interactive network 10 or RS 400. In this arrangement.
each application partition typically represents one screen or
a partial screen of information. including fields filled with
data used in transactions with network 10. Each such screen.
commonly called a page. is represented by its parts and is
described in a page template object. discussed below.

Applications. having been partitioned into minimal units.
are available from higher elements of network 10 or RS 400.
and are retrieved on demand by RS 400 for interpretive
execution. Thus. not all partitions of a partitioned applica-

6

tion need be resident at RS 400 to process a selected
partition. thereby raising the storage efficiency of the user's
RS 400 and minimizing response time. Each application
partition is an independent. self-contained unit and can

5 operate correctly by itself. Each partition may refer to other
partitions either statically or dynamically. Static references
are built into the partitioned application. while dynamic
references are created from the execution of program logic
using a set of parameters. such as user demographics or

IC locale. Partitions may be chosen as part ofthe RS processing
in response to user created events. or by selecting a key word
of the partitioned application (e.g.. "JUMP" or "INDEX."
discussed below). which provides random access to all
services represented by partitioned applications having key

15 words.
Objects provide a means of packaging and distributing

partitioned applications. As noted. objects make up one or
more partitioned applications. and are retrieved on demand
by a user's RS 400 for interpretive execution and selective

20 storage. All objects are interpreted by RS 400, thereby
enabling applications to be developed independently of the
personal computer brand used.

Objects may be nested within one another or referenced
by an object identifier (object-id) from within their data

25 structure. References to objects permit the size of objects to
be minimized. Further. the time required to display a page is
minimized when referenced objects are stored locally at RS
400 (which storage is determined by prior usage meeting
certain retention criteria to be described more fully below).

30 or have been pre-fetched. or in fact. are already used for the
cuiTent page.

Objects carry application program instructions and/or
information for display at monitor screen 414 of RS 400.
Application program objects. called pre-processors and

35 post-processors. set up the environment for the user's inter-
action with network 10 and respond to events created when
the user inputs information at keyboard 424 of RS 400. Such
events typically trigger a program object to be processed.
causing one of the following: sending of transactional infor-

40 mation to the coapplications in one layer of the network 10:
the receiving of information for use in programs or for
presentation in application-dependent fields on monitor
screen 414; or the requesting of a new objects to be

45
processed by RS 400. Such objects may be part of the same
application or a completely new application.

The RS 400 supports a protocol by which the user and the
partitioned applications communicate. All partitioned appli-
cations are designed knowing that this protocol will be

50
supported in RS 400. Hence. replication of the protocol in
each partitioned application is avoided. thereby minimizing
the size of the partitioned application.

RS 400 includes a means to communicate with network
10 to retrieve objects in response to events occurring at RS

55 400 and to send and receive messages.
RS 400 includes a means to selectively store objects

according to a predetermined storage criterion. thus enabling
frequently used objects to be stored locally at the RS. and
causing infrequently used objects to forfeit their local stor-

60 age location. The currency of objects stored locally at the RS
400 is verified before use according to the object's storage
control parameters and the storage criterion in use for
version checking.

Selective storage tailors the contents of the RS 400
65 memory to contain objects representing all or signifIcant

parts of partitioned applications favored by the user.
Because selective storage of objects is local. response time

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 21 of 147 PageID #: 38

5.796.967

r1

is reduced for those partitioned applications that the user
accesses most frequently.

Since much of the application processing formerly done
by a host computer in previously known time-sharing net-
works is now performed at the user's RS 400. the higher
elements of network 10. particularly layer 200. have as their
primary functions the routing of messages. serving of
objects. and line concentration. The narrowed functional
load of the higher network elements permits many more
users to be serviced within the same bounds o! computer
power and 110 capability of conventional host-centered
architectures.

Network 10 provides information on a wide variety of
topics. including. but not limited to news. industry. financial
needs. hobbies and cultural interests. Network 10 thus
eliminates the need to consult multiple information sources.
giving users an efficient and timesaving overview of subjects
that interest them.

The transactional features of interactive network 10 saves
the user time. money. and frustration by reducing time spent
traveling. standing in line. and communicating with sales
personnel. The user may. through RS 400. bank, send and
receive messages. review advertising. place orders for
merchandise. and perform other transactions.

In preferred form. network 10 provides information.
advertising and transaction processing services for a large
number of users simultaneously accessing the network via
the public switched telephone network (PSTN). broadcast.
and/or other media with their RS 400 units. Services avail-
able to the user include display of information such as movie
reviews. the latest news. airlines reservations. the purchase
of items such as retail merchandise and groceries. and quotes
and buy/sell orders for stocks and bonds. Network 10
provides an environment in which a user. via RS 400
establishes a session with the network and accesses a large
number of services. These services are specifically con-
structed applications which as noted are partitioned so they
may be distributed without undue transmission time. and
may be processed and selectively stored on a user's RS 400
unit.

SYSTEM CONFIGURATION

As shown in FIG. 1. interactive computer network 10
includes four layers: information layer 100. switch and file
server layer 200. concentrator layer 300. and reception layer
401.

Information layer 100 handles: (1) the production. storage
and dissemination of data and (2) the collection and off-line
processing of such data from each RS session with the
network 10 so as to permit the targeting of information and
advertising to be presented to users and for traditional
business support.

Switch and file server layer 200 and cache/concentrator
layer 300 together constitute a delivery system 20 which
delivers requested data to the RSs 400 ofreception layer 401
and routes data entered by the user or collected at RSs 400
to the proper application in network 10. With reference to
FIG. 2. the information used in a RS 400 either resides
locaily at the RS 400. or is available on demand from the
cache/concentrator 300 or the file server 205. via the gate-
way 210. which may be coupled to external providers. or is
available from information layer loo.

There are two types of information in the network 10
which are utilized by the RS 400: objects and messages.

Objects include the information requested and utilized by
the RS 400 to permit a user to select specific parts of

8
applications. control the flow of information relating to the
applications. and to supply information to the network.
Objects are self-describing structures organized in accor-
dance with a specific data object architecture. described

5 below. Objects are used to package presentation data and
program instructions required to support the partitioned
applications and advertising presented at a RS 400. Objects
are distributed on demand throughout interactive network
lo. Objects may contain: control information: program

lo instructions to set up an application processing environment
and to process user or network created events; information
about what is to be displayed and how it is to be displayed;
references to programs to be interpretively executed: and
references to other objects. which may be called based upon

15 certain conditions or the occurrence of certain events at the
user's personal computer. resulting in the selection and
retrieval of other partitioned applications packaged as
objects.

Messages are information provided by the user or the
20 network and are used in fields defined within the constructs

of an object. and are seen on the user's RS monitor 412. or
are used for data processing at RS 400. Additionally. and as
more fully described hereafter. messages are the primary
means for communication within and without the network.

25 The format of messages is application dependent. If the
message is input by the user. it is formatted by the parti-
tioned application cturently being processed on RS 400.
Likewise. and with reference to FIG. 2. if the data are
provided from a co-application database residing in delivery

30 system 20. or accessed via gateway 210 or high function
system 110 within the information layer 100. the partitioned
application currently being processed on RS 400 causes the
message data to be displayed in fields on the user's display
monitor as defined by the particular partitioned application.

35 Ali active objects reside in file server 205. Inactive objects
or objects in preparation reside in producer system 120.
Objects recently introduced into delivery system 20 from the
producer system 120 will be available from file server 205.
but, may not be available on cache/concentrator 302 to

40 which the user's RS 400 has dialed. If such objects are
requested by the RS 400. the cache/concentrator 302 auto-
matically requests the object from file server 205. The
requested object is routed back to the requesting cache/
concentrator 302. which automatically routes it to the corn-

45 munications line on which the request was originally made.
from which it is received by the RS 400.

The RS 400 is the point of application session control
because it has the ability to select and randomly access

50
objects representing all or part of partitioned applications
and their data. RS 400 processes objects according to
information contained therein and events created by the user
on personal computer 405.

Applications on network 10 act in concert with the
55 distributed partitioned applications running on RS 400.

Partitioned applications constructed as groups of objects and
are distributed on demand to a user's RS 400. An application
partition represents the minimum amount of information and
program logic needed to present a page or window. i.e.

60 portion ofa page presented to the user. perform transactions
with the interactive network 10, and perform traditional data
processing operations, as required. including selecting
another partitioned application to be processed upon a user
generated completion event for the current partitioned appli-

65 cation.
Objects representing all or part of partitioned applications

may be stored in a user' s RS 400 if the objects meet certain

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 22 of 147 PageID #: 39

5796967

criteria. such as being non-volatile. non-critical to network
integrity. or if they are critical to ensuring reasonable
response time. Such objects are either provided on diskettes
426 together with RS 400 system software used during the
installation procedure or they are automatically requested by
RS 400 when the user makes selections requiring objects not
present in RS 400. In the latter case. RS 400 requests from
cache/concentrator layer 300 only the objects necessary to
execute the desired partitioned application.

Reception system application software 426 in preferred
form is provided for IBM and IBM-compatible brands of
personal computers 405. and all partitioned applications are
constructed according to a single architecture which each
such RS 400 supports. With reference to FIG. 2. to access
network 10. a user preferably has a personal computer 405
with at least 512K RAM and a single disk drive 416. The
user typically accesses network 10 using a 1.200 or 2,400
bps modem (not shown). To initiate a session with network
10, objects representing the logon application are retrieved
from the user's personal diskette. including the R.S. appli-
cation software. which was previously set up during stan-
dard installation and enrollment procedures with network
10. Once communication between RS 400 and cachet
concentrator layer 300 has been established. the user begins
a standard logon procedure by inputting a personal entry
code. Once the logon procedure is complete. the user can
begin to access various desired services (i.e.. partitioned
applications) which provide display of requested informa-
tion and/or transaction operations.

APPLICArIONS AND PAGES

Applications. i.e. . information events, are composed of a
sequence of one or more pages opened at screen 414 of
mothtor 412. This is better seen with reference to FIGS. 3a
and 3b were a page 255 is illustrated as might appear at
screen 414 of monitor 412. With reference to FiG. 3a. in
accordance with the invention. each page 255 is formatted
with a service interface having page partitions 250. 260. 280.
and 290 (not to be confused with application partitions).
Window page partitions 275. well known in the art. are also
available and are opened and closed conditionally on page
255 upon the occurrence of an event specified in the appli-
cation being run. Each page partition 250. 260. 280. and 290
and window 275 is made up of a page element which defines
the content of the partition or window.

In preferred form. each page 255 includes: a header page
partition 250. which has a page element associated with it
and which typically conveys information on the page's topic
or sponsor; one or more body page partitions 260 and
window page partitions 275, each of which is associated
with a page element which as noted gives the informational
and transactional content of the page. For example. a page
element may contain presentation data selected as a menu
option in the previous page. and/or may contain prompts to
which a user responds in pre-defined fields to execute
transactions. As illustrated in FIG. 3b. the page element
associated with body page partition 260 includes display
fields 270. 271. 272. A window page partition 275 seen in
FIG. 3a represents the same informational and transactional
capability as a body partition. except greater flexibility is
provided for its location and size.

Continuing with reference to FIG. 3a. in accordance with
the invention. advertising 280 is provided over network 10.
and. like page elements, also include information for display
on page 255, and may be included in any partition of a page.
Advertising 280 is presented to the user on an individualized

'o
basis from queues of advertising object identifications (ids)
that are constructed off-line by business system 130. and
sent to file server 205 where they are accessible to each RS
400.

5 Individualized queues of advertising object ids are con-
structed based upon data collected on the partitioned appli-
cations that were accessed by a user. and upon events the
user generated in response to applications. The data are
collected and reported by RS 400 to a data collection

lo co-application in file server 205 for later transmission to
business system 130. In addition to application access and
use characteristics. a variety of other parameters. such as
user demographics or postal ZIP code. may be used as
targeting criteria, From such data. queues of advertising

15 object ids are constructed that are targeted to either indi-
vidual users or to sets of users who fall into certain groups
according to such parameters. Stated otherwise. the adver-
tising presented is individualized to the respective users
based on characterizations of the respective users as defined

20 by the interaction history with the service and such other
information as user demographics and locale. As will be
appreciated by those skilled in the art. conventional mar-
keting analysis techniques can be employed to establish the
user characterizations based on the collected application

25 usage data above noted and other information.
Also with reference to FIG. 3b. the service interface is

seen to include a command region 285 which enables the
user to interact with the network RS 400 and other elements
of network 10. so as to cause such operations as navigating

30 from page to page. performing a transaction. or obtaining
more information about other applications. As shown in
FIG. 3b, interface region 285 includes a command bar 290
having a number of commands 291-298 which the user can
execute. The functions of commands 291-2!)8 are discussed

35 in greater detail below.

NEUWORK OBJECTS

As noted above. in conventional time-sharing computer
networks. the data and program instructions necessary to

40 support user sessions are maintained at a central host corn-
puter. However, that approach has been found to create
processing bottlenecks as greater numbers of users are
connected to the network; bottlenecks which require
increases in processing power and complexity e.g.. multiple

45 hosts of greater computing capability. if the network is to
meet demand. Further. such bottlenecks have been found to
also slow response time as more users are connected to the
network and seek to have their requests for data processing
answered.

50 The consequences of the host processing bottlenecking is
to either compel capital expenditures to expand host pro-
cessing capability. or accept longer response times; i.e.. a
slower network. and risk user dissatisfaction.

However. even in the case where additional computing
55 power is added. and where response time is allowed to

increase. eventually the host becomes user saturated as more
and more users are sought to be served by the network. The
network described above. however. is designed to alleviate
the effects of host-centered limitations. and extend the

60 network saturation point. This objective is achieved by
reducing the demand on the host for processing resources by
structuring the network so that the higher network levels act
primarily to maintain and supply data and programs to the
lower levels of the network. particularly RS 400. which acts

65 to manage and sustain the user screen displays.
More particularly. the described network features proce-

dures for parsing the network data and program instructions

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 23 of 147 PageID #: 40

5.796.967

11

required to support the interactive user sessions into packets.
referred to as objects. and distributing them into the network
where they can be processed at lower levels. particularly.
reception system 400.

The screens presented at the users monitor are each
divided into addressable partitions shown in FIG. 3a. and the
display text and graphics necessary to make up the
partitions. as well as the program instructions and control
data necessary to deliver and sustain the screens and parti-
Lions are formulated from pre-created objects. Further. the
objects are structured in accordance with an architecture that
permits the displayed data to be relocatable on the screen.
and to be reusable to make up other screens and other
sessions, either as pre-created and stored sessions or inter-
active sessions. dynamically created in response to the
user's requests.

As shown in FIG. 4e, the network objects are organized
as a family of objects each of which perform a specific
function in support of the interactive session. More
particularly. in accordance with the preferred form. the
network object family is seen to include 6 members: page
format objects 502. page element objects 504. window
objects 506. program objects 508. advertisement objects 510
and page template objects 500.

Within this family. page format objects 502 are designed
to define the partitioning 250 to 290 of the monitor screen
shown in FIG. 3a. The page format objects 502 provide a
means for pre-defining screen partitions and for ensuring a
uniform look to the page presented on the reception system
monitor. They provide the origin; i.e.. drawing points. and
dimensions of each page partition and different values for
presentation commands such as palette and background
color.

Page format objects 502 are referenced whenever non-
window data is to be displayed and as noted ensure a
consistent presentation of the page. In addition. page format
objects 502 assures proper tessellation or "tiling" of the
displayed partitions.

Page element objects 504, on the other hand. are struc-
tured to contain the display data; i.e., text and graphic. to be
displayed which is mapped within screen partitions 250 to
290, and to further provide the associated control data and
programs. More specifically. the display data is described
within the object as NAPLPS data. and includes, PDI.
ASCII. Incremental Point and other display encoding
schemes. Page element objects also control the functionality
within the screen partition by means of field definition
segments 516 and program call segments 532. as further
described in connection with the description of such seg-
ments hereafter. Page element objects 504 are relocatable
and may be reused by many pages. To enable the displayable
data to be relocated. display data must be created by
producers in the NAPLPS relative mode.

Continuing with reference to FIG. 4e. window objects 506
include the display and control data necessary to support
window partitions 275 best seen in FIG. 3a. Windows
contain display data which overlay the base page and control
data which supersede the base page control data for the
underlying screen during the duration of the window. Win-
dow objects 506 contain data which is to be displayed or
otherwise presented to the viewer which is relatively inde-
pendent from the rest of the page. Display data within
windows overlay the base page until the window is closed.
Logic associated with the window supersedes base page
logic for the duration of the window. When a window is
opened. the bit map of the area covered by window is saved

12

and most logic functions for the overlaid page are deacti-
vated. When the window is closed. the saved bit map is
swapped onto the screen. the logic functions associated with
the window are disabled, and prior logic functions are

5 reactivated.
Windows are opened by user or program control. They do

not form part of the base page. Windows would typically be
opened as a result of the completion of events specified in
program call segments 532.

lo Window objects 506 are very similar in structure to page
element objects 504. The critical difference is that window
objects 506 specify their own size and absolute screen
location by means of a partition definition segment 528.

15
Program objects 508 contain program instructions written

in a high-level language called TRINTEX Basic Object
Language. i.e., TBOL. described in greater detail hereafter.
which may be executed on RS 400 to support the applica-
tion. More particularly. program objects 508 include inter-

20
pretable program code. executable machine code and param-
eters to be acted upon in conjunction with the presentation
of text and graphics to the reception system monitors.

Program objects 508 may be called for execution by
means of program call segments 532. which specify when a

25 program ¡s to be executed (event). what program to execute
(program pointer). and how programs should run
(parameters).

Programs are treated as objects to conform to the open-
ended design philosophy of the data object architecture

30 (DOA). allowing the dissemination of newly developed
programs to be easily and economically performed. As noted
above. it is desirable to have as many of these program
objects staged for execution at or as close to RS 400 as
possible.

35 Stili further. advertising objects 510 include the text and
graphics that may be presented at ad partition 280 presented
on the monitor screen as shown in FIG. 3b.

Finally. the object family includes page template objects
500. Page template objects 504) are designed to define the

40 components of the full screen presented to the viewer.
Particularly. page template objects 500 include the entry
point to a screen. the name of the page format objects which
specify the various partitions a screen will have and the page
element object that contain the display data and partitioning

45 parameters for the page.
Additionally. page template object 500 includes the spe-

cille program calls required to execute the screens associated
with the application being presented to the user. and may

50
selve as the means for the user to selectively move through;
i.e.. navigate the pages of interest which are associated with
various applications. Thus. in effect. page template objects
500 constitute the 'recipe" for making up the collection of
text and graphic information required to make the screens to

55
be presented to the user.

Objects 500 to 510 shown in FIG. 4c are themselves made
up of further sub-blocks of information that may be selec-
tively collected to define the objects and resulting pages that
ultimately constitute the application presented to the user in

60
an interactive text and graphic session.

More specifically and as shown schematically in FIG. 4a.
objects 500 to 510 are predefined. variable length records
consisting of a fixed length header 551 and one or more
self-defining record segments 552 a list of which is pre-

65 sented in FIG. 4e as segment types 512 to 540.
In accordance with this design. and as shown in FIG. 4h.

object header 551 in preferred form is 18 bytes in length and

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 24 of 147 PageID #: 41

5 .79& 967

13
contains a prescribed sequence of information which pro-
vides data regarding the object's identification. its antici-
pated use. association to other objects. its length and its
version and currency.

More particularly. each of the 18 bytes of object header 5

551 are conventional hexadecimal. 8 bit bytes and are
arranged in a fixed pattern to facilitate interpretation by
network 10. Particularly. and as shown in HG. 4h. the first
byte of header 551 i.e.. byte 1. identitIes the length of the
object ID in hexadecimal. The next six bytes: i.e.. bytes 2 to IC

7. are allocated for identifying access control to the object so
as to allow creation of closed user groups to whom the
object(s) is to be provided. As will be appreciated by those
skilled in the art. the ability to earmark objects in anticipa-
tion of user requests enables the network to anticipate l

requests and pre-collect objects from large numbers of them
maintained to render the network more efficient and reduce
response time. The following 4 bytes of header 55L bytes 8
to 11, are used to identify the set of objects to which the
subject object belongs. In this regard. it will be appreciated 2C
that, again. for speed of access and efficiency of selection.
the objects are arranged in groups or sets which are likely to
be presented to user sequentially in presenting the page sets;
i.e.. screens that go to make up a session.

Following identification of the object set. the next byte in 25
header 551; i.e.. byte 12. gives the location of the subject
object in the set. As will be appreciated here also the
identification is provided to facilitate ease of object location
and access among the many thousands of objects that are
maintained to. thereby, render their selection and presenta-
tion more efficient and speedy.

Thereafter. the following byte of header 551; i.e.. byte 13.
designates the object type; e.g.. page format. page template.
page element. etc. Following identification of the object
type, two bytes; i.e.. bytes 14. 15. are allocated to dehne the
length of the object. which may be of whatever length is
necessary to supply the data necessary. and thereby provides
great flexibility for creation of the screens. Thereafter. in
accordance with the preferred form. a single byte; i.e., byte
16. is allocated to identify the storage characteristic for the
object; i.e.. the criterion which establishes at what level in
network 10 the object will be stored, and the basis upon
which it will be updated. At least a portion of this byte; i.e.
the higher order nibble (first 4 bits reading from left to right)
is associated with the last byte; i.e.. byte 18. in the header
which identifies the version of the object. a control used in
determining how often in a predetermined period of time the
object will be updated by the network

Following storage characteristic byte 1, header 551
50

includes a byte; i.e.. 17. which identifies the number of
objects in the set to which the subject object belongs.
Finally. and as noted above. header 551 includes a byte; i.e..
18. which identifies the version of the object. Particularly the
object version is a number to establish the control for the
update of the object that are resident at RS 400.

As shown in FIG. 4a. and as noted above. in addition to
header 551. the object includes one more of the various
segment types shown in FIG. 4e.

Segments 512 to 540 are the basic building blocks of the o
objects. And. as in the case of the object. the segments are
also self-defining. As will be appreciated by those skilled in
the art. by making the segments self-defining. changes in the
objects and their use in the network can be made without
changing pre-existing objects. 65

As in the case of objects. the segments have also been
provided with a specific structure. Particularly. and as shown

14
in FIG. 'la. segments 552 consists of a designation of
segment type 553. identification of segment length 554.
followed by the information necessasy to implement the
segment and its associated object 555: e.g. . either. control
cthta. display data or program code.

In this structure. segment type 553 is identified with a
one-byte hexadecimal code which describes the general
function of the segment. Thereafter, segment length 554 is
identified as a fixed two-byte long field which carries the
segment length as a hexadecimal number in INTEL format:
i.e.. least significant byte first. Finally. data within segments
may be identified either by position or keyword. depending
on the specilÌc requirements of the segment.

The specific structure for the objects and segments in
shown in FIG. 4e and is described below. In that description
the following notation convention is used:

< > - mandatory item
() - optional item
: : item may be repeated

: item itenhi
< > () - items in a column indicate either/or
item item

The structure for objects is:
PAGE TEMPLATE OBJECF.

I
<header> (compression descriptor) <page format call>

(page element call) . . . (program call) . . . (page element
selector) (system table call) . . . external reference)
(keyword/navigation) . . . j;

As noted above. page format objects 502 are designed to
define the partitioning 250 to 290 of monitor screen 414
shown in FIG. 3a.

PAGE FORMAT OBJECF,
[<header> (compression descriptor) (page defaults) <parti-
tion definition>j;

PAGE ELEMENT OBJECT.
I<header> (compression descriptor) (presentation data) . .

(program call) . . . (custom cursor) . . . (custom text) . . . (field
definition) . . . (field-level program call) . . . (custom cursor
type 2) . . . (custom graphic) . . . (field definition type 2)
. . (array definition) . . . (inventory conlrol)J;

Page element objects. as explained. are structured to
contain the display data; i.e. . text and graphics. to be
presented at screen partitions 250 to 290.

WThlIOW OBJECT.
I <header> (compression description) <partition definition>
(page element call) (presentation data) . . . (program call)
. . (custom cursor) . . . (custom text) . . . (custom cursor type
2) . . . (custom graphic) . . . (field definition) . . . (field level
program call) . . . (field definition type 2) . . . (array
definition) . . . (inventory control)];

As noted. window objects include display and control
data necessary to support window partition at screen 414.

PROGRAM OBJECTS.
I <header> (compression descriptor) <program data> . . . 1.

Program objects. on the other hand. contain program
instructions written in higher-level language which may be
executed at RS 400 to support the application.

ADVERTISEMENT OBJECT.
J<header> (compression descriptor) (presentation data) . .

(program call) . . . (custom cursor) . . . (custom text) . . . (field
definition) . . . (field-level program call) . . . (custom cursor
type 2) . . . (custom graphic) . . . (field definition type 2)
. , (array definition) . . . (inventory control)];
and as can be seen. advertisement objects are substantially
the same as page element objects. with the difference being

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 25 of 147 PageID #: 42

5.796967

15

that. as their name implies. their subject matter is selected to
concern advertising.

Continuing. the structure for the object segments follows
from the above description. and is as described more fully in
parent application Ser. No. 388.156 now issued as U.S. Pat.
No. 5347,632the contents of which patent are incorporated
herein by reference.

NEFWORK MESSAGES

In addition to the network objects. and the display data.
control data. and the program instructions they contain as
previously described. network 10 also exchanges informa-
tion regarding the support of user sessions and the mainte-
nance of the network as "messenger". Specifically. messages
typically relate to the exchange of Information associated
with initial logon of a reception system 400 to network 10.
dialogue between RS 400 and other elements and commu-
nications by the other network elements amongst them-
selves.

To facilitate message exchange internally. and through
gateway 210 to entities externally to network 10. a protocol
termed the "Data Interchange Architecture" (DIA) is used to
support the transport and interpretation of information. More
particularly. DIA enables: communications between RS 400
units, separation of functions between network layers 100.
200. 300 and 401; consistent parsing of data; an "open"
architecture for network 10; downward compatibility within
the network; compatibility with standard industry protocols
such as the IBM System Network Architecture; Open Sys-
teins Interconnections standard; support of network utility
sessions; and standardization of common networkand appli-
cation return codes.

Thus DIA binds the various components of network 10
into a coherent entity by providing a common data siream
for communications management purposes. DIA provides
the ability to route messages between applications based in
IBM System Network Architecture (SNA). (well known in
the art. and more fully described in Data and Computer
Communications by W. Stallings. Chapter 12. McMillian
Publishing. Inc. (1985)) and non-SNA reception system
applications; e.g. home computer applications. Further, DIA
provides common data structure between applications run at
RS 400 units and applications that may be run on external
computer networks; e.g. Dow Jones Services, accessed
through gateway 210. As well. DIA provides support for
utility sessions between backbone applications run within
network 10. A more detailed description of network mes-
saging in provided in parent application Ser. No. 388.156
now issued as U.S. Pat. No. 5347.632. the contents of which
patent are incorporated herein by reference.

OBJECF LANGUAGE
In accordance with the design of network 10. in order to

enable the manipulation of the network objects. the appli-
cation programs necessary to support the interactive text/
graphic sessions are written in a high-level language referred
to as 'TBOL". ÇFRI.NTEX Basic Object Language. "TRIN-
TEX" being the former company name of one of the
assignees of this invention). ThOL is specifically adapted
for writing the application programs so that the programs
may be compiled into a compact data stream that can be
interpreted by the application software operating in the user
personal computer. the application software being designed
to establish the network Reception System 400 previously
noted and described in more detail hereafter.

The Reception System application software supports an
interactive text/graphics sessions by managing objects. As

16
explained above. objects specify the format and provide the
content; i.e.. the text and graphics. displayed on the user's
screen so as to make up the pages that constitute the
application. As also explained. pages are divided into sepa-

5
rate areas called "partitions" by certain objects. while certain
other objects describe windows which can be opened on the
pages. Further. still other oijects contain TBOL application
programs which facilitate the data processing necessary to
present the pages and their associated text and graphics.

lo As noted. the object architecture allows logical events to
be specified in the object definitions. An example of a logical
event is the completion of data entry on a screen; i.e. . an
application page. Logical events are mapped to physical
events such as the user pressing the <ENTER> key on the

15
keyboard. Other logical events might be the initial display of
a screen page or the completion of data entry in a field.
Logical events specified in page and window object defmni-
tions can be associated with the call of TBOL program
objects.

20
RS 400 is aware of the occurrence of all physical events

during the interactive text/graphic sessions. When a physical
event such as depression of the forward 'TAB> key corre-
sponds to a logical event such as completion of data eniry in
a field, the appropriate ThOL program is executed if speci-

25
fled in the object definition. Accordingly. the TBOL pro-
grams can be thought of as routines which are given control
to perform initialization and post-processing application
logic associated with the fields, partitions and screens at the
textlgraphic sessions.

30 Reception System 400 run time environment uses the
TBOL programs and their high-level key-word commands
called verbs to provide all the system services needed to
support a text/graphic session. particularly. display
management. user input, local and remote data access.

35 ThOL programs have a structure that includes three
sections: a header section in which the program name is
specified: a data section in which the data structure the
program will use are defined; and a code section in which the
program logic is provided composed of one or more proce-

40 dures. More specifically. the code section procedures are
composed of procedure statements. each of which begins
with a ThOL key-word called a verb.

The name of a procedure can also be used as the verb in
a procedure statement exactLy as if it were a ThOL key-word

45 verb. This feature enables a programmer to extend the
language vocabulary to include customized application-
oriented verb commands.

Continuing. mOL programs have a program syntax that
includes a series of "identifiers" which are the names and

50 labels assigned to programs. procedures. and data structures,
An identifier may be up to 31 characters long; contain

only uppercase or lowercase letters A through Z. digits O
through 9. and/or the special character underscore (_); and
must begin with a letter. Included among the system iden-

55 tillers are: "header section identifiers" used in the header
section for the program name; "data section identifiers" used
in the data section for data structure names. field names and
array naines; and finally. "code section identifiers" used in
the code section for identification of procedure names and

60 statement labels. A more detailed description of ThOL is
provided in parent application Ser. No. 388.156 now issued
as U.S. Pat. No. 5347.632. the contents of which patent are
incorporated herein by reference.

65
RECEPTION SYSTEM OPERATION

RS 400 of computer system network 10 uses software
called native code modules (described below) to enable the

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 26 of 147 PageID #: 43

5 .796967

17
user to select options and functions presented on the monitor
of personal computer 405. to execute partitioned applica-
tions and to process user created events. enabling the par-
titioned application to interact with network 10. Through
this interaction. the user is able to input data into fields s

provided as part of the display. or may individually select
choices causing a standard or personalized page to be built
(as explained below) for display on the monitor of personal
computer 405. Such inputs will cause RS 400 to interpret
events and trigger pre-processors or post-processors. ic

retrieve specified objects. communicate with system
components. control user options. cause the display of
advertisements on a page. open or close window partitions
to provide additional navigation possibilities. and collect
and report data about events. including certain types of i
objects processed. For example. the user may select a
particular option. such as opening or closing window par-
tition 275. which is present on the monitor screen 414 and
follow the selection with a completion key stroke. such as
ENTER. When the completion keystroke is made. the selec- 2C

tion is translated into a logical event that triggers the
execution of a post-processor (i.e. . a partitioned application
program object) to process the contents of the field.

In accordance with the invention, functions supporting the
user-partitioned application interface can be performed 25

using the command bar 290. or its equivalent using pull
down windows or an overlapping cascade of windows.
These functions can be implemented as part of the RS native
functions or can be treated as another partition(s) defined for
every page for which an appropriate set of supporting 3C

objects exist and remain resident at RS 400. If the functions
are part of RS 400. they can be altered or extended by verbs
defined in the RS virtual machine that permit the execution
of program objects to be triggered when certain functions
are called. providing maximum flexibility. 35

To explain the functions the use of a command bar is
assumed. Command bar 290 is shown in FIGS. 3a and 3b
and includes a NEXT command 291. a BACK command
292, a PATH command 293. a MENU command 294. an
ACtION command 295. a JUMP command 296. a HELP
command 297, and an EXiT command 298.

NEXT command 291 causes the next page in the cunent
page set to be built. if the last page of a page set has already
been reached. NEXT command 291 is disabled by RS 400,
avoiding the presentation of an invalid option.

BACK command 292 causes the previous page of the
current page set to be built. If the present page is the first in
the page set. BACK command 292 is disabled. since it is not
a valid option.

50
A filter program can be attached to both the NEXT or

BACK functions to modify their implicit sequential nature
based upon the value of the occurrence in the object set id.

PATH command 293 causes the next page to be built and
displayed from a list of pages that the user has entered.
starting from the first entry for every new session,

MENU command 294 causes the page presenting the
previous set of choices to be rebuilt.

ACTION command 295 initiates an application depen-
dent operation such as causing a new application partition to o
be interpreted. a window partition 275 to be opened and
enables the user to input any information required which
may result in a transaction or selection of another window or
page.

iIJMP command 296 causes window partition 275 to be 65

opened. allowing the user to input a keyword or to specify
one from an index that may be selected for display.

18

HELPcommand 297 causes a new application partition to
be interpreted such as a HELP window pertaining to where
the cursor is positioned to be displayed in order to assist the
user regarding the present page. a particular partition. or a
field in a page element.

EXiT command 298 causes a LOGOFF page template
object (FEO) to be built. and a page logoff sequence to be
presented at RS 400 monitor screen 414.

NAVIGATION INTERFACE

Continuing. as a further feature, network 10 includes an
improved procedure for searching and retrieving applica-
tions from the store of applications distributed throughout
network 10; e.g.. server 205. cache/concentrator 302 and RS
400. More specifically. the procedure features use of pre-
created search tables which represent subsets of the infor-
mation on the network arranged with reference to the page
template objects (VrO) and object-ids of the available
applications so that in accordance with the procedure. the
relevant tables and associated objects can be provided to and
searched at the requesting RS 400 without need to search the
entire store of applications on the network As will be
appreciated. this reduces the demand on the server 205 for
locating and retrieving applications for display at monitor
412.

In conventional time-sharing networks that support large
conventional databases, the host receives user requests for
data records; locates them; and transmits them back to the
users. Accordingly. the host is obliged to undertake the data
processing necessary to isolate and supply the requested
information. And. as noted earlier, where large numbers of
users are to be served. the many user requests can bottleneck
at the host, taxing resources and leading to response slow-
down.

Further. users have experienced difficulty in searching
databases maintained on conventional time-sharing net-
works. For example. difficulties have resulted from the
complex and varied way previously known database sup-
pliers have organized and presented their information.
Particularly. some database providers require searching be
done only in selected fields of the database. thus requiring
the user to be fully familiar with the record structure. Others
have organized their databases on hierarchial structures
which require the user understand the way the records are
grouped. Still further. yet other database suppliers rely upon
keyword indices to facilitate searching of their records. thus
requiring the user to be knowledgeable regarding the par-
ticular keywords used by the database provider.

Network 10. however. is designed to avoid such difficul-
ties. In the preferred form, the network includes procedures
for creating preliminasy searches which represent subsets of
the network applications users are believed likely to inves-
tigate. Particularly. in accordance with these procedures. for
the active applications available on network 10. a libraiy of
tables is prepared. and maintained within each of which a
plurality of so called "keywords" are provided that are
correlated with page template objects and object-ids of the
entry screen (typically the first screen) for the respective
application. In the preferred embodiment, approximately
1.000 tables are used. each having approximately 10 to 20
keywords ananged in alphabetical order to abstract the
applications on the network. Further. the object-id for each
table is associated with a code in the form of a character
string mnemonic which is arranged in a set of alphabetically
sequenced mnemonics termed the sequence set so that on
entry of a character string at an RS 400. the object-id for the

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 27 of 147 PageID #: 44

5.796967

19
relevant keyword table can be obtained from the sequence
set. Once the table object-id is identified. the keyword table
corresponding to the desired subset of the objects and
associated applications can then be obtained from network
lo. Subsequently the table can be presented to the user's RS
400. where the RS 400 can provide the data processing
required to present the potentially relevant keywords.
objects and associated applications to the user for further
review and determination as to whether more searching is
required. As will be appreciated, this procedure reduces
demand on server 205 and thereby permits it to be less
complex and costly. and further. reduces the likelihood of
host overtaxing that may cause networkresponse slowdown.

As a further feature of this procedure. the library of
keywords and their associated PTOs and objects may be
generated by a plurality of operations which appear at the
user's screen as different search techniques. This permits the
user to select a search technique he is most comfortable
with. thus expediting his inquiry.

More particularly. the user is allowed to invoke the
procedure by calling up a variety of operations. The various
operations have different names and seemingly present
different search strategies. Specifically. the user may invoke
the procedure by initiating a "Jump" command at RS 400.
Thereafter. in connection with the Jump operation. the user.
when prompted. may enter a word of the user's choosing at
monitor screen 414 relating to the matter he is interested in
locating; i.e. . a subject matter search of the network appli-
cations. Additionally, the users may invoke the procedure by
alternatively calling up an operation termed "Index" with
selection of the Index command. When selected. the Index
command presents the user with an alphabetical listing of
keywords from the tables noted above which the user can
select from; i.e. , an alphabetical search of the network
applications. Further. the user may evoke the procedure by
initiating an operation termed "Guide." By selecting the
Guide command. the user is provided with a series of
graphic displays that presents a physical description of the
network applications; e.g. . depariment floor plan for a store
the user may be electronically shopping in. Still further. the
user may invoke the procedures by initiating an operation
termed "Directory." By selecting the Directory command.
the user is presented with the applications available on the
network as a series of hierarchial menus which present the
content of the network information in commonly understood
categories. Finally. the user may invoke the procedure by
selecting the "Path" command, which accesses a list of
keywords the user has previously selected; i.e.. a personally
tailored form of the Index command described above. As
described hereafter. Path further includes a Viewpath opera-
tion which permits the user to visually access and manage
the Path list of keywords. In preferred form. where the user
has not selected a list of personalized keywords. a default set
is provided which includes a predetermined list and associ-
ated applications deemed by network IO as likely to be of
interest to the user.

This ability to convert these apparently different search
strategies in a single procedure for accessing pre-created
library tables is accomplished by translating the procedural
elements of the different search techniques into a single set
ofprocedures that wiliproduce a mnemonic; i.e.. code word.
which can first be searched at the sequence set. described
above to identify the object-id for the appropriate library
table and. thereafter. enable access of the appropriate table
to permit selection of the desired keyword and associated
vro and object-ids. That is to say. the reception system
native code simply relates the user-entered character string.

20
alphabetical range. category. or list item of respectively.
"Jump". "Index". "Directory". or "Path" to the table codes
through the sequence set. so that the appropriate table can be
provided to the reception system and application keyword

5 selected. Thus. while the search techniques may appear
different to the user. and in fact accommodate the user's
preferences and sophistication level. they nonetheless
invoke the same efficient procedure of relying upon pre-
created searches which identify related application PTOs

lo
and object-ids so that the table and objects may be collected
and presented at the user's RS 400 where they can be
processed. thereby relieving server 205.

In prefened form. however. in order to enhance presen-
tation speed the Guide operation is specially configured.

15
Rather than relating the keyword mnemonic to a sequence
set to identify the table object-id and range of keywords
corresponding to the entry PTO and associated object-ids.
the Guide operation presents a series of overlapping win-
dows that physically describe the "store" in which shopping

20
is being conducted or the "building" from which information
is being provided. The successive windows increase in
degree of detail. with the lina! window presenting a listing
of relevant keywords. Further. the PTO and object-hIs for
the application entry screen are directly related to the

25
graphic presentation of the keywords. This eliminates the
need to provide variable fields in the windows for each of the
keywords and enables the entry screen to be correlated
directly with the window graphic. As will be appreciated.
this reduces the number of objects that would otherwise be

30
required to be staged at RS 400 to support pretention of the
keyword listing at monitor screen 414. and thus speeds
network response.

A more detailed understanding of the procedure may be
had upon a reading of the following description and review

35 of accompanying FIGS. 2. 3a and particularly FIG. 11 which
presents a flow diagram for the Jump sequence of the search
procedure.

To select a particular partitioned application from among
thousands of such applications residing either at the RS 400

40 or within delivery system 20. network 10 avoids the need for
a user to know or understand, prior to a search. the organi-
zation of such partitioned applications and the query tech-
niques necessary to access them. This is accomplished using
a collection of related commands, as described below.

45 In accordance with the invention. the Jump command 296
as seen in FIG. 3a, can be selected, by the user from
command bar 290. When Jump command 296 is selected. a
window partition 275 is opened. In window 275. the user is
presented and may select from a variety of displayed options

50 that include among others. the Directory command. the
Index command. and the Guide command. which when
selected. have the effect noted above. Additionally. the user
can select a command termed Viewpath which will presents
the keywords that currently make up the list of keywords

55 associated with the user's Path command, and from which
list the user can select a desired keyword. Still further. and
with reference FIG. 11, which shows the sequence where a
user offers a term to identify a subject of interest, the user
may enter a keyword at display field 270 within window

60 partition 275 as a "best guess" of the mnemonic character
string that is assigned to a partitioned application the user
desires (e.g.. the user may input such english words as
"news." "pet food," "games." etcetera). Where the user
enters a character string it is displayed in field 270. and then

65 searched by RS 400 native code (discussed below) against
the sequence sets above noted to identify the object-id for
the appropriate table of keywords (not shown) that RS 400

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 28 of 147 PageID #: 45

5.796.967

21 22
may request from host 205. While as noted above. a table 290. As noted above. in the case of the Guide command. the
may include 10 to 20 keywords. in the preferred PTO and object-ids for the application entry screen are
embodiment. for the sake of speed and convenience. a directly associated with the graphic of the keyword pre-
typical keyword table includes approximately 12 keywords. sented in the final pop-up window. This enables direct access

if the string entered by the user matches a keyword 5 of the application entry screen without need to access the

existing on one ofthe keyword tables. and is thus associated sequence set and keyword table. and thus. reduces response

with a specific VEO. RS 400 fetches and displays associated time by reducing the number of objects that must be pro-

objects of the partitioned applications and builds the entry cessed at RS 400.

page in accordance with the page composition dictated by Activation ofthe Path command accesses the user's list of
the target PTO. 10 pre-selected keywords without their display, and permits the

if the string entered by the user does not match a specific user to step through the list viewing the respective applica-

keyword. RS 400 presents the user with the option of tions by repeatedly invoking the Path command. As will be

displaying the table of keywords approximating the spedllic appreciated. the user can set a priority for selecting key-

keyword. The approximate keywords are presented as words and viewing their associated applications by virtue of

initialized. cursorable selector fields of the type provided in 15 where on the list the user places the keywords. More

connection with a Index command. The user may then move specifically. if the user has several application of particular

the cursor to the nearest approximation of the mnemonic he interest: e.g.. news. weather. etc.. the user can place them at

originally selected. and trigger navigation to the PTO asso- the top of the list. and quickly step through them with the

ciated with that keyword. navigation being as described Path command. Further. the user can view and randomly

hereafter in connection with the RS 400 native code. 20 access the keywords of his list with the Viewpath operation

If, after selecting the Jump command. the user selects the
noted above. On activation of Viewpath. the user's Path
keywords are displayed and the user can cursor through

Index command. RS 400 will retrieve the keyword table them in a conventional manner to select a desired one.
residing at RS 400. and will again build a page with Fmer, the user can amend the list as desired by changing
initialized, cursorable fields of keywords. The table fetched

25 the keywords on the list and/or adjusting their relative
upon invoking the Index command will be comprised of sition. Tiüs is readily accomplished by entering the
alphabetic keywords that occur within the range of the amendments to the list presented at the screen 414 with a
keywords associated with the page template object (Ff0) series of amendment options presented in a conventional
from which the user invoked the Index command. As fashion with the list. As noted. the list may be personally
discussed above. the user may select to navigate to any of

30 selected by the user in the manner described. or created as
this range of PrOs by selecting the relevant keyword from a iefault by network 10.
the display. Alternatively. the user can. thereafter. select Collecüvely. the Jump command. Index command, Direc-another range of alphabetical keywords by entering an tory command. Guide command. and Path command as
appropriate character string in a screen field provided or described enable the user to quickly and easily ascertain the
move forward or backward in the collection by selecting the "location" of either the partitioned application presently
corresponding option. displayed or the "location" of a desired partitioned applica-

By selecting the Directory command. RS 400 can be tion. "ication." as used in reference to the preferred
caused to fetch a table of keywords. grouped by categories. embodiment means the specific relationships that a particu-
to which the PTO of the current partitioned application (as lar partitioned application bears to other such applications.
specified by the object set field 630 of the current PEO) 4j and the method for selecting particular partitioned applica-
belongs. Particularly. by selecting the Directory command. tions from such relationships. The techniques for querying a
RS 490, is causes to displays a series of screens each of thse of objects. embodied in network 10 is an advance
which contains alphabetically arranged general subject cat- over the prior art. insofar as no foreknowledge of either
egories from which the user may select. Following selection database structure or query technique or syntax is necessary.
of a category. a series of keywords associated with the the structure and search techniques being made manifest to
specified category are displayed in further screens together the user in the course of use of the comnands.
with descriptive statements about the application associated
with the keywords. Thereafter. the user can. in the manner RS APPUCATION PROTOCOL
previously discussed with regard to the Index command.
select from and navigate to the PTOs of keywords which are 50

related to the present page set by subject.
The Guide command provides a navigation method

related to a hierarchical organization of applications pro-
vided on network 10, and are described by a series of
sequentially presented overlaying windows of a type known 55

in the art, each of which presents an increasing degree of
detail for a particular subject area. terminating in a final
window that gives keywords associated with the relevant
applications. The Guide command makes use of the key-
word segment which describes the location of the PTO in a o

hierarchy (referred to. in the preferred embodiment. as the
"BFD," or Building-Floor-Department) as well as an asso-
ciated keyword character string. The BFD describes the set
of menus that are to be displayed on the screen as the
sequence of pop-up windows. The Guide command may be 65

invoked by requesting it from the Jump window described
above. or by selecting the Menu command on Command Bar

RS protocol defines the way the RS supports user appli-
cation conversation (input and output) and the way RS 400
processes a partitioned application. Partitioned applications
are constructed knowing that this protocol will be supported
unless modified by the application. The protocol is BAus-
trated FIG. 6. The boxes in FIG. i identify processing states
that the RS 400 passes through and the arrows indicate the
transitions permitted between the various states and are
annotated with the reason for the transition.

The various states are: (A) Initialize RS. (B) Process
Objects. (C) Interpretively Execute Pre-processors. (D) Wait
for Event. (E) Process Event. and (F) Interpretively Execute
Function Extension and/or Post-processors.

The transitions between states are: (la) Logon Page
Template Object Identification (PTO-id). (lb) Object
Identification. (2) Trigger Program Object identification
(PO-id) & return. (3) Page Partition Template (PFF) or
Window Stack Processing complete. (4) Event Occuffence.
and (5) Trigger PO-id and Return.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 29 of 147 PageID #: 46

5.796.967

23
Transition (la) from Initialize RS (A) to Process Objects

(B) occurs when an initialization routine passes the object-id
of the logon PTO to object interpreter 435. when the service
is first invoked. Transition (lb) from Process Event (E) to
Process Objects (B) occurs whenever a navigation event
causes a new page template object identification (PTO-id) to
be passed to object interpreter 435; or when a open window
event (verb or function key) occurs passing a window
object-id to the object interpreter 435; or a close window
event (verb or function key) occurs causing the current
top-most window to be closed.

While in the process object state. object interpreter 435
will request any objects that are identified by external
references in call segments. Objects are processed by pars-
Ing and interpreting the object and its segments according to
the specific object architecture. As object interpreter 435
processes objects. it builds a linked list siructure called a
page processing table (PN'). shown in FIG. 10. to reflect the
structure of the page. each page partition. Page Element
Objects (PEOs) required. program objects (POs) required
and each window object (WO) that could be called. Object
interpreter 435 requests all objects required to build a page
except objects that could be called as the result of some
event. such as a HELP window object.

Transition (2) from Process Objects (B) to Interpretively
Execute Pre-processors (C) occurs when the object inter-
preter 435 determines that a pre-processor is to be triggered.
Object processor 436 then passes the object-id of the pro-
gram object to the ThOL interpreter 438. ThOL interpreter
438 uses the RS virtual machine to interpretively execute the
program object. The PO can represent either a selector or an
initializer. When execution is complete. a transition auto-
matically occurs back to Process Objects (B).

Selectors are used to dynamically link and load other
objects such as PEOs or other PDOs based upon parameters
that they are passed when they are called. Such parameters
are specified in call segments or selector segments, This
feature enables RS 400 to conditionally deliver information
to the user base upon predetermined parameters. such as his
personal demographics or locale. For example. the param-
eters specified may be the transaction codes required to
reirieve the user's age. sex. andpersonal interest codes from
records contained in user profiles stored at the switch/file
server layer 200.

Initializers are used to set up the application processing
environment for a partitioned application and determine
what events RS 400 may respond to and what the action will
be.

Transition (3) from Process Objects (B) to Wait for Event
(D) occurs when object interpreter 435 is finished processing
objects associated with the page currently being built or
opening or closing a window on a page. In the Wait for Event
state (D). an input manager. which in the preferred form
shown includes keyboard manager 434 seen in FIG. 8.
accepts user inputs. All keystrokes are mapped from their
physical cedes to logical keystrokes by the Keyboard Man-
ager 434. representing keystrokes recognized by the RS
virtual machine.

When the cursor is located in a field of a page element.
keystrokes are mapped to the field and the partitioned
external variable (PEV) specified in the page element object
(PEO) field definition segment by the cooperative action of
keyboard manager. 434 and display manager 461. Certain
inputs. such as RETURN or mouse clicks in particular fields.
are mapped to logical events by keyboard manager 434.
which are called completion (or commit) events. CompIe-

24
tion events signify the completion of some selection or
specification process associated with the partitioned appli-
cation and trigger a partition level and/or page level post-
processor to process the "action" parameters associated with

5 the user's selection and commit event.
Such parameters are associated with each possible choice

or input. and are set up by the earlier interpretive execution
of an initializer pre-processor in state (C). Parameters usu-
ally specify actions to perform a calculation such as the

lo balance due on an order of several items with various prices
using sales tax for the user's location. navigate to PTO-id.
open window WO-id or close window. Actions parameters
that involve the specification of a page or window object will
result in transition (lb) to the Process Objects (B) state after

15 the post-processor is invoked as explained below.
Function keys are used to specify one or more functions

which are called when the user strikes these keys. Function
keys can include the occunence of logical events. as
explained above. Additionally. certain functions may be

20 "filtered", that is. extended or altered by SET_FUNCTION
or TRIGGERFUNCTION verbs recognized by the RS
virtual machine. Function keys cause the PO specified as a
parameter of the verb to be interpretively executed whenever
that function is called. Applications use this technique to

25 modify or extend the functions provided by the RS.
Transition (5) from Process Event (E) to Interpretively

Execute Pre-processors (F) occurs when Process Event State
determines that a post-processor or function extension PDO

30
is to be triggered. The id of the program object is then passed
to the ThOL interpreter 438. The ThOL interpreter 438 uses
the RS virtual machine to interpretively execute the FO.
When execution is complete a transition automatically
occurs back to Process Event (E).

35 RECEPTION SYSTEM SOFTWARE

The reception system 400 software is the interface
between the user of personal computer 405 and interactive
network 10. The object of reception system software is to

40 minimize mainframe processing, minimize transmission
across the network. and support application extendibility
and portability.

RS 400 software is composed of several layers. as shown
in FIG. 7. It includes external software 451. which is

45 composed of elements well known to the art such as device
drivers, the native operating systems; e.g.. MS-DOS.
machine-specific assembler functions (in the preferred
embodiment; e.g.. CRC error checking). and "C" runtime
libraiy functions; native software 420; and partitioned appli-

50 cations 410.
Again with reference to FIG. 7. native software 420 is

compiled from the "C" language into a target machine-
specific executable. and is composed of two components:
the service software 430 and the operating environment 450.

55 Operating environment 450 is comprised of the Logical
Operating System 432, or LOS; and a multitasker 433.
Service software 430 provides functions specific to provid-
ing interaction between the user and interactive network 10.
while the operating environment 454) provides pseudo mul-

60 titasking and access to local physical resources in support of
service software 430. Both layers of native software 420
contain kernel. or device independent functions 430 and
432. and machine-specific or device dependent functions
433. All device dependencies are in code resident at RS 400.

65 and are limited to implementing only those functions that are
not common across machine types. to enable interactive
network 10 to provide a single data stream to all snakes of

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 30 of 147 PageID #: 47

5.796.967

25
personal computer which are of the IBM or IBM compatible
type. Source code for the native software 420 is included in
parent application Ser. No. 388,156 now issued as U.S. Pat.
No. 5.347 .632. the contents of which patent are incorporated
herein by reference. Those interested in a more detailed
description ofthe reception system software may refer to the
source code provided in the referenced patent.

Service software 430 is comprised of modules . which are
device-independent software components that together
obtain. interpret and store partitioned applications existing
as a collection of objects. The functions performed by. and
the relationship between. the service software 430 module is
shown in FIG. 8 and discussed further below.

Through facilities provided by LOS 432 and multitasker
433. here called collectively operating environment 450.
device-independent multitasking and access to local
machine resources, such as multitasking. timers. buffer
management. dynamic memory management. tile storage
and access. keyboard and mouse input. and printer output
are provided. The operating environment 450 manages corn-
munication and synchronization of service software 430. by
supporting a request/response protocol and managing the
interface between the native software 420 and external
software 437.

Applications software layer 410 consists of programs and
data written in an interpretive language. "TRINTEX Basic
Object Language" or 'mOL," described above. TBOL was
written specifically for use in RS 400 and interactive net-
work 10 to facilitate videotext-specific commands and
achieve machine-independent compiling. ThOL is con-
structed as objects. which in interaction with one another
comprise partitioned applications.

RS native software 420 provides a virtual machine inter-
face for partitioned applications. such that ail objects corn-
prising partitioned applications "see" the same machine. RS
native software provides support for the following functions:
(1) keyboard and mouse input; (2) text and graphics display;
(3) application interpretation; (4) application database man-
agement; (5) local application storage; (6) network and link
level communications; (7) user activity data collection; and
(8) advertisement management.

With reference to FIG. 8. service software 430 is corn-
prised of the following modules: start-up (not shown);
keyboard manger 434; object interpreter 435; ThOL inter-
preter 438; object storage facility 439; display manager 461;
data collection manager 441; ad manager 442; objectl
communications manager interface 443; link communica-
tions manager 444; and fatal error manager 469. Each of
these modules has responsibility for managing a different
aspect of RS 400.

Stailup reads RS 400 customization options into RAM.
including modem. device driver and telephone number
options. from the file CONFIG.SM. Startup invokes all RS
400 component startup functions. including navigation to
the first page. a logon screen display containing fields
initialized to accept the user's id and password. Since
Startup is invoked only at initialization. for simplicity. it has
not been shown in FIG. 8.

The principal function of keyboard manger 434 is to
translate personal computer dependent physical input into a
consistent set of logical keys and to invoke processors
associated with these keys. Depending on the LOS key. and
the associated function attached to it. navigation. opening of
windows. and initiation of filter or post-processor TBOL
programs may occur as the result input events handled by the
keyboard manger 434. In addition. keyboard manger 434

26
determines inter and intra field cursor movement. and coor-
dinates the display of field text and cursor entered by the
user with display manager 461. and sends information
regarding such inputs to data collection manager 441.

5 Object interpreter 435 is responsible for building and
recursively processing a table called the "Page Processing
Table." or PVF. Object interpreter 435 also manages the
opening and closing of windows at the current page. Object
interpreter 435 is implemented as two sub-components: the

lo
object processor 436 and object scanner 437.

Object processor 436 provides an interface to keyboard
manger 434 for navigation to new pages. and for opening
and closing windows in the current page. Object processor
436 makes a request to object storage facility 439 for a page

15 template object (FF0) or window object (WO). as requested
by keyboard manger 434. and for objects and their segments
which comprise the PTO or WO returned by object storage
facility 439 to object processor 436. Based on the particular
segments comprising the object(s) making up the new VTO

20 or WO. object processor 436 builds or adds to the page
processing table (PV!'). which is an internal. linked-list.
global data structure reflecting the structure of the page or
page format object (PFO). each page partition or page
element object (PEO). and program objects (POs) required

25 and each window object (WO) that could be called. Objects
are processed by parsing and interpreting each object and its
segment(s) according to their particular structure as formal-
ized in the data object architecture (DOA). While in the
process object state. (state "B" of FIG. 6). object processor

30 436 will request any objects specified by the PTO that are
identified by external references in call segments (e.g. field
level program call 518. page element selector call 524. page
format call 526 program cali 532. page element call 522
segments) of such objects. and will. through a request to

35 ThOL interpreter 438, fire initializers and selectors con-
tamed in program data segments of ali FF0 constituent
program objects. at the page. element. and field levels.
Object processor 436 requests all objects required to build a
page. except objects that could only be called as the result

40 of some event external to the current partitioned application.
such as a HELP window object. When in the course of
building or adding to the PN' and opethng/closing WOs.
object processor encounters a call to an "ADSLOT" object
id. the next advertisement object id at ad manager 442 is

45 fetched. and the identified advertisement object is reflieved
either locally. if available. or otherwise from the network. so
that the presentation data for the advertisement can be sent
to display manager 461 along with the rest of the presenta-
tion data for the other objects to enable display to the user.

50 Object processor 436 also passes to data collection manager
441 all object ids that were requested and object ids that
were viewed. Upon completion of page or window
processing. object processor 436 enters the wait for event
state. and control is returned to keyboard manger 434.

55 The second component of object interpreter 435. object
scanner 437, provides a file-like interface. shared with object
storage facility 439, to objects currently in use at RS 400, to
enable object processor 436 to maintain and update the PFF.
Through facilities provided by object scanner 437. object

60 processor recursively constructs a page or window in the
requested or current partitioned application. respectively.

Object storage facility 439 provides an interface through
which object interpreter 435 and TBOL interpreter 438
either synchronously request (using the TBOL verb operator

65 "GEl") objects without which processing in either module
cannot continue. or asynchronously request (using the
ThOL verb operator "FETCH") objects in anticipation of

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 31 of 147 PageID #: 48

5.796.967

27
later use. Object storage facility 43 returns the requested
objects to the requesting module once retrieved from either
local store 440 or interactive network 10. Through control
structures shared with the object scanner 437. object storage
facility determines whether the requested object resides
locally. and if not. makes an attempt to obtain it from
interactive network 10 through interaction with link corn-
munications manager 444 via object'communications man-
ager interface 443.

When objects are requested from object storage facility
439. only the latest version of the object will be provided to
guarantee currency ofinformation to the user. Object storage
facility 439 assures currency by requesting version venu-
cation from network 10 for those objects which are available
locally and by requesting objects which are not locally
available from delivery system 20 where currency is main-
tamed.

Version verification increases response time. Therefore.
not all objects locally available are version checked each
time they are requested. 'Iipicaily. objects are checked only
the first time they are requested during a user session.
However. there are occasions. as for example in the case of
objects relating to news applications. where currency is
always checked to assure integrity of the information.

The frequency with which the currency of objects is
checked depends on factors such as the frequency of updat-
ing of the objects. For example. objects that are designated
as ultrastable in a storage control parameter in the header of
the object are never version checked unless a special version
control object sent to the RS as part of logon indicates that
all such objects must be version checked. Object storage
facility 439 marks all object entries with such a stability
category in ail directories indicating that they must be
version checked the next time they are requested.

Object storage facility 439 manages objects locally in
local store 440. comprised of a cache (segmented between
available RAM and a fixed size disk 111e). and stage (fixed
size disk file). Ram and disk cached objects are retained only
during user sessions. while objects stored in the stage file are
retained between sessions. The storage control field. located
in the header portion of an object. described more fully
hereafter as the object "storage candidacy". indicates
whether the object is stageable, cacheable or trashable.

Stageable objects must not be subject to frequent change
or update. They are retained between user sessions on the
system. provided storage space is available and the object
has not discarded by a least-recently-used (LRU) algorithm
of a conventional type; e.g. . see Operating System Theory,

by Coffman, Jr. and Denning. Prentice Hall Publishers. New
York. 1973. which operates in combination with the storage
candidacy value to determine the object storage priority. thus
rendering the stage self-configuring as described more fully
hereafter. Over time. the self-configuring stage will have the
effect of retaining within local disk storage those objects
which the user has accessed most often. The objects retained
locally are thus optimized to each individual user's usage of
the applications in the system. Response time to such objects
is optimized since they need not be retrieved from the
interactive computer system.

Cacheable objects can be retained during the current user
session, but cannot be retained between sessions. These
objects usually have a moderate update frequency. Object
storage facility 439 retains objects in the cache according to
the LRU storage retention algorithm. Object storage facility
439 uses the LRU algorithm to ensure that objects that are
least frequently used forfeit their storage to objects that are
more frequently used.

28
Trashable objects can be retained only while the user is in

the context of the partitioned application in which the object
was requested. Trashable objects usually have a very high
update frequency and must not be retained to ensure that the

5 user has access to the most current data.
More particularly and. as noted above. in order to render

a public informational and transactional network of the type
considered here attractive. the network must be both eco-
noinical to use and fast. That is to say. the network must

lo supply information and transactional support to the user at
minimal costs and with a minimal response time. These
objectives are sought to be achieved by locating as many
information and transactional support objects which the user
is likely to request. as close to the user as possible; i.e..

15 primarily at the user's RS 400 and secondarily at delivery
system 20. In this way. the user will be able to access objects
required to support a desired application with minimal
intervention of delivery system 20. thus reducing the cost of
the session and speeding the response time.

20 However. the number of objects that can be maintained at
RS 400 is restricted by at least two factors: the RS 400
storage capacity; i.e. . RAM and disk sizes. and the need to
maintain the stored objects current.

In order to optimize the effectiveness of the limited
25 storage space at RS 400. the collection of objects is

restricted to those likely to be requested by the user; i.e..
tailored to the user's tastes-and to those least likely to be
time sensitive; i.e. . objects which are stable. To accomplish

30
this. objects are coded for storage candidacy to identify
when they will be permitted at RS 400. and subject to the
LRU algorithm to maintain presence at RS 400.
Additionally. to assure currency of the information and
transaction support provided at RS 400. objects are further
coded for version identifIcation and checking in accordance

35 with a system of priorities that are reflected in the storage
candidacy coding.

Specifically. to effect object storage management. objects
are provided with a coded version id made up of the storage

40
control byte and version control bytes identified above as
elements of the object header. specifically. bytes 16 and 18
shown in FIG. 4h. In preferred form. the version id is
comprised of bytes 16 and 18 to define two fields. a first 13
bit field to identify the object version and a second three bite

45
field to identify the object storage candidacy.

In this arrangement. the storage candidacy value of the
object is addressed to not only the question of storage
preference but also object currency. Specifically, the storage
candidacy value establishes the basis upon which the object

50 WIll be maintained at RS 400 and also identifies the suscep-
tibility of the object to becoming stale by dictating when the
object will be version checked to determine currency.

The version value of the object on the other hand.
provides a parameter that can be checked against predeter-

55 mined values available from delivery system 20 to deter-
mine whether an object stored at RS 400 is sufficiently
current to permit its continued use. or whether the object has
become stale and needs to be replaced with a current object
from delivery system 20.

60 Still further. object storage management procedure further
includes use of the LRU algorithm. for combination with the
storage and version coding to enable discarding of objects
which are not sufficiently used to warrant retention. thus
personalizing the store of objects at RS 400 to the user's

65 tastes. Particularly. object storage facility 439. in accordance
with the LRU algorithm maintains a usage list for objects.
As objects are called to support the user's applications

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 32 of 147 PageID #: 49

5.796.967

requests. the objects are moved to the top of a usage list. As
other objects are called. they push previously called objects
down in the list. If an object is pushed to the bottom of the
list before being recalled. it will be forfeited from the list if
necessary to make room for the next called object. As will
be appreciated. should a previously called object be again
called before it is displaced from the list. it will be promoted
to the top of the list. and once more be subject to depression
in the list and possible forfeiture as other objects are called.

As pointed out above. in the course of building the screens
presented to the user, objects will reside at various locations
in RS 400. For example. objects may reside in the RS 400
RAM where the object is supporting a particular application
screen then running or in a cache maintained at either RAM
or disk 424 where the object is being held for an executing
application or staged on the fixed size file on disk 424 noted
above where the object is being held for use in application
likely to be called by the user in the future.

In operation. the LRU algorithm is applied to all these
regions and serves to move an object from RAM cache to
disk cache to disk lite. and potentially off RS 400 depending
on object usage.

With regard to the storage candidacy value, in this
arrangement. the objects stored at RS 400 include a limited
set of permanent objects e.g.. those supporting logon and
logoff. and other non-permanent objects which are subject to
the LRU algorithm to determine whether the objects should
be forfeited from RS 400 as other objects are added. Thus.
in time. and based on the operation of the LRU algorithm
and the storage candidacy value. the collection of objects at
RS 400 will be tailored to the usage characteristics of the
subscriber; i.e., self-configuring.

More particularly. the 3-bit field of the version id that
contains the storage candidacy parameter can have 8 differ-
cnt values. A first candidacy value is applied where the
object is very sensitive to time; e.g. . news items. volatile
pricing information such as might apply to stock quotes. etc.
In accordance with this first value. the object will not be
permitted to be stored on RS 400. and RS 400 will have to
request such objects from delivery system 20 each time it is
accessed, thus. assuring currency. A second value is applied
where the object is sensitive to time but less so than the first
case; e.g.. the price of apples in a grocery shopping appli-
cation. Here. while the price might change from day to day.
it is unlikely to change during a session. Accordingly the
object will be permitted to persist in RAM or at the disk
cache during a session, but will not be permitted to be
maintained at RS 400 between sessions.

Continuing down the hierarchy of time sensitivity. where
the object concerns information sufficiently stable to be
maintained between sessions, a third storage candidacy
value is set to permit the object to be stored at RS 400
between sessions. on condition that the object will be
version check the first time it is accessed in a subsequent
session. As will be appreciated. during a session, and under
the effect of the LRU algorithm. lack of use at RS 400 of the
object may result in it being forfeited entirely to accommo-
date new objects called for execution at RS 400.

Still further. a fourth value of storage candidacy is applied
where the object is considered sufficiently stable as not to
require version checking between sessions; e.g.. objects
concerning page layouts not anticipated to change. In this
case, the storage candidacy value may be encoded to permit
the object to be retained from session to session without
version checking. Here again. however. the LRU algorithm
may cause the object to forfeit its storage for lack of use.

Where the object is of a type required to be stored at RS
400, as for example. objects needed to support standard
screens, it is coded for storage between sessions and not
subject to the LRU algorithm forfeiture. However. where

5 such objects are likely to change in the future they may be
required to be version checked the first tizne they are
accessed in a session and thus be given a fifth storage
candidacy value. If. on the other hand. the required stored
object is considered likely to be stable and not require even

lo
version checking; e.g.. logon screens. it will be coded with
a sixth storage candidacy value for storage without version
checking so as to create a substantially permanent object.

Continuing. where a RS 400 includes a large amount of
combined RAM and disk capacity. it would permit more

15
objects to be stored. However. if objects were simply coded
in anticipation of the larger capacity. the objects would
potentially experience difficulty. as for example. undesired
forfeiture due to capacity limitations if such objects were
supplied to RS 400 units having smaller RAM and disk

20
sizes. Accordingly. to take advantage of the increased capac-
ity of certain RS 400 units without creating difficulty in
lower capacity units. objects suitable for storage in large
capacity units can be so coded for retention between ses-
sions with a seventh and eighth storage candidacy value

25
depending upon whether the stored large capacity object
requires version checking or not. Here. however, the coding
will be interpreted by smaller capacity units to permit only
cacheable storage to avoid undesirable forfeiture that might
result from over filling the smaller capacity units.

30 Where an object is coded for no version checking need
may nonetheless arise for a version check at some point. To
permit version checking of such objects. a control object is
provided at RS 400 that may be version checked on receipt
of a special communication from delivery system 20. If the

35
control object fails version check. then a one shot version
checking attribute is associated with all existing objects in
RS 400 that have no version checking atiributes. Thereafter.
the respective objects are version checked. the one shot
check attribute is removed and the object is caused to either

40 revert to its previous state if considered current or be
replaced if stale.

Still further. objects required to be stored at RS 400 which
are not version checked either because of lack of require-
ment or because of no version check without a control

45 object, as described above. can accumulate in RS 400 as
dead objects. To eliminate such accumulation. all object
having required storage are version checked over time.
Particularly. the least recently used required object is version
checked during a session thus promoting the object to the top

50 of the usage list if it is still to be retained at RS 400.
Accordingly. one such object wifi be checked per session
and over time, ail required objects will be version checked
thereby eliminating the accumulation of dead objects.

However. in order to work efficiently. the version check
55 attribute of the object should be ignored. so that even

required object can be version checked. Yet, in certain
circumstances. e.g. . during deployment of new versions of
the reception system software containing new objects not yet
supported on delivezy system 20 which may be transferred

60 to the fixed storage file of RS 400 when the new version is
loaded. unconditional version checking may prematurely
deletes the object from the RS 400 as not found on delivery
system 20. To avoid this problem. a sweeper control segment
in the control object noted above can be used to act as a

65 switch to turn the sweep of dead objects on and off.
With respect to version checking for currency. where an

object stored at RS 400 is initially fetched or accessed during

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 33 of 147 PageID #: 50

5.796.967

31
a session. a request to delivery system 20 is made for the
object by specifying the version id of the object stored at RS
400.

In response. delivery system 20 will advise the reception
system 400 either that the version id of the stored object
matches the currency value; i.e.. the stored object is
acceptable. or deliver a current object that will replace the
stored object shown to be stale. Alternatively. the response
may be that the object was not found. If the version of the
stored object is current. the stored object will be used until
verified again in accordance with its storage candidacy. If
the stored object is stale. the new object delivered will
replace the old one and support the desired screen. If the
response is object not found. the stored object will be
deleted.

Therefore. based on the above description. network 10 is
seen to include steps for execution at storage facility 439
which enables object reception. update and deletion by
means of a combination of operation of the LRU algorithm
and interpretation of the storage candidacy and version
control values. In turn. these procedures cooperate to assure
a competent supply of objects at RS 400 so as to reduce the
need for intervention of delivery system 20. thus reducing
cost of information supply and transactional support so as to
speed the response to user requests.

ThOL interpreter 438 shown in FIG. 8 provides the means
for executing program objects. which have been written
using an interpretive language. ThOL described above.
ThOL interpreter 438 interprets operators and operand con-
tamed in program object 508. manages ThOL variables and
data. maintains buffer and stack facilities. and provides a
runtime library of ThOL verbs.

ThOL verbs provide support for data processing. program
flow control. 111e management. object management.
communications. text display. command bar control. open!
close window. page navigation and sound. ThOL interpreter
also interacts with other native modules through commands
contained in ThOL verbs. For example: the verb "navigate"
will cause ThOL interpreter 438 to request object interpreter
435 to build a PPT based on the VtO id contained in the
operand of the NAVIGATE verb; "fetch" or "OFF" will
cause ThOL interpreter 438 to request an object from object
storage facility 439; "SET...FUNCI'ION" will assign a filter
to events occurring at the keyboard manger 434; and
"FORMAT." "SEND." and "RECEIVE" wifi cause TBOL
interpreter 438 to send application level requests to object!
communications manager interface 433.

Data areas managed by ThOL interpreter 438 and avail-
able to ThOL programs are Global External Variables
(GEVs). Partition External Variables (PEVs). and Runtime
Data Arrays (RDAs).

GEVs contain global and system data, and are accessible
to all program objects as they are executed. (lEVs provide
a means by which program objects may communicate with
other program objects or with the RS native code. if declared
in the program object. GEVs are character string variables
that take the size of the variables they contain. GEVs may
preferably contain a maximum of 32,000 variables and are
typically used to store such information as program return
code. system date and time. or user sex or age. ThOL
interpreter 438 stores such information in GEVs when
requested by the program which initiated a transaction to
obtain these records from the RS or user' s profile stored in
the interactive system.

Partition external variables (PEV5) have a scope restricted
to the page partition on which they are defined. PEVs are

32
used to hold screen field data such that when PEOs and
window objects are defined. the fields in the page partitions
with which these objects are to be associated are each
assigned to a FEy. When applications are executed. TBOL

5 interpreter 438 transfers data between screen fields and their
associated FEy. When the contents of a PEV are modified by
user action or by program direction. ThOL interpreter 428
makes a request to display manager 461 to update the screen
field to reflect the change. PEVs are also used to hold

lo partition specific application data. such as tables of infor-
mation needed by a program to process an expected screen
input.

Because the scope of PEVs is restricted to program
objects associated with the page partition in which they are

15 defined. data that is to be shared between page partitions or
is to be available to a page-level processor must be placed
in GEVs or RDAs.

RDAs are internal stack and save buffers used as general
program work areas. RDAs are dynamically defined at

20 program object "runtime" and are used for communication
and transfer of data between programs when the data to be
passed is not amenable to the other techniques available.
Both GEVs and RDAs include. in the preferred
embodiment. 8 integer registers and 8 decimal registers.

25 Preferably. there are also 9 parameter registers limited in
scope to the current procedure of a program object.

All variables may be specified as operand of verbs used by
the virtual machine. The integer and decimal registers may

30
be specified as operand for traditional data processing. The
parameter registers are used for passing parameters to
"called" procedures. The contents of these registers are
saved on an internai program stack when a procedure is
called. and are restored when control returns to the "calling'

35
procedere from the "called" procedure.

ThOL interpreter 438. keyboard manger 434. object inter-
preter 435. and object storage facility 439. together with
device control provided by operating environment 450. have
principal responsibility for the management and execution

4Q of partitioned applications at the RS 400. The remaining
native code modules function in support and ancillary roles
to provide RS 400 with the ability display partitioned
applications to the user (display manager 461), display
advertisements (ad manager 442). to collect usage data for

45 distribution to interactive network 10 for purposes of tar-
geting such advertisements (data collection manager 441).
and prepare for sending. and send. objects and messages to
interactive network 10 (objecticommunications manager
interface 443 and link communications manager 444)

50 Finally. the fatal eor manager exists for one purpose: to
inform the user of RS 400 and transmit to interactive
network 10 the inability of RS 400 to recover from a system
error.

Display manager 461 interfaces with a decoder using the
55 North American Presentation Level Protocol Syntax

(NAPLPS). a standard for encoding graphics data. or text
code. such as ASCII. which are displayed on monitor 412 of
the user's personal computer 405 as pictorial codes. Codes
for other presentation media. such as audio. can be specified

60 by using the appropriate type code in the presentation data
segments. Display manager 461 supports the following
functions: send NAPLPS strings to the decoder: echo text
from a PEV; move the cursor within and between fields;
destructive or non-destructive input field character deletion;

65 "ghost" and "unghost" fields (a ghosted field is considered
unavailable. unghosted available); turn off or on the current
field cursor; open, close. save and restore bit maps for a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 34 of 147 PageID #: 51

5.796.967

33
graphics window: update all current screen fields by dis-
playing the contents of their PEVs. reset the NAPLPS
decoder to a known state; and erase an area of the screen by
generating and sending NAPLPS to draw a rectangle over
that area. Display manager 461 also provides a function to
generate a beep through an interface with a machine-
dependent sound driver.

Ad manager 442 is invoked by object interpreter 435 to
return the object id of the next available advertisement to be
displayed. Ad manager 442 maintains a queue of advertising
object id's targeted to the specific user currently accessing
interactive network 10. Advertising objects are pre-fetched
from interactive system 10 from a personalized queue of
advertising ids that is constructed using data previously
collected from user generated events and/or reports of
objects used in the building of pages or windows. compiled
by data collection manager 466 and transmitted to interac-
tive system lo.

Advertising objects 510 are PEOs that. through user
invocation of a "LOOK" command. cause navigation to
partitioned applications that may themselves support. for
example, ordering and purchasing of merchandise.

An advertising object id list. or "ad queue." is requested
in a transaction message to delivery system 20 by ad
manager 442 immediately after the initial logon response.
The logon application at RS 400 places the advertising list
in a specific RS global storage area called a SYS_GEV
(system global external variable). which is accessible to all
applications as well as to the native RS code). The Logon
application also obtains the first two ad object id's from the
queue and provides them to object storage facility 439 so the
advertising objects can be requested. However. at logon.
since no advertising objects are available at RS local storage
facilities 440. ad objects. in accordance with the described
storage candidacy. not being retained at the reception system
between sessions. they must be requested from interactive
network 10.

In accordance with the preferred form of network 10. the
following parametric values are established for ad manager
442: advertising object is queue capacity. replenishment
threshold for advertising object id's and replenishment
threshold for number of outstanding pre-fetched advertising
objects. These parameters are set up in GEVs of the RS
virtual machine by the logon application program object
from the logon response from high function system 110. The
parameters are then also accessible to the ad manager 442.
Prefeffed values are an advertising queue capacity of 15,
replenishment value of 10 empty queue positions and a
pre-fetched advertising object threshold of 3.

Ad manager 442 pre-fetches advertising objects by pass-
ing advertising object id's from the advertising queue to
object storage facility 439 which then retrieves the object
from the interactive system if the object is not available
locally. Advertising objects are pre-fetched. so they are
available in RS local store 440 when requested by object
interpreter 435 as it builds a page. The ad manager 442
pre-fetches additional advertising objects whenever the
number of pre-fetched advertising objects not called by
object interpreter 435; i.e. the number of remaining adver-
tising objects. falls below the pre-fetch advertising thresh-
old.

Whenever the advertising object id queue has more empty
positions than replenishment threshold value, a call is made
to the advertising object id queue application in high fune-
tion system 110 shown in FIG. 2. via object1communications
manager interface 443 for a number of advertising object

id's equal to the threshold value. The response message from
system 110 includes a list of advertising object id's. which
ad manager 442 enqueues.

Object interpreter 435 requests the object id of the next
5 advertising object from ad manager 442 when object inter-

preter 435 is building a page and encounters an object call
for a partition and the specified object-id equals the code
word. "ADSLOT." if this is the first request for an adver-
tising object id that ad manager 442 has received during this

la user's session. ad manager 442 moves the advertising object
id list from the GEV into its own storage area. which it uses
as an advertising queue and sets up its queue management
pointers. knowing that the first two advertising objects have
been pre-fetched.

15
Ad manager 442 then queries object storage facility 439.

irrespective of whether it was the first request of the session.
The query asks if the specified advertising object k! pre-
fetch has been completed. i.e.. is the object available locally
at the RS. If the object is available locally. the object-id is

20
passed to object interpreter 435. which requests it from
object storage facility 439. If the advertising object is not
available in local store 440. ad manager 442 attempts to
recover by asking about the next ad that was pre-fetched.
This is accomplished by swapping the top and second eniry

25
the advertising queue and making a queiy to object

storage facility 439 about the new top advertising object id.
If that object is not yet available. the top position is swapped
with the third position and a query is made about the new top
position.

3a Besides its ability to provide advertising that have been
targeted to each individual user. two very important response
time problems have been solved by ad manager 442. The
first is to eliminate from the new page response time the time
it takes to retrieve an advertising object from the host

35
system. This is accomplished by using the aforementioned
pre-fetching mechanism.

The second problem is caused by pre-fetching. which
results in asynchronous concurrent activities involving the
reirieval of objects from interactive system 10. if an adver-

40 tislng object is pre-fetched at the same time as other objects
required for a page are requested. the transmission of the
advertising object packets could delay the transmission of
the other objects required to complete the current page by
the amount of time required to transmit the advertising

45 object(s). This problem is solved by the structuring the
requests from object interpreter 435 to the ad manager 442
in the following way:

1. Return next object id of pre-fetched advertising object
& pre-fetch another;

50 2. Return next advertising object id only; and
3. Pre-fetch next advertising object only.
By separating the function request (1) into its two

components. (2) and (3). object interpreter 435 is now able
to detennine when to request advertising object id's and

55 from its knowledge of the page build process. is able to best
determine when another advertising object can be pre-
fetched. thus causing the least impact on the page response
time. For example, by examining the PPT. object interpreter
435 may determine whether any object requests are out-

60 standing. If there are outstanding requests. advertising
request type 2 would be used. When all requested objects are
retrieved. object interpreter 435 then issues an advertising
request type 3. Alternatively. if there are no outstanding
requests. object interpreter 435 issues an advertising request

65 type 1. This typically corresponds to the user's "think time"
while examining the information presented and when RS
400 is in the Wait for Event state (D).

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 35 of 147 PageID #: 52

5.796967

35 36

Data collection manager 441 is invoked by object inter- transaction requests for records or additional processing of
preter 435 and keyboard manger 434 to keep records about records or may include records from a partitioned applica-
what objects a user has obtained (and. if a presentation data tion program object or data collection manager 441. Mes-
segment 530 is present. seen) and what actions users have sages to be received from network 10 usually comprise
taken (e.g. "NEXT." "BACK." "LOOK." etc.) 5 records requested in a previous message sent to network 10.

The data collection events that are to be reported during Requests received from object storage facility 439 include
the user's session are sensitized during the logon process. requests for objects from storage in interactive system 10.
The logon response message carries a data collection indi- Responses to object requests contain either the requested
cator with bit flags set to "on" for the events to be reported. object or an error code indicating an error condition.
These bit flags are enabled (on) or disabled (off) for each Object/communications manager 443 is normally the
user based on information contained in the user's profile
stored and sent from high function host 110. A user's data

exclusive native coie module to interface with link corn-

collection indicator is valid for the duration of his session.
munications manager 444 (except in the rare instance of a

The type of events to be reported can be changed at will in error). Link communications manager 444 controls the

the host data collection application. However. such changes connecting and disconnecting of the telephone line. tele-

will affect only users who logon after the change. 15 phone dialing. and communications link data protocol. Link

Data collection manager 441 gathers information con- communications manager 444 accesses network 10 by
cerning a user's individual system usage characteristics. The means of a communications medium (not shown) link
types of informational services accessed. transactions communications manager 444. which is responsible for a
processed, time information between various events. and the dial-up link on the public switched telephone network
like are collected by data collection manager 441. which 20 (PSTN). Alternatively. other communications means. such
compiles the information into message packets (not shown). as cable television or broadcast media. may be used. Link
The message packets are sent to network 10 via objectl communications manager 444 interfaces with ThOL inter-
communication manager interface 443 and link communi- preter for connect and disconnect. and with interactive
cations manager 444. Message packets are then stored by network 10 for send and receive.
high function host 110 and sent to an offline processing 25 Link communications manager 444 is subdivided into
facility for processing. The characteristics of users are modem control and protocol handler units. Modern control
ultimately used as a means to select or target various display (a software function weil known to the art) hands the modem
objects. such as advertising objects. to be sent to particular specific handshaking that occurs during connect and discon-
users based on consumer marketing strategies. or the like, nect. Protocol handier is responsible for transmission and
and for system optimization. 30 receipt of data packets using the TCS (TRINTEX Cornu-

ObjectJcommunications manager interface 443 is respon- nications Subsystem) protocol (which is a variety of OSI
sible for sending and receiving DIA (Data Interchange link level protocol, also well known to the art).
Architecture described above) formatted messages to or Fatal error manager 469 is invoked by all reception
from interactive network 10. Object/communications man- system components upon the occurrence of any condition
ager 443 also handles the receipt of objects. builds a DIA 35 which precludes recovery. Fatal enor manager 469 displays
header for messages being sent and removes the header from a screen to the user with a textual message and an error code
received DIA messages or objects. correlates requests and through display manager 461. Fatal error manager 469 sends
responses. and guarantees proper block sequencing. Object' an error report message through the link communications
communications manager interface 443 interacts with other manager 444 to a subsystem of interactive network lo.

native code modules as follows: object/communications 4e The source code for the reception system software as
manager 443 (1) receives all RS 400 object requests from noted above is described in parent application Ser. No.
object storage facility 439. and forwards objects received 388.156 filed Jul. 28. 1989, now issued as U.S. Pat. No.
from network 10 via link communications manager 444 5.347.632. the contents ofwhich are incorporated herein by
directly to the requesting modules; (2) receives ad list reference.
requests from ad manager 442. which thereafter periodically 45 SAMPLE APPUCATION
calls objecticomniunications manager 443 to receive ad list
responses; (3) receives data collection messages and send Page 255 ifiustrated in FIG. 3b corresponds to a parti-
requests from data collection manager 441; (4) receives tioned application that permit's a user to purchase apples. It

application-level requests from ThOL interpreter 438, shows how the monitor screen 414 of the reception system

which also periodically calls object/communications man- 50 400 might appear to the user. Displayed page 255 includes

ager interface 443 to receive responses (if required); and (5) a number of page partitions and corresponding page ele-
receives and sends DIA formatted objects and messages ments.

from and to link communications manager 444. The page template object (PrO) 500 representing page
Object/communications manager interface 443 sends and 255 is illustrated in FIG. 9. FF0 500 defines the composition

receives DIA formatted messages on behalf ofTBOL inter- 55 of the page. including header 250. body 260. display fields
preter 438 and sends object requests and receives objects on 270. 271. 272. advertising 280. and command bar 2%. Page
behalf of object storage facility 439. Communication pack- element objects (FEOs) 504 are associated with page parti-
ets received containing parts of requested objects are passed tions numbered; e.g.. 250. 260. 280. They respectively.
to object storage facility 439 which assembles the packets present information in the header 250. identifying the page
into the object before storing it. If the object was requested 6o topic as ABC APPLES; in the body 260. identifying the cost
by object interpreter 435. all packets received by object of apples; and prompt the user to input into fields within
storage facility 439 are also passed to object interpreter 435 body 260 the desired number of apples to be ordered. In
avoiding the delay required to receive an entire object before advertising 280. presentation data and a field representing a
processing the object. Objects which are pre-fetched are post-processor that wifi cause the user to navigate to a
stored by object storage facility 439. 65 targetable advertising. is presented.

Messages sent to interactive network 10 are directed via In FIG. . the structure of FF0 500 can be traced. PTO
DIA to applications in network 10. Messages may include 500 contains a page format call segment 526. which calls

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 36 of 147 PageID #: 53

5396.967

37 38
page format object (PFO) 502. PFO 502 describes the then sends a synchronous request for the PTO 500 specified
location and size of partitions on the page and numbers in the navigation event to object storage facility 439. Object
assigned to each partition. The partition number is used in storage facility 439 attempts to acquire the requested object
page element call segments 522 so that an association is from local store 440 or from delivery system 20 by means
established between a called page element object (PEO) 504 5 of objecticommunication manager 443. and returns an error
and the page partition where it is to be displayed. Programs code if the object cannot be acquired.
attached to this PEO can be executed only when the cursor Once the PTO 500 is acquired by object/communications
is in the page partition designated within the PEO. manager 443. object interpreter 435 begins to build PFF by

PTO 500 contains two page element call segments 522. parsing PTO 500 into its constituent segment calls to pages
which reference the PEOs 594 for partitions 250 and 260. 10 and page elements. as shown in FIG. 4d and interpreting
Each PEO 504 defines the contents of the partition. The such segments. PFO and PEO call segments 526 and 522
header in partition 250 has only a presentation data segment require the acquisition of the corresponding objects with
530 in its PEO 504. No input. action. or display fields are object id's <ABCF>. <A]3CX> and <ABCY>. Parsing and
associated with that partition. interpretation of object ABCY requires the further acquisi-

The PEO 504 for partition 260 contains a presentation tion of program objects <ABCI> and <ABCJ>.
data segment 530 and field definition segments 516 for the DUfiflg the interpretation of the PEOs 504 for partitions
three fields that are defined in that partition. Two of the fields and 260. other RS 400 events are triggered. This
will be used for display only. One field will be used for input coffesponds to transition (2) to interpret pre-processors state
of user supplied data. (C) in FIG. 6. Presentation data 530 is sent to display

In the example application. the PEO 504 for body parti- 20 manager 461 for display using a NAPLPS decoder within

tion 260 specifies that two program objects 508 are part of display manager 461. and. as the PEO <AECY> for partition

the body partition. The first program. shown in Display field 260 is parsed and interpreted by object interpreter 435.

270. 271. 272. is called an initializer and is invoked uncon- parameters in program call segment 532 identify the pro-

ditionally by ThOL interpreter 438 concurrently with the gian object <ABC!> as an initializer. Object interpreter 435

display of presentation data for the partition. In this 25 obtains the program object from object storage facility 439.

application. the function of the initializer is represented by and makes a request to ThOL interpreter 438 to execute the

the following pseudo-code: ithtiizer program object 508 <ABCL'. The initializer per-

1. Move default values to input and display fields;
forms the operations specified above using facilities of the
RS irt ThOL interpreter 43$. using operating

2. "SEND" a transaction to the apple application that is 30 environment 450. executes initializer program object 506
resident on interactive system 10; <pCb and may. if a further program object 50$ is

3. "RECEIVE" the result from interactive system 10: i.e. required in the execution of the initializer. make a synchro-
the current price of an apple; nous application level object request to object storage facil-

4. Move the price of an apple to PEV 271 so that it will ity 439. When the initializer terminates. control is returned
be displayed; 35 to object interpreter 435. shown as the return path in

5. Position the cursor on the input field; and transition (2) in FIG. 6.

6. Terminate execution of this logic. Having returned to the process object state (B). object
The second program object 50$ is a field post-processor. processor 435 continues processing the objects associated

It will be invoked conditionally, depending upon the user with PTO <ABC!>. Object interpreter continues to con-
keystroke input. In this example. it will be invoked if the siTuCt the PN'. providing RS 400 with an environment for
user changes the mput field contents by entering a number. subsequent processing of the PTO <ABC!> by pre-
The pseudo code for this post-processor is as follows: processors and post-processors at the page. partition. and

i. Use the value in PEV 270 (the value associated with the field levels. When the PFF has been constructed and the

data entered by the user into the second input data field iiiitializer executed, control is returned to keyboard manager

270) to be the number of apples ordered. and the RS enters the wait for event (E) State. via

2. Multiply the number of apples ordered times the cost
transition (4). as shown in FIG. 6.

the wait for event state. the partitioned application
per apple previously obtained by the initializer wthts for the user to acate an event. In any partitioned

3. Conslruct a string that contains the message "THE application, the user has many options. For example. the
COST OF THE APPLES YOU ORDERED IS user may move the cursor to the "JUMP,, field 296 on the
$45.34;"; command bar 290. which is outside the current application.

4. Move the string into PEV 272 so that the result will be and thus cause subsequent navigation to another application.
displayed for the user; and For purposes of this example. it is assumed that the user

5. Terminate execution of this logic. enters the number of apples he wishes to order by entering
The process by which the "APPLES" application is 55 a digit in display field 271.

displayed. initialized. and run is as follows. Keyboard manager 434 translates the input from the
The "APPLES" application is initiated when the user user's keyboard to a logical representation independent of

navigates from the previous partitioned application, with the any type of personal computer. Keyboard manager 434
navigation target being the object íd of the "APPLES" PTO saves the data entered by the user in a buffer associated with
500 (that is. object id ABC!). This event causes keyboard 6e the current field defined by the location of the cursor. The
manager 434 to pass the FF0 object Id. ABC1 (which may. buffer is indexed by its PEV number, which is the same as
for example, have been called by the keyword navigation the field number assigned to it during the formation of the
segment 520 within a PEO 504 of the previous partitioned page element. Keyboard manager 434 determines for each
application). to object interpreter 435. With reference to the keystroke whether the keystroke conesponds to an input
RS application protocol depicted in FIG. 6, when the par- 65 event or to an action or completion event. Input events are
titioned application is initiated. RS 400 enters the Process logical keystrokes and are sent by keyboard manager to
Object state (B) using transition (1). Object interpreter 435 display manager 461. which displays the data at the input

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 37 of 147 PageID #: 54

5 .79&967

39
field location. Display manager 461 also has access to the
field buffer as indexed by its PEV number.

The input data are available to TBOL interpreter 438 for
subsequent processing. When the cursor is in a partition.
only the PEVs for that partition are accessible to the RS
virtual machine. After the input from the user is complete (as
indicated by a user action such as pressing the REFURN key
or eniry of data into a field with an action attribute). RS 400
enters the Process Event state (E) via transition (4).

For purposes of this example. let us assume that the user
enters the digit "5" in input field 270. A transition is made
to the process event state (E). Keyboard manager 434 and
display manager 437 perform a number of actions. such as
the display of the keystroke on the screen. the collection of
the keystroke for input. and optionaily. the validation of the
keystroke, i.e. numeric input only in numeric fields. When 15

the keystroke is processed. a return is made to the wait for
event state (D). Edit attributes are specified in the field
definition segment.

Suppose the user inputs a "e" next. A transition occurs to
the PE state and after the "6" is processed. the Wait for Event 20

(D) state is reentered. JI the user hits the "completion" key
(e.g.. ENTER) the Process Event (E) state will be entered.
The action attributes associated with field 272 identify this
as a system event to trigger post-processor program object
<ABCJ>. When the interpretive execution ofprogram object 25

<ABCJ> is complete. the wait for event state (D) will again
be entered. The user is then free to enter another value in the
input field. or select a command bar function and exit the
apples application.

While this invention has been described in its preferred
form. it will be appreciated that changes may be made in the
form. construction. procedure and arrangement of its various
elements and steps without departing from its spirit or scope.

What we claim is:
I. A method for presenting interactive applications on a

computer network. the network including a multiplicity of
user reception systems at which respective users may
request a multiplicity of available applications. the respec-
tive reception systems including a monitor at which the
applications requested can be presented as one or more
screens of display. the method comprising the steps of:

a. generating a screen display at a respective reception
system for a requested application. the screen display
being generated by the respective reception system
from data objects having a prescribed data structure. at
least some of which objects may be stored at the
respective reception system. the screen display includ-
ing a plurality of partitions. the partitions being con-
structed from objects. the objects being retrieved from
the objects stored at the respective reception system. or 50

if unavailable from the objects stored at the respective
reception system. then from the network. such that at
least some of the objects may be used in more than one
application;

b. generating at least a first partition for presenting s
applications; and

C. generating concurrently with the first partition at least
a second partition for presenting a plurality of corn-
mand functions. the command functions including at
least a first group which are selectable to permit move- o

ment between applications.
2. The method of claim i wherein the data structure of the

objects includes a header and one or more data segments and
wherein generating the second partition includes providing
the first group of command functions with a first subgroup 65

of command functions which are selectable to permit ran-
dom movement between applications.

40
3. The method of claim 2 wherein the objects are stored

at the respective reception systems in accordance with a
predetermined plan. and wherein providing the first sub-
group of commands includes providing a command for
causing the user to be presented with a t least one procedure
for navigating to a new application.

4. The method of claim 2 wherein the predetermined plan
for storing objects at the respective reception systems
includes providing the objects with a storage control param-
eter in their respective headers. and wherein providing the
first subgroup of command functions includes providing at
least one command for causing the user to be presented with
a plurality of different procedure for navigating to a new
application.

5. The method of claim 4 wherein the object storage
controle parameter is dependent on the currency of the
object data, and wherein providing the navigation proce-
dures includes enabling the user to enter a character string at
the reception system to randomly search the available appli-
cations for a desired application.

6. The method of claim 4 wherein providing the naviga-
tion procedures includes enabling the user to access an index
of available applications from which a desired application
may be selected.

7. The method of claim 4 wherein providing the naviga-
tion procedures includes enabling the user to access a
directory of application subject matter from which a desired
application may be selected.

8. The method of claim 4 wherein providing the naviga-
tion procedures includes enabling the user to access a
physical analogy of the available applications from which a
desired application may be selected.

9. The method of claims 5. 6. 7 or 8 wherein providing the
navigation procedures to a new application includes pre-
senting a window at the display in which the user is
presented with multiple. interactive command functions to
effect navigation.

10. The method of claim 2 wherein the objects are stored
at the respective reception systems in accordance with a
predetermined plan. and wherein providing the first sub-
group of command functions includes providing at a com-
mand for enabling the user to progress through a sequence
of applications previously designated.

11. The method of claim 10 wherein the predetermined
plan for storing objects at the respective reception systems
includes providing the objects with a storage control param-
eter in their respective headers. and wherein providing the
user with a command for progressing through a sequence of
applications includes enabling the user to adjust the appli-
cation sequence.

12. The method of claim i further including generating at
least a third screen partition concurrently with the first and
second screen partitions for presenting a second application
and wherein the data structure of the objects includes a
header and one or more data segments.

13. The method of claim 12 wherein the objects are stored
at the respective reception systems in accordance with a
predetermined plan. and wherein the predetermined plan for
storing objects at the respective reception systems includes
providing the objects with a storage control parameter in
their respective headers. and wherein presenting a third
screen partition includes presenting the second application
as advertising.

14. The method of claim i further including generating
one or more window partitions that overlays at least a
portion of the application partition. the one or more windows
for presenting data associated with the application displayed

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 38 of 147 PageID #: 55

5.796.967

41

and wherein the data structure of the objects includes a
header and one or more data segments. and wherein the
objects are stored at the respective reception systems in
accordance with a predetermined plan. which includes pro-
viding the objects with a storage control parameter at their
respective headers.

15 The method of claim 14 wherein generating window
partitions includes providing the window partitions with
fields for conducting interactive procedures associated with
an underlying application.

16, The method of claim 15 wherein generating window
partitions includes providing the window partitions with
interactive fields for conducting transactional procedures.

42
17. The method ofclairn i wherein generating the first and

second screen partitions includes generating the respective
partitions at fixed. predetermined regions of the display
screen. the second partition being arranged as a command

5 bar and wherein the data structure of the objects includes a
header and one or more data segments. and wherein the
objects are stored at the respective reception systems in
accordance with a predetermined plan. which includes pro-

io viding the objects with a storage control parameter at their
respective headers.

* * * * *

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 39 of 147 PageID #: 56

EXHIBIT B

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 40 of 147 PageID #: 57

(12) United States Patent
Filepp et al.

(54) METHOD FOR PRESENTING ADVERTISING
IN AN INTERACTiVE SERVICE

(75) Inventors: Robert Filepp, White Plains, NY (US);
Alexander W. Bidwell, New York, NY
(US); Francis C. Young, Pearl River,
NY (US); Allan M. Wolf, Ridgefield,
CT (US); Duane Tiemann, Ossining,
NY (US); Mel Bellar, New York, NY
(US); Robert D. Cohen, Pouyhquag,
NY (US); James A. Galambos,
deceased, late of Westport, CT (US);
Kenneth H. Appleman, Brewster, NY
(US); Sam Meo, Carmel, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 08/158,025

(22) Filed: Nov. 26, 1993

Related U.S. Application Data

(60) Division ofapplication No. 07/388,156, filed on Jul.
28, 1989, now Pat. No. 5,347,632, which is a con-
tinuation-in-part of application No. 07/328,790, filed
on Mar. 23, 1989, now abandoned, which is a con-
tinuation-in-part of application No. 07/21 9,93 1 , filed
on Jul. 15, 1988, now abandoned.

(51)

(52)
(58)

Int. Cl.
GO6Q 30/00 (2006.01)
U.S. Cl ... 705/14
Field of Classification Search 364/401;

395/600, 144, 153, 200, 250, 201, 207, 210,
395/214, 611, 613, 614, 615, 762, 779, 782,
395/133, 135, 507, 327, 339, 340, 343, 346,

395/200.09, 445, 460
See application file for complete search history.

110

Hh Fontl,
Syt

210

ne

201

302

Cch/ConcoMoto;

400

III III IID IID IID IID III DII ID III IDI II DI II
US007072849B i

(10) Patent No.: US 7,072,849 Bl
(45) Date of Patent: Jul. 4, 2006

(56) References Cited
U.S. PATENT DOCUMENTS

3,653,001 A 3/1972 Ninke 395/132

(Continued)
FOREIGN PATENT DOCUMENTS

JP 573167 1/1982

JP 3204259 9/1991

OTHER PUBLICATIONS

"Trintex Sets Prodigy Pricing; Telaction Reports New Cable
System Affiliate"; IDP Report; y 9 Issue:n4 p. 2(2); Apr. 1,
1988; Dialog(file 648, 06639981).*

(Continued)

Primary Examiner-Donald L. Champagne
(74) Attorney, Agent, or Firm-Connolly Boye Lodge &
Hutz LLP; Douglas Lefeve
(57) ABSTRACT

A method for presenting advertising in an interactive service
provided on a computer network, the service featuring
applications which include pre-created, interactive text/
graphic sessions is described. The method features steps for
presenting advertising concurrently with service applica-
tions at the user terminal configured as a reception system.
In accordance with the method, the advertising is structured
in a manner comparable to the service applications enabling
the applications to be presented at a first portion of a display
associated with the reception system and the advertising
presented at a second portion. Further, steps are provided for
storing and managing advertising at the user reception
system so that advertising can be pre-fetched from the
network and staged in anticipation of being called for
presentation. This minimizes the potential for communica-
tion line interference between application and advertising
traffic and makes the advertising available at the reception
system so as not to delay presentation of the service appli-
cations. Yet further the method features steps for individu-
alizing the advertising supplied to enhance potential user
interest by providing advertising based on a characterization
of the user as defined by the users interaction with the
service, user demographics and geographical location. Yet
additionally, advertising is provided with transactional
facilities so that users can interact with it.

25 Claims, 16 Drawing Sheets

=I

:1I::
20 IO

302

Coth/Coc.nfroto

301 301 29.

;

p-428

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 41 of 147 PageID #: 58

US 7,072,849 Bl
Page 2

U.S. PATENT DOCUMENTS

4,552,349 A 11/1985 Loos et al 270/54
4,575,579 A 3/1986 Simon et al 178/4
4,688,167 A 8/1987 Agarwal 395/343
4,714,996 A 12/1987 Gladney et al 395/600
4,805,134 A 2/1989 Calo et al 395/610
4,823,122 A 4/1989 Mann et al 340/825.28
4,873,662 A 8/1989 Sargent
4,887,204 A 12/1989 Johnson et al 395/600
4,897,781 A 1/1990 Chang et al 395/600
4,897,782 A 1/1990 Bennett et al 395/600
4,989,850 A 2/1991 Weller 270/1.1
5,036,314 A 7/1991 Barillari et al 340/717
5,087,805 A * 2/1992 Silverschotz et al. 219/121.71
5,105,184 A * 4/1992 Pirani et al 340/721
5,119,290 A * 6/1992 Loo et al 395/400

OTHER PUBLICATIONS

"The Handbook"; Prodigy; ©1990 Prodigy Services Corn-
pany Glessbrenner, Alfred; Ceriés, New On-line fee; $4.95
a Month; Home Office Computing; v8 P. 36(1); Dec., 1990
Dialog (file 647, 09685321).*
"Advertisers Need Quick Fix for Zipping, Zapping"; Mar-
ketingNews; v20 niO; pp. 12; May 9, 1986; Dialog: File 15,
Acc# 00317906.*
"Consurners Plugging into new Electronic Mall"; Advertis-
ing Age; Mar. 4, 1985; p. 741; Dialog: File 16, Acc#
0115 5574.
"CornpuServe Will Jointly Offer Advertising and Direct
Marketing Services via the CornpuServe Inforrnation Ser-
vice, aVideotex Systern"; NewsRelease; Oct. 19, 1983; pp.
1-3; Dialog: File 16, Acc# 00962377.*
"Cornpuserve, L.M. Berry to Test Viability ofOnline Adver-
tising"; Online Database Report; v4 niO; p. 12; Oct. 1983;
Dialog: File 275, Acc# 00610155.*
Miller; "Database and Videotex Services-Where is Video-
tex Going?"; Data Communications Buyers' Guide 1983;
pp. 152-157; Nov. 1982; Dialog: File 15, Acc# 00188062.*
Dictionary of Computers, Information Processing & Tele-
communications, 2nd ed.; Jeny M. Rosenberg; 1984; pp.

183, 184, 268, 269, 303, 395, 402, 455, 530, 531, 594, 639,
640, 690, 691.*
Dictionaiy of Computers, Information Processing & Tele-
communications, 2nd ed.; Jerry M Rosenberg; 1984; p.
700.*

Miller; "Database and Videotex Services-Where Is Video-
tex Going?"; Data Communications Buyers ' Guide 1983;
pp. 152, 157; Nov. 1982.*
Dietrich et al.; "Toward a Graphic Standard"; PC World; v2
n12; p. 264-269; Nov. 1984.*
"MCTe1 Inc. Advertises in the Electronic Mall Shop-at-
Horne Service, an Advertising Vehicle of CornpuServe Inc.
And L. M. Berry & Co."; PR Newswire, PH303; Jan. 23,
1985; Dialog: File 148, Acc# 02341095.*
"Consurners Plugging Into New Electronic Mall"; Advertis-
ingAge; Mar. 4, 1985; p. 741.*
"Horne-Cornputer Shopping Arrives"; Discount Store News;
v24; p. 3(2); Mar. 18, 1985; Dialog: File 148, Acc#
02324097.*
"Advertisers Need Quick Fix for Zipping, Zapping"; Mar-
keting News; v20 niO; pp. 12; May 9, 1986.*
Caplinger, Michael, "An Inforrnation Systern Based on
Distributed Objections", OOPSLA '87 Proceedings.
Schatz, Bruce, "Telesophy: A Systern for Manipulating the
Knowledge of a Community", 1987 IEEE.
Christodoulakis, S., "The Multirnedia Object Presentation
Manager of MINOS: A Symmetric Approach", ACM
SIGMOD Conf. 1986.
Christodoulakis, S., "Issues in the Architecture of a Docu-
rnent Archiver Using Optical Disk Technology", i 985 ACM.
Christodoulakis, S., "Multirnedia Docurnent Presentation,
Inforrnation Extraction, and Docurnent Forrnation in
MINOS: A Model and A Systern" 1986 ACM.
Sigel, Efrern, "The Future of Videotext", i 983, Knowledge
Industry Publications, Inc., White Plains NY and London.
Alber, Antone F. , Vìdeotex/Teletext Principles & Practices,
McGraw-Hill, Inc., 1985.

* cited by exarniner

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 42 of 147 PageID #: 59

U.S. Patent Jul. 4, 2006 Sheet 1 of 16

lo

lnformaton Loyer

Switch/File Server

US 7,072,849 Bl

loo

200

Cache/Concentrator L 300

Reception System [. 401

FIG. i

20

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 43 of 147 PageID #: 60

11
0

H
gh

 F
un

cf
lo

n
er

i
.
J

'
J

S
ys

te
m

L
!
i

G
at

ew
ay

S
ys

te
m

s
F

ile
 S

er
ve

r

20
1

'
V

30
2

C
ac

he
/C

on
ce

nt
ra

to
r

(

¡
m
n

i

(
(
H
m
m

L
E
f
-

40
0

'
l
l
4
1
I
1
T
h
I
U
I
I
u
1

i

42
4

30

B
us

in
es

s
S

up
po

rt
S

ys
te

m

.
20

0
20

1
-

30
2

C
ac

he
/C

on
ce

nt
ra

to
r

30
1

30
1

14 40
5

,
.

1
R

ec
ep

tio
n

42
0

'
-

:

41
6

j
40

5
;::

'
40

1

J
«
,
r

]
-

42
6

J-
42

8

-
20

- . ç'
) a oc .

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 44 of 147 PageID #: 61

U.S. Patent Jul. 4, 2006 Sheet 3 of 16 US 7,072,849 Bl

/
255

Header PartlUon 250

Body Partition Body Partition
260 260

Window
Partition
275

AD Partition 280

I Next] [Back J lPoth] IMenuI JActioni IJUmPI I H&p I F Exit I

tr i I t 1

Command
Bar 290
I

'291 292 293 '294 295 296 297 298
\ \-

FIG. 3a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 45 of 147 PageID #: 62

U.S. Patent Jul. 4, 2006 Sheet 4 of 16 US 7,072,849 Bl

Header-
Partition #1
250

Body-
Partition #2
260

AD-
Partition #3
280

Command Bar
Partition 290

255
Presentation Data /414

I h'

ABC APPLES -7
APPLES ARE G6OD FOR YOU ..-
APPLES COST I TEACH

HOW MANY APPLES DO YOU
WISH TO ORDER ?

I K
AD

110N

NE(
291

a'cx
292

PATH

293
MENU

294

(
295

uup
296

uap
297

xrr

298

SPECIFiC DiSPLAY SCREEN EXAMPLE

FIG. 3b

Display
Field 2

-, 271

Display
Field i
27O
(Input)

- Display
Field 3
272

285

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 46 of 147 PageID #: 63

U.S. Patent Jul. 4, 2006 Sheet 5 of 16 US 7,072,849 Bl

OBJECT STRUCTURE

550
552\

(552
(

552

HEADER SEGMENT SEGMENT SEGMENT

TYPE
f

LENGTH
f

DATA

J)

553
I 554/

555

FIG. 4a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 47 of 147 PageID #: 64

55
1

i
_
i

B
Y

T
E

S
B

Y
T

E
 i

B
Y

T
E

S
 2

-7
 B

Y
tE

S
 8

-1
1

B
Y

T
E

 1
2

B
Y

T
E

 1
3

14
-1

5
B

Y
tE

 1
6

B
Y

tE
 1

7
B

Y
T

E
 1

8

O
B

JE
C

T
A

C
C

E
S

S
O

B
JE

C
T

O
B

JE
C

T
O

B
JE

C
T

O
B

JE
C

T
ID

C
O

N
T

R
O

L
S

E
T

LO
C

.
T

Y
P

E
LE

N
G

T
H

LE
N

G
T

H
iN

S
E

T

F
I
G
.

4
b

O
B

JE
C

T
N

U
M

B
E

R
O

B
JE

C
T

S
T

O
R

A
G

E
O

F
V

E
R

S
IO

N
C

O
N

T
R

O
L

O
B

JE
C

T
S

C
O

N
T

R
O

L
IN

 S
E

T

- . ç'
)

.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 48 of 147 PageID #: 65

O
B

JE
C

T
 T

Y
P

E
S 50

0

IP
A

G
E

 T
E

M
P

LA
T

E
 O

W

50
6

I
W

IN
D

O
W

 O
B

JE
C

T
]

F
I
G
.

4
e

S
E

G
M

E
N

T
 T

Y
P

E
S

50
2

I P
A

G
E

 F
O

R
M

A
T

 O
B

J
I

r
50

8

LP
R

O
G

R
A

M
 O

B
JE

C
T

I

/5
12

r5
14

F
 C

U
S

T
O

M
 C

U
R

S
O

R
I

J
C

U
S

T
O

M
 T

E
X

T
 J

5
1
8

ç
-
5
2
0

I F
LD

 L
E

V
L

P
G

M
 C

A
LL

 I
I K

E
Y

W
O

R
D

/N
A

V
IG

A
T

'N
l

I
,
-

52
4

F
P

G
 E

LM
N

T
 S

E
LE

C
T

O
R

 C
A

LL
 I

53
0

[R
E

S
E

N
T

A
T

IO
N

a
S
T
A

I
I
-
.

5
1
3

I
C

O
M

P
R

E
S

S
IO

N
 D

E
S

.
I

,.-
51

9
E

C
U

S
T

O
M

 C
U

R
S

O
R

 T
Y

P
4

f
-
.

52
5

I
IM

B
E

D
D

E
D

 E
LE

.
J

,-
 5

31
I-

T
A

B
LE

 S
T

R
 U

C
T

U
R

E
J

,-
53

7
I

S
Y

S
T

E
M

 T
A

B
LE

 C
A

LL
]

52
6

I P
A

C
E

 F
O

R
M

A
T

 C
A

LL
 I

,,-
53

2
I

P
R

O
G

îi
C

A
LL

I
1

51
5

I
__

A
R

R
A

Y
 0

E
V

.
1

I
C

U
S

T
O

M
 G

R
A

P
H

IC
I

i-.
 5

27
I

t
i
4
v
a
i
r
o
i
«

C
O

N
T

R
O

L
I

I-
 5

33
I I

M
B

E
D

D
E

D
 O

B
JE

C
T

1

y
_
_

50
4

I-
P
A
C
E

E
L
E
M
E
N
T

O
W

I

_
-
5

i
o

I A
D

V
E

R
11

S
E

M
E

tff
o
a
i

I

/_
__

51
6

I
F

IE
LD

 D
E

F
1N

0N
I

,_
52

2
I P

A
G

E
 E

LE
M

E
N

T
 C

A
LL

 I

f
-
.
-
-

52
6

I
P

A
R

T
O

E
JO

N
 D

E
N

I

/-
.53

4

I
P

R
O

G
R

A
M

 D
A

T
A

J
f
-

51
7

I
flE

W
 D

E
F

. T
Y

P
E

 2
1

4
P

52
3

I
E

X
T

E
R

N
A

L
R

E
F

.
I

,
-
5
2
9

I
P

A
C

E
 F

O
R

M
A

T
 D

IF
.

I
,-

.5
35

i
T

A
B

LE
 E

N
T

R
Y

I

E
P

A
G

E
 D

E
F

A
U

LT
i

- . ç
'
)

.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 49 of 147 PageID #: 66

U.S. Patent Jul. 4, 2006 Sheet 8 of 16 US 7,072,849 Bl

OBJECTS: COMPOSITION AND RELA11ONSHIPS 500

PAGE TEMPLATE OBJECTS ,,522
PAGE

,,..520 526 532 PAGE
ELEMENT

ELEMENT
SELECTOR

KE1ORD PAGE FO,4AT CALL PROGRAM CALLS CALLS CALL

502

PAGE FORMAT OBJECTS

PART0N DEFINONS
PAGE DEFAULTS

e.;

528

I PROGRAM OBJECTS

I TABLES - I

I PROGRAMS

WINDOW OBJECTS

PARTITION DEFINITION'
PAGE ELEMENT CALL-:::
CUSTOM îxr---514
CUSTOM CURSOR512
PRESENTATION DATA

19EW DEFINITIONS
ARRAY DEFÌNmONS-
PROGRAM -

504 or 510

ELEMENT OBJECTS

jPARflTION

DEF1NJ

528
TION

CUSTOM TEXT- 514
CUSTOM CURSOR-512
PRESENTATION DATA' 530
FiELD 0EF1NONS -.. 516
ARRAY IT

SIS

522 4 I

PROGRAM CALLS --...
532

530
516

515 FIG. 4d

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 50 of 147 PageID #: 67

U.S. Patent

551

'J

Jul. 4, 2006 Sheet 9 of 16 US 7,072,849 Bl

PAGE TEMPLATE OBJECT

OBJECT
PAGE f PAGE

HEADER
FORMAT ELEMENT

ORAT OBJECT
EHER BOUC(E
THESE POINTERS ARE

__________________________ OBJECT OF THE POINTED-
(r i DESCRIBES PAR1TrIONS

I

\ DISPLACEMENTS WITHIN A
TO OBJECT) OR

';:
I

ON SCREEN
i ¡

CONThJNING OBJECT

502 .

/
I PAGE ELEMENT OBJECT

(I I DEFINES PRESENTATION DATA FOR A GWEN PAR1TI1ON
FiELD DEFINmONS, PROGRAM LOGIC TO BE EXECUTED

504

508

PROGRAM OBJECT

PROGRAM LOGIC TO BE INTERPRETED
AS A RESULT OF AN EVENT, e.g. FiELD POST-PROCESSOR

FIG. 5a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 51 of 147 PageID #: 68

U.S. Patent Jul. 4, 2006 Sheet 10 of 16 US 7,072,849 Bl

J

PAGE COMP0SON AND PROCESSING
J

(500 526

J

PAGE TEMPLATE = J PAGE FORMAT CALL
J

+
- 32

PAGE FORMAT OBJECT

250

:80SELECTOR

/
i /
I I
I J

PROGRAM CALL

I EVENT I PROGRAM ID I PARAMETERS I

8 I PARAMETER DRIVEN

'1
PROGRAMS, EG:
AP PUCATIO N

ROGRAM OBJECTJ MODELS COMMON
CODE

INIELROPGdTERI z;
. I PPcFt4

12

.1MENT CALLV 532
PROGRAM CALL.

PAGE ELEMENT CALL I

? 506
WINDOW OBJECT (504

-s
PAGE ELEMENT OBJECT

i_I_PAGE ELEMENT OBJECT

/

\ \
,/1 ATION DATA j

PAGE ELEMENT POSTPROCESSOR I I n n nrnwmnpi1-"

I PAGE ELEMEW INIIÌALIZER
I FIELD DEFINITION I

I
FiELD POSTPROCESSOR I

I-J _FiELD INITIAliZER

FIG. 5b

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 52 of 147 PageID #: 69

U.S. Patent Jul. 4, 2006 Sheet 11 of 16

(A)
INmAIJZE I FIG. 6

RS
R.S. PROTOCOL

\ (io)
\NAV('Logon PTO-k

PROCESS OBJECTS

REQUEST OBJS.
PARSE OBJS.

(B) INTERPRET SECS

(2)
BUILD PPT

TRiGGER PROGRAM TJGCER PRE-PROC
MNGE WiNDOW STACKOBJECTPO-id) X-FER PRES. DATA

INTERPRET PRE-PROC

SELECTORS

(NITIALJZERS

(lb) (F)
NA«PTO-ld) INTERPRET POST-

PROCESS PARAMS.
(1 c)
OPEN WiNDOW

GENERATE TRANS.
OPEN WINDOW

(WO-Id) CLOSE WINDOW
id) NAViGATE TO PAGE
LOSE WINDOW (w/o RETURN)

Us 7,072,849 Bl

(3)

PAGE/OPEN WINDOW
PROCESSING
COMPLEtE

\J
WAIT FOR EVENT

(D)1 USER INPUT

I

SYSTEM GENERATED

(4)
EVENT

PROCESS EVENT

TRANS PI-lYS. -LOG EVENT

Ir\ UPDATE DISPLAY FIELDS
.1 (PEVs)T FUNCTION CALL

I
TRIGGER FUNCflON
FILTER

I TRIGGER POST-PROC

(5) TRiGGER
PRoGRAM
OBJECT (PO-id)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 53 of 147 PageID #: 70

U.S. Patent Jul. 4, 2006 Sheet 12 of 16 US 7,072,849 Bl

420ff

450t1

PARTI11ONED APPUCA11ONS

. UNXED PAGE TEMPLATE 0&JECTS

e PACt E1EMENT OBJECTS

s PROGRAM OBJECTS AND PROCESSORS

. TRANSACTiON MESSAGE

SER%4CE SOFTWARE KERNAL

LOGICAL OPERATING SYSTEM

PC SPECIFiC MULTI - TASKER

PC SPECiFiC OPERATING SYSTEM

4OO

RECEPTION SYSTEM LAYERS

FIG. 7

410

J
430

-J
432

433/
..-. 451

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 54 of 147 PageID #: 71

U.S. Patent Jul. 4, 2006 Sheet 13 of 16 US 7,072,849 Bl

Function
Key Echo/

Data
I

Keyboa rd
J

Cursor Movement

I ManaQer

434, I Open/Close
I

Window Presentation 461
Navigate Dato

Object -
Interpreter

Object Response Object Request
Processor _ 436 pre-

J

(Build PPT-
open/close Request

and
post-

window finng o process-
E- Object TBOL or
I Storage 437_._. fiIers & ffrj

iFacility Object Scanner p08t

__f_

(porse segmenta) process-
ors

4??_t

i

cotton levelpli
Record
Object

I

J

TBOL
ject request Datø_ Interpreter

J
....j

Storecz::::1::; Non-loca) 441 \ Field
object

I

Object 438 Dato
request d return

Ad

:
Data

ColleCtion -J Manager
. ct Dato Collection

Manager ctid
est

Return ogeEL1hhI 442
J

ObjecTge7
Receive Queue j

Communications Request Next Queue j
Mono er Interface
Send DIA Receive

Messages Message

Link Communications Send Error Data

Manager Manager

FIG. 8

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 55 of 147 PageID #: 72

U.S. Patent Jul. 4, 2006 Sheet 14 of 16 US 7,072,849 Bl

551 ..\526
Ì'AGE PAGE -522

ro OBJECT FORMAT ELEMENT
HEADER CALL CALL

500

\i I I I I I I i i I

OBi. ID -'J
ABCI
OBJ LENGTh

OBi CONTROL -
S.ryPE -553

555-ABCF
553-STiPE-
554-SLENG
555-ABCX

PAGE A
FORMAT B S
OBJECT

551

PAGE
ELEMENI
OBJECT
PART 2

ADSLOT

SLENG I

STYPE

j J

'522522-.
I)PAGE PAGE

ELEMENT ELEMENT
CAIL CALL I

jJ2

.JGE
\ 504

\ 'L I,'
\ . _______ SLENG-554

ABCY-555

.k'
S1YPE-553

V

-1' ELEMENT NA:;S

__j

OBJECT B PRESENTATION

S
PARTfl1ON1 IC DATA

551 'tè. 530

,-.516 .-516 ,-516 ,-532 (_532

A NAPIPS FiELD FIELD FLD. I PROG. rPROGRAM

B PRESNT. DEr. FOR DEE. FOR DEE. FORICALL FOR IJCALL FOR

C DATA INPUT DISPLAY I IflD. POST

Y FiELD 3 1 2 INIIÌAUZER I IPROCESSOR

- ____ ______ ______ _____ (ABC

-55t

PROGRAMIA PROGRAM
OBJECT I

B LOGIC

508
1-J

534

551

OBJECT I B LOGIC

508 JÇ 534
551

FIG. 9

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 56 of 147 PageID #: 73

U.S. Patent Jul. 4, 2006 Sheet 15 of 16 US 7,072,849 Bl

FIG. 10
PAGE PROCESSING TABLE (ppt)

IPAGE LEVEL DATA
I

r/
I

WINDOW LEVEL DATA I

L(WINDOW LEVEL DATA

I

ELEMENT LEVEL DATA Lf WINDOW LEV DATA

\ 'N L1 WINDOW LEVEL DATA

\ L1 WiNDOW LEVEL DATA

I

ELEMENT LEVEL DATA
J

t

ELEMENT LEVEL DATA
J

I-

ELEMENT LEVEL DATA
J

/ I

ELEMENT LL
J

I

FiELD LEVEL DATA / /
\ / I

FIELD LEVEL DATA

I

FiELD LEVEl DATA \ i FIELD LEVEL DATA
f

N FiELD LEVEL DATA

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 57 of 147 PageID #: 74

U.S. Patent Jul. 4, 2006

FIG. 11

Fetch PTO
associated with string

triggers post-processors
associated with nearest

alphabetic JUMPword

Sheet 16 of 16 US 7,072,849 Bl

User approximation
of application/interest

'JUMP" function

Staged PEO uJUMPwIndow
opened on display; cursor
in I/O field; user types

approximation of
application name

rrst cnarocer o
user-typed string

compared on cached
table

mneumonics for
character fetched

network

ocal string-search coth
searches retrieved table

for matching string

Y Letter
string uniqu

TN
Window for " INDFX

e

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 58 of 147 PageID #: 75

US 7,072,849 Bl

i

METHOD FOR PRESENTING ADVERTISING
IN AN INTERACTIVE SERVICE

RELATED APPLICATIONS

This is a division ofapplication Ser. No. 07/388,156 filed
Jul. 28, 1989, Sep. 13, 1994, as U.S. Pat. No. 5,347,632,
application Ser. No. 07/388,156 being a continuation in part
of application Ser. No. 07/328,790, now abandoned filed
Mar. 23, 1989, which itself was a continuation in part of io
application Ser. No. 07/219,931, now abandoned filed Jul.
15, 1988.

BACKGROUND OF THE INVENTION

i . Field of Use
This invention relates generally to a distributed process-

ing, interactive computer network intended to provide very
large numbers of simultaneous users; e.g. millions, access to
an interactive service having large numbers; e.g., thousands,
of applications which include pre-created, interactive text/
graphic sessions; and more particularly, to a method for
presenting advertising to service users during interactive
sessions, the method featuring steps for presenting adver-
tising concurrently with applications, the advertising being
organized as data which is stored for presentation and
replenished at the user sites so as to minimize interference
with retrieval and presentation of application data; the
method also featuring steps for individualizing the adver-
tising presented based on user characterizations defined by
service interaction and/or other data such as user demo-
graphics and geographical location.

2. Prior Art
Interactive computer networks are not new. Traditionally

they have included conventional, hierarchical architectures
wherein a central, host computer responds to the information
requests of multiple users. An illustration would be a time-
sharing network in which multiple users, each at a remote
terminal, log onto a host that provides data and software
resource for sequentially receiving user data processing
requests, executing them and supplying responses back to
the users.

While such networks have been successful in making the
processing power of large computers available to many
users, problems have existed with them. For example, in
such networks, the host has been required to satisfy all the
user data processing requests. As a result, processing bottle-
necks arise at the host that cause network slowdowns and
compel expansion in computing resources; i.e., bigger and
more complex computer facilities, where response times are
sought to be held low in the face of increasing user popu-
lations.

Host size and complexity, however, are liabilities for
interactive networks recently introduced to offer large num-
bers of the public access to transactional services such as
home shopping, banking, and investment maintenance, as
well as informational services concerning entertainment,
business and personal matters. As can be appreciated, com-
mercial interactive networks will have to provide attractive
services at low cost and with minimal response times in
order to be successful. Unlike military and governmental
networks where, because of the compulsory nature of the
service performed, costs, content and efficiency are of sec-
ondary concern, in commercial services, since use is pre-
dominantly elective, and paid for by the consumer, costs will
have to be held low, content made interesting and response
times reduced in order to attract and hold both users who

15

2

would subscribe to the service and merchandisers who
would rely on it as a channel of distribution for their good
and services. Accordingly, if the service delivery system is
allowed to increase in size and complexity, either unchecked
or unsubsidized, higher use costs would have to be charged
to recover the larger capital and operating expenses, with the
negatively, spiralling effect that fewer users could be
attracted and be available over which to spread the costs for
sustaining the service.

In the past, other suppliers ofmass-media services such as
radio, television, newspapers, and magazines, have sought to
hold access and subscription prices to affordable levels by
relying on advertising income to offset the costs of providing
their users with the benefits of technological advance. How-
ever, in the case of interactive computer services, it has not
been apparent how advertising could be introduced without
adversely affecting service speed and content quality, which
as noted, are considered essential elements for service
success.

20 Particularly, in an interactive service, if advertising were
provided in a conventional manner; as for example, by
providing the advertising as additional data to be supplied to
and presented at the user sites, the effort would compete with
the supplying and presentation of service application data,

25 and have the undesirable effect of diminishing service
response time. More specifically, if advertising were sup-
plied conventionally from a host to a user site, the applica-
tion traffic, which constitutes the substance of the service,
would have to compete with advertising for network com-

30 munication resources. Yet additionally, even if traffic con-
flicts were somehow avoided, the presentation ofthe service
applications would have to be interrupted and delayed; for
example like television and radio commercials, as advertis-
ing content was presented to the user. The effect of these

35 anticipated delays would be to degrade application response
time and diminishing service attractiveness.

Additionally, in view of the need to maintain the user' s
interest in application content so as to drive the interactive
session, it has not been apparent how advertising matter

40 could be provided without distracting the user or disrupting
the session. Where service response time is diminished for
the sake of advertising which is either irrelevant or distaste-
ful, insult is added to the injury, increasing the likelihood the
user, and service, will be, simply, turned off.

45

SUMMARY OF INVENTION

Accordingly, it is an object of this invention to provide a
method for presenting advertising in an interactive service.

50 It is another object of this invention to provide a method
for presenting advertising in an interactive service which
method enables the presentation of advertising to be inte-
grated with presentation of service applications.

It is a yet another object of this invention to provide a
55 method for presenting advertising in an interactive service

which method minimizes the potential for interference
between the supply of interactive-service applications and
advertising.

It is a still another object of this invention to provide a
60 method for presenting advertising which minimizes the

potential for interference between presentation of interac-
tive-service applications and advertising. It is yet a further
object of this invention to provide a method for presenting
advertising in an interactive service which method enables

65 the advertising presented to be individualized to the user to
whom it is presented in order to increase the likelihood the
advertising will be of interest to the user.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 59 of 147 PageID #: 76

US 7,072,849 Bl

3

And, it is still a further object ofthis invention to provide
a method for presenting advertising in an interactive service
which method enables the user to transactionally interact
with the advertising presented.

Briefly, the method for presenting advertising in accor-
dance with this invention achieves the above-noted and
other objects by featuring steps for presenting advertising
concurrently with service applications at the user reception
system; i.e., terminal. In accordance with the method, the io
advertising is structured in a manner comparable to the
manner in which the service applications are structured. This
enables the applications to be presented at a first portion of
a display associated with the reception system and the
advertising to be presented concurrently at a second portion 15

of the display. Further, in accordance with the method, the
user reception system at which the advertising is presented
includes facility for storing and managing the advertising so
that it can be pre-fetched from the network and staged at the
reception system in anticipation of being called for presen- 20

tation. This minimizes the potential for communication line
interference between application and advertising traffic and
makes the advertising available at the reception system so as
not to delay presentation of the service applications. Yet

25
further the method features steps for individualizing the
advertising supplied to enhance potential user interest by
providing advertising based on a characterization ofthe user
as defined by the users interaction with the service, user
demographics and geographical location. Yet additionally, 30

advertising is provided with transactional facilities so that
users can interact with it.

In preferred form, the method includes step for organizing
advertising and applications as objects that collectively
include presentation data and executable program instruc-
tions for generating the advertising and applications at the
reception system. In accordance with the preferred form of
the method, advertising and application objects are selec-
tively distributed in the service network in accordance with
a predetermined plan based on the likelihood the applica-
tions and advertising will be called by the respective user
reception systems.

Also in preferred form, the method includes step for
maintaining an advertising object identification queue, and s

an advertising object store that are replenished based on
predetermined criteria as advertising is called for association
and presentation with applications. In accordance with the
method, as applications are executed at the reception system,
the application objects provide generalized calls for adver- 50

tising. The application calls for advertising are subsequently
forwarded to the reception system advertising queue man-
agement facility which, in turn supplies an identification of
advertising who's selection has been individualized to the
user based on, as noted, the user's prior interaction history
with the service, demographics and local. Thereafter, the
object identification for the advertising is passed to the
object store to determine if the object is available at the
reception system. In preferred form, ifthe advertising object

60

is not available at the reception system, a sequence of
alternative advertising object identifications can be provided
which if also are unavailable at the reception system will
resulting in an advertising object being requested from the
network. In this way, advertising of interest can be targeted 65

to the user and secured in time-efficient manner to increase
the likelihood of user interest and avoid service distraction.

4
BRIEF DESCRIPTION OF THE DRAWINGS

The above and further objects, features and advantages of
the invention will become clear from the following more
detailed description when read with reference to the accom-
panying drawings in which:

FIG. i 5 a block diagram of the interactive computer
network in which the method of the present invention may
be practiced;

FIG. 2 is a schematic diagram of the network illustrated
in FIG. 1;

FIGS. 3a and 3b are plan views of a display screen for a
user reception system at which advertising can be presented
to a user in accordance with the method of the present
invention;

FIGS. 4a, 4b, 4c and 4d are schematic drawings that
illustrate the structure of objects, and object segments that
may be used for advertising and applications in accordance
with the method of the present invention;

FIG. Sa is a schematic diagram that illustrates the con-
figuration of the page template object which might be used
for presentation of an application and advertising in accor-
dance with the method of the present invention;

FIG. Sb is a schematic diagram that illustrates page
composition which might be used for presentation of an
application and advertising in accordance with the method
of the present invention;

FIG. 6 is a schematic diagram that illustrates the protocol
which might be used by a reception system for supporting
applications and advertising in accordance with the method
of the present invention;

FIG. 7 is a schematic diagram that illustrates major layers
for a reception system which might be used for supporting
applications and advertising in accordance with the method
of the present invention;

FIG. 8 is a block diagram that illustrates native code
modules for a reception system which might be used for
supporting applications and advertising in accordance with
the method of the present invention;

FIG. 9 is a schematic diagram that illustrates an example
of a partitioned application to be processed by a reception
system which might be used for supporting applications and
advertising in accordance with the method of the present
invention;

FIG. 10 illustrates generation of a page with a page
processing table for a reception system which might be used
for supporting applications and advertising in accordance
with the method of the present invention;

FIG. 11 is a flow diagram for an aspect ofthe navigation
method of a reception system which might be used for
supporting applications and advertising in accordance with
the method of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

General System Description

FIGS. i and 2 show a network in which the method of the
present invention for presenting advertising might be used.
As seen the network, designated 10, includes a plurality of
reception units within a reception layer 401 for displaying
information and providing transactional services. In this
arrangement, many users each access network 10 with a
conventional personal computer; e.g., one of the IBM or
IBM-compatible type, which has been provided with appli-
cation software to constitute a reception system (RS) 400.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 60 of 147 PageID #: 77

US 7,072,849 Bl

5

As seen in FIG. 1, interactive network 10 uses a layered
structure that includes an information layer 100, a switchlfile
server layer 200, and cache/concentrator layer 300 as well as
reception layer 401. This structure maintains active appli-
cation databases and delivers requested parts of the data-
bases on demand to the plurality ofRS 400's, shown in FIG.
2. As seen in FIG. 2, cache/concentrator layer 300 includes
a plurality of cache/concentrator units 302, each or which
serve a plurality of RS 400 units over lines 301. Addition-
ally, switchlfile server layer 200 is seen to include a server
unit 205 connected to multiple cache/concentrator units 302
over lines 201. Still further, server unit 205 is seen to be
connected to information layer 100 and its various elements,
which act as means for producing, supplying and maintain-
ing the network databases and other information necessary
to support network 10. Continuing, switchlfiler layer 200 is
also seen to include gateway systems 210 connected to
server 205. Gateways 210 couple layer 200 to other sources
of information and data; e.g., other computer systems. As
will be appreciated by those skilled in the art, layer 200, like
layers 401 and 300, could also include multiple servers,
gateways and information layers in the event even larger
numbers of users were sought to be served.

Continuing with reference to FIG. 2, in preferred form,
each RS 400 is seen to include a personal computer 405
having a CPU 410 including a microprocessor (as for
example, one ofthe types made by INTEL Corporation in its
X'86 family of microprocessors), companion RAM and
ROM memory and other associated elements, such as moni-
tor 412 with screen 414 and a keyboard 424. Further,
personal computer 405 may also include one or two floppy
disk drives 416 for receiving diskettes 426 containing appli-
cation software used to support the interactive service and
facilitate the interactive sessions with network 10. Addition-
ally, personal computer 405 would include operating sys-
tems software; e.g., MS-DOS, supplied on diskettes 428
suitable for the personal computer being used. Personal
computer 405 still further may also include a hard-disk drive
420 for storing the application software and operating sys-
tem software which may be transferred from diskettes 426
and 428 respectfully.

Once so configured, each RS 400 provides: a common
interface to other elements of interactive computer network
10; a common environment for application processing; and
a common protocol for user-application conversation which
is independent ofthe personal computer brand used. RS 400
thus constitutes a universal terminal for which only one
version of all applications on network 10 need be prepared,
thereby rendering the applications interpretable by a variety
of brands of personal computers.

RS 400 formulated in this fashion is capable of commu-
nication with the host system to receive information con-
taming either of two types of data, namely objects and
messages. Objects have a uniform, self-defining format
known to RS 400, and include data types, such as interpret-
able programs and presentation data for display at monitor
screen 414 of the user's personal computer 405. Applica-
tions presented at RS 400 are partitioned into objects which
represent the minimal units available from the higher levels
of interactive network 10 or RS 400. In this arrangement,
each application partition typically represents one screen or
a partial screen of information, including fields filled with
data used in transactions with network 10. Each such screen,
commonly called a page, is represented by its parts and is
described in a page template object, discussed below.

Applications, having been partitioned into minimal units,
are available from higher elements ofnetwork 10 or RS 400,

and are retrieved on demand by RS 400 for interpretive
execution. Thus, not all partitions of a partitioned applica-
tion need be resident at RS 400 to process a selected
partition, thereby raising the storage efficiency of the user' s

5 RS 400 and minimizing response time. Each application
partition is an independent, self-contained unit and can
operate correctly by itself. Each partition may refer to other
partitions either statically or dynamically. Static references
are built into the partitioned application, while dynamic

lo references are created from the execution of program logic
using a set of parameters, such as user demographics or
locale. Partitions may be chosen as part ofthe RS processing
in response to user created events, or by selecting a key word
of the partitioned application (e.g., "JUMP" or "INDEX,"

15 discussed below), which provides random access to all
services represented by partitioned applications having key
words.

Objects provide a means of packaging and distributing
partitioned applications. As noted, objects make up one or

20 more partitioned applications, and are retrieved on demand
by a user's RS 400 for interpretive execution and selective
storage. All objects are interpreted by RS 400, thereby
enabling applications to be developed independently of the
personal computer brand used.

25 Objects may be nested within one another or referenced
by an object identifier (object-id) from within their data
structure. References to objects permit the size ofobjects to
be minimized. Further, the time required to display a page is
minimized when referenced objects are stored locally at RS

30 400 (which storage is determined by prior usage meeting
certain retention criteria), or have been pre-fetched, or in
fact, are already used for the current page.

Objects carry application program instructions and/or
information for display at monitor screen 414 of RS 400.

35 Application program objects, called pre-processors and
post-processors, set up the environment for the user's inter-
action with network 10 and respond to events created when
the user inputs information at keyboard 424 ofRS 400. Such
events typically trigger a program object to be processed,

40 causing one ofthe following: sending oftransactional infor-
mation to the coapplications in one layer ofthe network 10;
the receiving of information for use in programs or for
presentation in application-dependent fields on monitor
screen 414; or the requesting of a new objects to be

45 processed by RS 400. Such objects may be part ofthe same
application or a completely new application.

The RS 400 supports a protocol by which the user and the
partitioned applications communicate. All partitioned appli-

50
cations are designed knowing that this protocol will be
supported in RS 400. Hence, replication of the protocol in
each partitioned application is avoided, thereby minimizing
the size of the partitioned application.

RS 400 includes a means to communicate with network

55
10 to retrieve objects in response to events occurring at RS
400 and to send and receive messages.

RS 400 includes a means to selectively store objects
according to a predetermined storage criterion, thus enabling
frequently used objects to be stored locally at the RS, and

60 causing infrequently used objects to forfeit their local stor-
age location. The currency ofobjects stored locally at the RS
400 is verified before use according to the object's storage
control parameters and the storage criterion in use for
version checking.

65 Selective storage tailors the contents of the RS 400
memory to contain objects representing all or significant
parts of partitioned applications favored by the user.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 61 of 147 PageID #: 78

US 7,072,849 Bl

7
Because selective storage of objects is local, response time
is reduced for those partitioned applications that the user
accesses most frequently.

Since much of the application processing formerly done
by a host computer in previously known time-sharing net-
works is now performed at the user's RS 400, the higher
elements ofnetwork 10, particularly layer 200, have as their
primary functions the routing of messages, serving of
objects, and line concentration. The narrowed functional
load of the higher network elements permits many more
users to be serviced within the same bounds of computer
power and I/O capability of conventional host-centered
architectures.

Network 10 provides information on a wide variety of
topics, including, but not limited to news, industry, financial
needs, hobbies and cultural interests. Network 10 thus
eliminates the need to consult multiple information sources,
giving users an efficient and timesaving overview of subjects
that interest them.

The transactional features ofinteractive network 10 saves
the user time, money, and frustration by reducing time spent
traveling, standing in line, and communicating with sales
personnel. The user may, through RS 400, bank, send and
receive messages, review advertising provided in accor-
dance with the method of the present invention, place orders
for merchandise, and perform other transactions.

In preferred form, network 10 provides information,
advertising and transaction processing services for a large
number of users simultaneously accessing the network via
the public switched telephone network (PSTN), broadcast,
and/or other media with their RS 400 units. Services avail-
able to the user include display of information such as movie
reviews, the latest news, airlines reservations, the purchase
ofitems such as retail merchandise and groceries, and quotes
and buy/sell orders for stocks and bonds. Network 10
provides an environment in which a user, via RS 400
establishes a session with the network and accesses a large
number of services. These services are specifically con-
structed applications which as noted are partitioned so they
may be distributed without undue transmission time, and
may be processed and selectively stored on a user's RS 400
unit.

System Configuration

As shown in FIG. 1, interactive computer network 10
includes four layers: information layer 100, switch and file
server layer 200, concentrator layer 300, and reception layer
401.

Information layer 100 handles: (1) the production, storage
and dissemination of data and (2) the collection and off-line
processing of such data from each RS session with the
network 10 so as to permit the targeting of information and
advertising to be presented to users and for traditional
business support.

Switch and file server layer 200 and cache/concentrator
layer 300 together constitute a delivery system 20 which
delivers requested data to the RS 400's of reception layer
401 and routes data entered by the user or collected at RS
400's to the proper application in network 10. With refer-
ence to FIG. 2, the information used in a RS 400 either
resides locally at the RS 400, or is available on demand from
the cache/concentrator 300 or the file server 205, via the
gateway 210, which may be coupled to external providers,
or is available from information layer 100.

There are two types of information in the network 10
which are utilized by the RS 400: objects and messages.

8

Objects include the information requested and utilized by
the RS 400 to permit a user to select specific parts of
applications, control the flow of information relating to the
applications, and to supply information to the network.

5 Objects are self-describing structures organized in accor-
dance with a specific data object architecture, described
below. Objects are used to package presentation data and
program instructions required to support the partitioned
applications and advertising presented at a RS 400. Objects

lo are distributed on demand throughout interactive network
10. Objects may contain: control information; program
instructions to set up an application processing environment
and to process user or network created events; information
about what is to be displayed and how it is to be displayed;

15 references to programs to be interpretively executed; and
references to other objects, which may be called based upon
certain conditions or the occurrence of certain events at the
user' s personal computer, resulting in the selection and
retrieval of other partitioned applications packaged as

20 objects.
Messages are information provided by the user or the

network and are used in fields defined within the constructs
of an object, and are seen on the user's RS monitor 412, or
are used for data processing at RS 400. Additionally, and as

25 more fully described hereafter, messages are the primary
means for communication within and without the network.
The format of messages is application dependent. If the
message is input by the user, it is formatted by the parti-
tioned application currently being processed on RS 400.

30 Likewise, and with reference to FIG. 2, if the data are
provided from a co-application database residing in delivery
system 20, or accessed via gateway 210 or high function
system 110 within the information layer 100, the partitioned
application currently being processed on RS 400 causes the

35 message data to be displayed in fields on the user's display
monitor as defined by the particular partitioned application.

All active objects reside in file server 205. Inactive objects
or objects in preparation reside in producer system 120.

40
Objects recently introduced into delivery system 20 from the
producer system 120 will be available from file server 205,
but, may not be available on cache/concentrator 302 to
which the user's RS 400 has dialed. If such objects are
requested by the RS 400, the cache/concentrator 302 auto-

45
matically requests the object from file server 205. The
requested object is routed back to the requesting cache/
concentrator 302, which automatically routes it to the com-
munications line on which the request was originally made,
from which it is received by the RS 400.

50 The RS 400 is the point of application session control
because it has the ability to select and randomly access
objects representing all or part of partitioned applications
and their data. RS 400 processes objects according to
information contained therein and events created by the user

55 on personal computer 405.
Applications on network 10 act in concert with the

distributed partitioned applications running on RS 400.
Partitioned applications constructed as groups ofobjects and
are distributed on demand to a user's RS 400. An application

60 partition represents the minimum amount of information and
program logic needed to present a page or window, i.e.
portion of a page presented to the user, perform transactions
with the interactive network 10, and perform traditional data
processing operations, as required, including selecting

65 another partitioned application to be processed upon a user
generated completion event for the current partitioned appli-
cation.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 62 of 147 PageID #: 79

US 7,072,849 Bl

Objects representing all or part ofpartitioned applications
may be stored in a user's RS 400 if the objects meet certain
criteria, such as being non-volatile, non-critical to network
integrity, or if they are critical to ensuring reasonable
response time. Such objects are either provided on diskettes
426 together with RS 400 system software used during the
installation procedure or they are automatically requested by
RS 400 when the user makes selections requiring objects not
present in RS 400. In the latter case, RS 400 requests from
cache/concentrator layer 300 only the objects necessary to
execute the desired partitioned application.

Reception system application software 426 in preferred
form is provided for IBM and IBM-compatible brands of
personal computers 405, and all partitioned applications are
constructed according to a single architecture which each
such RS 400 supports. With reference to FIG. 2, to access
network 10, a user preferably has a personal computer 405
with at least 512K RAM and a single disk drive 416. The
user typically accesses network 10 using a 1,200 or 2,400
bps modem (not shown). To initiate a session with network
10, objects representing the logon application are retrieved
from the user's personal diskette, including the RS. appli-
cation software, which was previously set up during stan-
dard installation and enrollment procedures with network
10. Once communication between RS 400 and cache/con-
centrator layer 300 has been established, the user begins a
standard logon procedure by inputting a personal entry code.
Once the logon procedure is complete, the user can begin to
access various desired services (i.e., partitioned applica-
tions) which provide display of requested information and/or
transaction operations.

Applications and Pages

Applications, i.e. information events, are composed of a
sequence of one or more pages opened at screen 414 of
monitor 412. This is better seen with reference to FIGS. 3a
and 3b were a page 255 is illustrated as might appear at
screen 414 ofmonitor 412. With reference to FIG. 3a, each
page 255 is formatted with a service interface having page
partitions 250, 260, 280, and 290 (not to be confused with
application partitions). Window page partitions 275, well
known in the art, are also available and are opened and
closed conditionally on page 255 upon the occurrence of an
event specified in the application being run. Each page
partition 250, 260, 280 and 290 and window 275 is made up
of a page element which defines the content of the partition
or window.

Each page 255 includes: a header page partition 250,
which has a page element associated with it and which
typically conveys information on the page' s topic or spon-
sor; one or more body page partitions 260 and window page
partitions 275, each of which is associated with a page
element which as noted gives the informational and trans-
actional content of the page. For example, a page element
may contain presentation data selected as a menu option in
the previous page, and/or may contain prompts to which a
user responds in pre-defined fields to execute transactions.
As illustrated in FIG. 3b, the page element associated with
body page partition 260-includes display fields 270, 271,
272. Awindow page partition 275 seen in FIG. 3a represents
the same informational and transactional capability as a
body partition, except greater flexibility is provided for its
location and size.

Continuing with reference to FIG. 3a, in accordance with
the invention, advertising 280 is provided over network 10,
like page elements, also includes information for display on

lo
page 255, and may be included in any partition of a page.
Advertising 280 is presented to the user on an individualized
basis from queues of advertising object identifications (ids)
that are constructed off-line by business system 130, and

5 sent to file server 205 where they are accessible to each RS
400.

Individualized queues of advertising object ids are con-
structed based upon data collected on the partitioned appli-
cations that were accessed by a user, and upon events the

lo user generated in response to applications. The data are
collected and reported by RS 400 to a data collection
co-application in file server 205 for later transmission to
business system 130. In addition to application access and
use characteristics, a variety of other parameters, such as

15 user demographics or postal ZIP code, may be used as
targeting criteria. From such data, queues of advertising
object ids are constructed that are targeted to either indi-
vidual users or to sets of users who fall into certain groups
according to such parameters. Stated otherwise, the adver-

20 tising presented is individualized to the respective users
based on characterizations of the respective users as defined
by the interaction history with the service and such other
information as user demographics and locale. As will be
appreciated by those skilled in the art, conventional mar-

25 keting analysis techniques can be employed to establish the
user characterizations based on the collected application
usage data above noted and other information.

Also with reference to FIG. 3b, the service interface is
seen to include a command region 285 which enables the

30 user to interact with the network RS 400 and other elements
of network 10, so as to cause such operations as navigating
from page to page, performing a transaction, or obtaining
more information about other applications. As shown in
FIG. 3b, interface region 285 includes a command bar

35 290-having a number of commands 291-298 which the
user can execute. The functions of commands 291-298 are
discussed in greater detail below.

Network Objects
40

As noted above, in conventional time-sharing computer
networks, the data and program instructions necessary to
support user sessions are maintained at a central host com-

45
puter. However, that approach has been found to create
processing bottlenecks as greater numbers of users are
connected to the network; bottlenecks which require
increases in processing power and complexity; e.g., multiple
hosts of greater computing capability, if the network is to

50
meet demand. Further, such bottlenecks have been found to
also slow response time as more users are connected to the
network and seek to have their requests for data processing
answered.

The consequences ofthe host processing bottlenecking is
55 to either compel capital expenditures to expand host pro-

cessing capability, or accept longer response times; i.e., a
slower network, and risk user dissatisfaction.

However, even in the case where additional computing
power is added, and where response time is allowed to

60 increase, eventually the host becomes user saturated as more
and more users are sought to be served by the network. The
network described above, however, is designed to alleviate
the effects of host-centered limitations, and extend the
network saturation point. This objective is achieved by

65 reducing the demand on the host for processing resources by
structuring the network so that the higher network levels act
primarily to maintain and supply data and programs to the

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 63 of 147 PageID #: 80

US 7,072,849 Bl

11

lower levels ofthe network, particularly RS 400, which acts
to manage and sustain the user screen displays.

More particularly, the described network features proce-
dures for parsing the network data and program instructions
required to support the interactive user sessions into packets,
referred to as objects, and distributing them into the network
where they can be processed at lower levels, particularly,
reception system 400.

In accordance with the method of the present invention,
the screens presented at the user' s monitor are each divided
into addressable partitions shown in FIG. 3a, and the display
text and graphics necessary to make up the partitions, as well
as the program instructions and control data necessary to
deliver and sustain the screens and partitions, are formulated
from pre-created objects. Further, the objects are structured
in accordance with an architecture that permits the displayed
data to be relocatable on the screen, and to be reusable to
make up other screens and other sessions, either as pre-
created and stored sessions or interactive sessions, dynami-
cally created in response to the user's requests.

As shown in FIG. 4c, the network objects are organized
as a family of objects each of which perform a specific
function in support of the interactive session. More particu-
larly, in accordance with the preferred form ofthe invention,
the network object family is seen to include 6 members:
page format objects 502, page element objects 504, window
objects 506, program objects 508, advertisement objects 510
and page template objects 500.

Within this family, page format objects 502 are designed
to define the partitioning 250 to 290 of the monitor screen
shown in FIG. 3a. The page format objects 502 provide a
means for pre-defining screen partitions and for ensuring a
uniform look to the page presented on the reception system
monitor. They provide the origin; i.e., drawing points, and
dimensions of each page partition and different values for
presentation commands such as palette and background
color.

Page format objects 502 are referenced whenever non-
window data is to be displayed and as noted ensure a
consistent presentation ofthe page. In addition, page format
objects 502 assures proper tessellation or "tiling" of the
displayed partitions.

Page element objects 504, on the other hand, are struc-
tured to contain the display data; i.e., text and graphic, to be
displayed which is mapped within screen partitions 250 to
290, and to further provide the associated control data and
programs. More specifically, the display data is described
within the object as NAPLPS data, and includes, PDI,
ASCII, Incremental Point and other display encoding
schemes. Page element objects also control the functionality
within the screen partition by means of field definition
segments 516 and program call segments 532, as further
described in connection with the description of such seg-
ments hereafter. Page element objects 504 are relocatable
and may be reused by many pages. To enable the displayable
data to be relocated, display data must be created by
producers in the NAPLPS relative mode.

Continuing with reference to FIG. 4c, window objects 506
include the display and control data necessary to support
window partitions 275 best seen in FIG. 3a. Windows
contain display data which overlay the base page and control
data which supersede the base page control data for the
underlying screen during the duration of the window. Win-
dow objects 506 contain data which is to be displayed or
otherwise presented to the viewer which is relatively mdc-
pendent from the rest of the page. Display data within
windows overlay the base page until the window is closed.

12
Logic associated with the window supersedes base page
logic for the duration of the window. When a window is
opened, the bit map ofthe area covered by window is saved
and most logic functions for the overlaid page are deacti-

5 vated. When the window is closed, the saved bit map is
swapped onto the screen, the logic functions associated with
the window are disabled, and prior logic functions are
reactivated.

Windows are opened by user or program control. They do
lo not form part ofthe base page. Windows would typically be

opened as a result of the completion of events specified in
program call segments 532.

Window objects 506 are very similar in structure to page
element objects 504. The critical difference is that window

15 objects 506 speciFy their own size and absolute screen
location by means of a partition definition segment 528.

Program objects 508 contain program instructions written
in a high-level language called TRINTEX Basic Object
Language, i.e., TBOL, described in greater detail hereafter,

20 which may be executed on RS 400 to support the applica-
tion. More particularly, program objects 508 include inter-
pretable program code, executable machine code and param-
eters to be acted upon in conjunction with the presentation
of text and graphics to the reception system monitors.

25 Program objects 508 may be called for execution by
means ofprogram call segments 532, which specify when a
program is to be executed (event), what program to execute
(p rogram pointer), and how programs should run (param-
eters).

30 Programs are treated as objects to conform to the open-
ended design philosophy of the data object architecture
(DOA), allowing the dissemination of newly developed
programs to be easily and economically performed. As noted

35
above, it is desirable to have as many of these program
objects staged for execution at or as close to RS 400 as
possible.

Still further, in accordance with the method ofthe present
invention, advertising objects 510 include the text and

40
graphics that may be presented at ad partition 280 presented
on the monitor screen as shown in FIG. 3b.

Finally, the object family includes page template objects
500. Page template objects 500 are designed to define the
components of the full screen presented to the viewer.

45
Particularly, page template objects 500 include the entry
point to a screen, the name ofthe page format objects which
speciFy the various partitions a screen will have and the page
element object that contain the display data and partitioning
parameters for the page.

50 Additionally, page template object 500 includes the spe-
cific program calls required to execute the screens associated
with the application being presented to the user, and may
serve as the means for the user to selectively move through;
i.e., navigate the pages of interest which are associated with

55 various applications. Thus, in effect, page template objects
500 constitute the "recipe" for making up the collection of
text and graphic information required to make the screens to
be presented to the user.

Also in accordance with the invention, object 500 to 510
60 shown in FIG. 4c are themselves made up of further sub-

blocks of information that may be selectively collected to
define the objects and resulting pages that ultimately con-
stitute the application presented to the user in an interactive
text and graphic session.

65 More specifically and as shown schematically in FIG. 4a,
objects 500 to 510 are predefined, variable length records
consisting of a fixed length header 551 and one or more

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 64 of 147 PageID #: 81

US 7,072,849 Bl

13
self-defining record segments 552 a list of which is pre-
sented in FIG. 4c as segment types 512 to 540.

In accordance with this design, and as shown in FIG. 4b,
object header 551 in preferred form is i 8 bytes in length and
contains a prescribed sequence of information which pro-
vides data regarding the object's identification, its antici-
pated use, association to other objects, its length and its
version and currency.

More particularly, each of the i 8 bytes of object header
551 are conventional hexadecimal, 8 bit bytes and are
arranged in a fixed pattern to facilitate interpretation by
network 10. Particularly, and as shown in FIG. 4b, the first
byte of header 551; i.e., byte 1, identifies the length of the
object ID in hexadecimal. The next six bytes; i.e., bytes 2 to
7, are allocated for identiFying access control to the object so
as to allow creation of closed user groups to whom the
object(s) is to be provided. As will be appreciated by those
skilled in the art, the ability to earmark objects in anticipa-
tion of user requests enables the network anticipate requests
and pre-collect objects from large numbers of them main-
tamed to render the network more efficient and reduce
response time. The following 4 bytes ofheader 551; bytes 8
to 11, are used to identiFy the set of objects to which the
subject object belongs. In this regard, it will be appreciated
that, again, for speed of access and efficiency of selection,
the objects are arranged in groups or sets which are likely to
be presented to user sequentially in presenting the page sets;
i.e., screens that go to make up a session.

Following identification ofthe object set, the next byte in
header 551; i.e., byte 12, gives the location of the subject
object in the set. As will be appreciated here also the
identification is provided to facilitate ease of object location
and access among the many thousands of objects that are
maintained to, thereby, render their selection and presenta-
tion more efficient and speedy.

Thereafter, the following bytes of header 551; i.e., byte
13, designates the object type; e.g., page format, page
template, page element, etc. Following identification of the
object type, two bytes; i.e., bytes 14, 15, are allocated to
define the length of the object, which may be of whatever
length is necessary to supply the data necessary, and thereby
provides great flexibility for creation of the screens. There-
after, a single byte; i.e., byte 16, is allocated to identify the
storage characteristic for the object; i.e., the criterion which
establishes at what level in network 10 the object will be
stored, and the basis upon which it will be updated. At least
a portion ofthis byte; ic, the higher order nibble (first 4 bits
reading from left to right) is associated with the last byte;
i.e., byte 18, in the header which identifies the version of the
object, a control used in determining how often in a prede-
termined period of time the object will be updated by the
network.

Following storage characteristic byte 16, header 551
includes a byte; i.e., 17, which identifies the number of
objects in the set to which the subject object belongs.
Finally, and as noted above, header 551 includes a byte; i.e.,
18, which identifies the version ofthe object. Particularly the
object version is a number to establish the control for the
update of the object that are resident at RS 400.

As shown in FIG. 4a, and as noted above, in addition to
header 551, the object includes one more of the various
segment types shown in FIG. 4c.

Segments 512 to 540 are the basic building blocks of the
objects. And, as in the case ofthe object, the segments are
also self-defining. As will be appreciated by those skilled in
the art, by making the segments self-defining, changes in the

14
objects and their use in the network can be made without
changing pre-existing objects.

As in the case of objects, the segments have also been
provided with a specific structure. Particularly, and as shown

5 in FIG. 4a, segments 552 consists of a designation of
segment type 553, identification of segment length 554,
followed by the information necessary to implement the
segment and its associated object 555; e.g., either, control
data, display data or program code.

lo In this structure, segment type 553 is identified with a
one-byte hexadecimal code which describes the general
function of the segment. Thereafter, segment length 554 is
identified as a fixed two-byte long field which carries the
segment length as a hexadecimal number in INTEL format;

15 i.e., least significant byte first. Finally, data within segments
may be identified either by position or keyword, depending
on the specific requirements of the segment.

The specific structure for the objects and segments in
shown in FIG. 4c and is described below. In that description

20 the following notation convention is used:
< >-mandatory item
()optional item
. . . -item may be repeated

25
item item
< > ()-items in a column indicate either/or
item item
The structure for objects is:
PAGE TEMPLATE OBJECT,

30

[<header> (compression descriptor) <page format call>
(p age element call) . . . (program call) . . . (page element
selector) (system table call) . . . external reference) (key-
word/navigation) . . . I;

35 As noted above, page format objects 502 are designed to
define the partitioning 250 to 290 of monitor screen 414
shown in FIG. 3a.

PAGE FORMAT OBJECT,

40 [<header> (compression descriptor) (page defaults) <parti-
tion definition>];

PAGE ELEMENT OBJECT,

[<header> (compression descriptor) (presentation data) . .

45 (program call) . . . (custom cursor) . . . (custom text) . . . (field
definition) . . . (field-level program call) . . . (custom cursor
type 2) . . . (custom graphic) . . . (field definition type
2) . . . (array definition) . . . (inventory control)];

Page element objects, as explained, are structured to
50 contain the display data; i.e., text and graphics, to be

presented at screen partitions 250 to 290.
WINDOW OBJECT,

[<header> (compression description) <partition definition>
55 (page element call) (presentation data) . . . (program

call) . . . (custom cursor) . . . (custom text) . . . (custom cursor
type 2) . . . (custom graphic) . . . (field definition) . . . (field
level program call) . . . (field definition type 2) . . . (array
definition) . . . (inventory control)];

60 As noted, window objects include display and control
data necessary to support window partition at screen 414.

PROGRAM OBJECTS,

[<header> (compression descriptor) <program data> . . .

65 Program objects, on the other hand, contain program
instructions written in higher-level language which may be
executed at RS 400 to support the application.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 65 of 147 PageID #: 82

US 7,072,849 Bl

15
ADVERTISEMENT OBJECT,

[<header> (compression descriptor) (presentation data) . .

(program call) . . . (custom cursor) . . . (custom text) . . . (field
definition) . . . (field-level program call) . . . (custom cursor
type 2) . . . (custom graphic) . . . (field definition type
2) . . . (array definition) . . . (inventory control)];

In accordance with the invention, and as can be seen,
advertisement objects are substantially the same as page
element objects, with the difference being that, as their name
implies, their subject matter is selected to concern advertis-
ing.

Continuing, the structure for the object segments follows
from the above description, and is as described more fully in
parent application Ser. No. 388,156 now issued as U.S. Pat.
No. 5,347,632, the contents of which patent are incorporated
herein by reference.

Network Messages

In addition to the network objects, and the display data,
control data, and the program instructions they contain as
previously described, network 10 also exchanges informa-
tion regarding the support of user sessions and the mainte-
nance ofthe network as "messenger". Specifically, messages
typically relate to the exchange of information associated
with initial logon of a reception system 400 to network 10,
dialogue between RS 400 and other elements and commu-
nications by the other network elements amongst them-
selves.

To facilitate message exchange internally, and through
gateway 210 to entities externally to network 10, a protocol
termed the "Data Interchange Architecture" (DIA) is used to
support the transport and interpretation ofinformation. More
particularly, DIA enables: communications between RS 400
units, separation of functions between network layers 100,
200, 300 and 401; consistent parsing of data; an "open"
architecture for network 10; downward compatibility within
the network; compatibility with standard industry protocols
such as the IBM System Network Architecture; Open Sys-
tems Interconnections standard; support of network utility
sessions; and standardization ofcommon network and appli-
cation return codes.

Thus DIA binds the various components of network 10
into a coherent entity by providing a common data stream
for communications management purposes. DIA provides
the ability to route messages between applications based in
IBM System Network Architecture (SNA), (well known in
the art, and more fully described in Data and Computer
Communications, by W. Stallings, Chapter 12, McMillian
Publishing, Inc. (1985)) and non-SNA reception system
applications; e.g. home computer applications. Further, DIA
provides common data structure between applications run at
RS 400 units and applications that may be run on external
computer networks; e.g. Dow Jones Services, accessed
through gateway 210. As well, DIA provides support for
utility sessions between backbone applications run within
network 10. A more detailed description of network mes-
saging in provided in above noted U.S. Pat. No. 5,347,632,
the content of which is incorporated herein by reference.

Object Language

In accordance with the design of network 10, in order to
enable the manipulation of the network objects, the appli-
cation programs necessary to support the interactive text!
graphic sessions are written in a high-level language referred

16
to as "TBOL", (TRINTEX Basic Object Language, "TRIN-
TEX" being the former company name of one of the
assignees of this invention). TBOL is specifically adapted
for writing the application programs so that the programs

5 may be compiled into a compact data stream that can be
interpreted by the application software operating in the user
personal computer, the application software being designed
to establish the network Reception System 400 previously
noted and described in more detail hereafter.

lo The Reception System application software supports an
interactive text!graphics sessions by managing objects. As
explained above, objects specify the format and provide the
content; i.e., the text and graphics, displayed on the user's
screen so as to make up the pages that constitute the

15 application. As also explained, pages are divided into sepa-
rate areas called "partitions" by certain objects, while certain
other objects describe windows which can be opened on the
pages. Further, still other objects contain TBOL application
programs which facilitate the data processing necessary to

20 present the pages and their associated text and graphics.
As noted, the object architecture allows logical events to

be specified in the object definitions. An example ofa logical
event is the completion of data entry on a screen; i.e., an
application page. Logical events are mapped to physical

25 events such as the user pressing the <ENTER> key on the
keyboard. Other logical events might be the initial display of
a screen page or the completion of data entry in a field.
Logical events specified in page and window object defini-
tions can be associated with the call of TBOL program

30 objects.
RS 400 is aware of the occurrence of all physical events

during the interactive text!graphic sessions. When a physical
event such as depression of the forward <TAB> key corre-
sponds to a logical event such as completion of data entry in

35 a field, the appropriate TBOL program is executed if speci-
fled in the object definition. Accordingly, the TBOL pro-
grams can be thought of as routines which are given control
to perform initialization and post-processing application
logic associated with the fields, partitions and screens at the

40 text!graphic sessions.
RS 400 run time environment uses the TBOL programs

and their high-level key-word commands called verbs to
provide all the system services needed to support a text!
graphic session, particularly, display management, user

45 input, local and remote data access.
TBOL programs have a structure that includes three

sections: a header section in which the program name is
specified; a data section in which the data structure the
program will use are defined; and a code section in which the

50 program logic is provided composed of one or more proce-
dures. More specifically, the code section procedures are
composed of procedure statements, each of which begins
with a TBOL key word called a verb.

The name of a procedure can also be used as the verb in
55 a procedure statement exactly as ifit were a TBOL key-word

verb. This feature enables a programmer to extend the
language vocabulary to include customized application-
oriented verb commands.

Continuing, TBOL programs have a program syntax that
60 includes a series of "identifiers" which are the names and

labels assigned to programs, procedures, and data structures.
An identifier may be up to 3 1 characters long; contain

only uppercase or lowercase letters A through Z, digits O
through 9, and/or the special character underscore Q; and

65 must begin with a letter. Included among the system iden-
tifiers are: "header section identifiers" used in the header
section for the program name; "data section identifiers" used

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 66 of 147 PageID #: 83

US 7,072,849 Bl

17
in the data section for data structure names, field names and
array names; and finally, "code section identifiers" used in
the code section for identification of procedure names and
statement labels. A more detailed description of TBOL is
provided in parent application Ser. No. 388,156 now issued
as U.S. Pat. No. 5,347,632, the contents of which patent are
incorporated herein by reference.

Reception System Operation

RS 400 of computer system network 10 uses software
called native code modules (described below) to enable the
user to select options and functions presented on the monitor
screen 414 ofpersonal computer 405, to execute partitioned
applications and to process user created events, enabling the
partitioned application to interact with network 10. Through
this interaction, the user is able to input data into fields
provided as part of the display, or may individually select
choices causing a standard or personalized page to be built
(as explained below) for display on the monitor of personal
computer 405. Such inputs will cause RS 400 to interpret
events and trigger pre-processors or post-processors,
retrieve specified objects, communicate with system com-
ponents, control user options, cause the display of adver-
tisements on a page, open or close window partitions to
provide additional navigation possibilities, and collect and
report data about events, including certain types of objects
processed. For example, the user may select a particular
option, such as opening or closing window partition 275,
which is present on the monitor and follow the selection with
a completion key stroke, such as ENTER. When the comple-
tion keystroke is made, the selection is translated into a
logical event that triggers the execution of a post-processor,
(i.e., a partitioned application program object) to process the
contents of the field.

Functions supporting the user-partitioned application
interface can be performed using the command bar 290, or
its equivalent using pull down windows or an overlapping
cascade ofwindows. These functions can be implemented as
part of the RS native functions or can be treated as another
partition(s) defined for every page for which an appropriate
set of supporting objects exist and remain resident at RS
400. Ifthe functions are part ofRS 400, they can be altered
or extended by verbs defined in the RS virtual machine that
permit the execution of program objects to be triggered
when certain functions are called, providing maximum flex-
ibility.

To explain the functions the use of a command bar is
assumed. Command bar 290 is shown in FIGS. 3a and 3b
and includes a NEXT command 291, a BACK command
292, a PATH command 293, a MENU command 294, an
ACTION command 295, a JUMP command 296, a HELP
command 297, and an EXIT command 298.

NEXT command 291 causes the next page in the current
page set to be built. Ifthe last page ofa page set has already
been reached, NEXT command 291 is disabled by RS 400,
avoiding the presentation of an invalid option.

BACK command 292 causes the previous page of the
current page set to be built. If the present page is the first in
the page set, BACK command 292 is disabled, since it is not
a valid option.

A filter program can be attached to both the NEXT or
BACK functions to modify their implicit sequential nature
based upon the value ofthe occurrence in the object set id.

PATH command 293 causes the next page to be built and
displayed from a list of pages that the user has entered,
starting from the first entry for every new session.

18
MENU command 294 causes the page presenting the

previous set of choices to be rebuilt.
ACTION command 295 initiates an application depen-

dent operation such as causing a new application partition to
5 be interpreted, a window partition 275 to be opened and

enables the user to input any information required which
may result in a transaction or selection of another window or
page.

JUMP command 296 causes window partition 275 to be
lo opened, allowing the user to input a keyword or to specify

one from an index that may be selected for display.
HELP command 297 causes a new application partition to

be interpreted such as a HELP window pertaining to where
the cursor is positioned to be displayed in order to assist the

15 user regarding the present page, a particular partition, or a
field in a page element.

EXIT command 298 causes a LOGOFF page template
object (PTO) to be built, and a page logoff sequence to be
presented at RS 400 monitor screen 414.

20

Navigation Interface

Continuing, as a further feature, network 10 includes an
improved procedure for searching and retrieving applica-

25 tions from the store of applications distributed throughout
network 10; e.g., server 205, cache/concentrator 302 and RS
400. More specifically, the procedure features use of pre-
created search tables which represent subsets of the infor-
mation on the network arranged with reference to the page

30 template objects (PTO) and object-ids of the available
applications so that in accordance with the procedure, the
relevant tables and associated objects can be provided to and
searched at the requesting RS 400 without need to search the
entire store of applications on the network. As will be

35 appreciated, this reduces the demand on the server 205 for
locating and retrieving applications for display at monitor
412.

In conventional time-sharing networks that support large
conventional databases, the host receives user requests for

40 data records; locates them; and transmits them back to the
users. Accordingly, the host is obliged to undertake the data
processing necessary to isolate and supply the requested
information. And, as noted earlier, where large numbers of
users are to be served, the many user requests can bottleneck

45 at the host, taxing resources and leading to response slow-
down.

Further, users have experienced difficulty in searching
data bases maintained on conventional time-sharing net-
works. For example, difficulties have resulted from the

50 complex and varied way previously known database sup-
pliers have organized and presented their information. Par-
ticularly, some database providers require searching be done
only in selected fields of the data base, thus requiring the
user to be fully familiar with the record structure. Others

55 have organized their databases on hierarchial structures
which require the user understand the way the records are
grouped. Still further, yet other database suppliers rely upon
keyword indices to facilitate searching oftheir records, thus
requiring the user to be knowledgeable regarding the par-

60 ticular keywords used by the database provider.
Network 10, however, is designed to avoid such difficul-

ties. In the preferred embodiment, the network includes
procedures for creating preliminary searches which repre-
sent subsets of the network applications users are believed

65 likely to investigate. Particularly, in accordance with these
procedures, for the active applications available on network
10, a library of tables is prepared, and maintained within

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 67 of 147 PageID #: 84

US 7,072,849 Bl

19
each of which a plurality of so called "keywords" are
provided that are correlated with page template objects and
object-ids of the entry screen (typically the first screen) for
the respective application. In the preferred embodiment,
approximately i 000 tables are used, each having approxi-
mately i O to 20 keywords arranged in alphabetical order to
abstract the applications on the network. Further, the object-
id for each table is associated with a code in the form of a
character string mnemonic which is arranged in a set of
alphabetically sequenced mnemonics termed the sequence
set so that on entry of a character string at an RS 400, the
object-id for the relevant keyword table can be obtained
from the sequence set. Once the table object-id is identified,
the keyword table corresponding to the desired subset of the
objects and associated applications can then be obtained
from network 10. Subsequently the table can be presented to
the user's RS 400, where the RS 400 can provide the data
processing required to present the potentially relevant key-
words, objects and associated applications to the user for
further review and determination as to whether more search-
ing is required. As will be appreciated, this procedure
reduces demand on server 205 and thereby permits it to be
less complex and costly, and further, reduces the likelihood
of host overtaxing that may cause network response slow-
down.

As a further feature of this procedure, the library of
keywords and their associated PTOs and objects may be
generated by a plurality of operations which appear at the
user's screen as different search techniques. This permits the
user to select a search technique he is most comfortable
with, thus expediting his inquiry.

More particularly, the user is allowed to invoke the
procedure by calling up a variety of operations. The various
operations have different names and seemingly present
different search strategies. Specifically, the user may invoke
the procedure by initiating a "Jump" command at RS 400.
Thereafter, in connection with the Jump operation, the user,
when prompted, may enter a word of the user' s choosing at
monitor screen 414 relating to the matter he is interested in
locating; i.e., a subject matter search of the network appli-
cations. Additionally, the users may invoke the procedure by
alternatively calling up an operation termed "Index" with
selection of the Index command. When selected, the Index
command presents the user with an alphabetical listing of
keywords from the tables noted above which the user can
select from; i.e., an alphabetical search of the network
applications. Further, the user may evoke the procedure by
initiating an operation termed "Guide." By selecting the
Guide command, the user is provided with a series of
graphic displays that presents a physical description of the
network applications; e.g., department floor plan for a store
the user may be electronically shopping in. Still further, the
user may invoke the procedures by initiating an operation
termed "Directory." By selecting the Directory command,
the user is presented with the applications available on the
network as a series of hierarchial menus which present the
content ofthe network information in commonly understood
categories. Finally, the user may invoke the procedure by
selecting the "Path" command, which accesses a list of
keywords the user has previously selected; i.e., a personally
tailored form of the Index command described above. As
described hereafter, Path further includes a Viewpath opera-
tion which permits the user to visually access and manage
the Path list of keywords. In preferred form, where the user
has not selected a list ofpersonalized keywords, a default set

20
is provided which includes a predetermined list and associ-
ated applications deemed by network 10 as likely to be of
interest to the user.

This ability to convert these apparently different search
5 strategies in a single procedure for accessing pre-created

library tables is accomplished by translating the procedural
elements of the different search techniques into a single set
ofprocedures that will produce a mnemonic; i.e., code word,
which can first be searched at the sequence set, described

lo above to identiFy the object-id for the appropriate library
table and, thereafter, enable access of the appropriate table
to permit selection of the desired keyword and associated
PTO and object-ids. That is to say, the reception system
native code simply relates the user-entered character string,

15 alphabetical range, category, or list item of respectively,
"Jump", "Index", "Directory", or "Path" to the table codes
through the sequence set, so that the appropriate table can be
provided to the reception system and application keyword
selected. Thus, while the search techniques may appear

20 different to the user, and in fact accommodate the user' s
preferences and sophistication level, they nonetheless
invoke the same efficient procedure of relying upon pre-
created searches which identiFy related application PTOs
and object-ids so that the table and objects may be collected

25 and presented at the user's RS 400 where they can be
processed, thereby relieving server 205.

In preferred form, however, in order to enhance presen-
tation speed the Guide operation is specially configured.
Rather than relating the keyword mnemonic to a sequence

30 set to identify the table object-id and range of keywords
corresponding to the entry PTO and associated object-ids,
the Guide operation presents a series of overlapping win-
dows that physically describe the "store" in which shopping
is being conducted or the "building" from which information

35 is being provided. The successive windows increase in
degree of detail, with the final window presenting a listing
of relevant keywords. Further, the PTO and object-ids for
the application entry screen are directly related to the
graphic presentation of the keywords. This eliminates the

40 need to provide variable fields in the windows for each of the
keywords and enables the entry screen to be correlated
directly with the window graphic. As will be appreciated,
this reduces the number of objects that would otherwise be
required to be staged at RS 400 to support pretention of the

45 keyword listing at monitor screen 414, and thus speeds
network response.

A more detailed understanding of the procedure may be
had upon a reading of the following description and review
ofaccompanying FIGS. 2, 3a and particularly FIG. 11 which

50 presents a flow diagram for the Jump sequence ofthe search
procedure.

To select a particular partitioned application from among
thousands of such applications residing either at the RS 400
or within delivery system 20, network 10 avoids the need for

55 a user to know or understand, prior to a search, the organi-
zation of such partitioned applications and the query tech-
niques necessary to access them. This is accomplished using
a collection of related commands, as described below.

The Jump command 296 as seen in FIG. 3a, can be
60 selected, by the user from command bar 290. When Jump

command 296 is selected, a window partition 275 is opened.
In window 275, the user is presented and may select from a
variety of displayed options that include among others, the
Directory command, the Index command, and the Guide

65 command, which when selected, have the effect noted
above. Additionally, the user can select a command termed
Viewpath which will presents the keywords that currently

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 68 of 147 PageID #: 85

US 7,072,849 Bl

21
make up the list ofkeywords associated with the user's Path
command, and from which list the user can select a desired
keyword. Still further, and with reference FIG. 11, which
shows the sequence where a user offers a term to identiFy a
subject of interest, the user may enter a keyword at display
field 270 within window partition 275 as a "best guess" of
the mnemonic character string that is assigned to a parti-
tioned application the user desires (e.g., the user may input
such english words as "news," "pet food," "games," etcet-
era). Where the user enters a character string it is displayed
in field 270, and then searched by RS 400 native code
(discussed below) against the sequence sets above noted to
identify the object-id for the appropriate table of keywords
(not shown) that RS 400 may request from host 205. While
as noted above, a table may include 10 to 20 keywords, in
the preferred embodiment, for the sake of speed and con-
venience, a typical keyword table includes approximately 12
keywords.

If the string entered by the user matches a keyword
existing on one ofthe keyword tables, and is thus associated
with a specific PTO, RS 400 fetches and displays associated
objects of the partitioned applications and builds the entry
page in accordance with the page composition dictated by
the target PTO.

If the string entered by the user does not match a specific
keyword, RS 400 presents the user with the option of
displaying the table of keywords approximating the specific
keyword. The approximate keywords are presented as ini-
tialized, cursorable selector fields of the type provided in
connection with a Index command. The user may then move
the cursor to the nearest approximation of the mnemonic he
originally selected, and trigger navigation to the PTO asso-
ciated with that keyword, navigation being as described
hereafter in connection with the RS 400 native code.

If, after selecting the Jump command, the user selects the
Index command, RS 400 will retrieve the keyword table
residing at RS 400, and will again build a page with
initialized, cursorable fields of keywords. The table fetched
upon invoking the Index command will be comprised of
alphabetic keywords that occur within the range of the
keywords associated with the page template object (PTO)
from which the user invoked the Index command. As
discussed above, the user may select to navigate to any of
this range of PTOs by selecting the relevant keyword from
the display. Alternatively, the user can, thereafter, select
another range of alphabetical keywords by entering an
appropriate character string in a screen field provided or
move forward or backward in the collection by selecting the
corresponding option.

By selecting the Directory command, RS 400 can be
caused to fetch a table of keywords, grouped by categories,
to which the PTO of the current partitioned application (as
specified by the object set field 630 of the current PEO)
belongs. Particularly, by selecting the Directory command,
RS 400, is causes to displays a series of screens each of
which contains alphabetically arranged general subject cat-
egories from which the user may select. Following selection
of a category, a series of keywords associated with the
specified category are displayed in further screens together
with descriptive statements about the application associated
with the keywords. Thereafter, the user can, in the manner
previously discussed with regard to the Index command,
select from and navigate to the PTOs ofkeywords which are
related to the present page set by subject.

The Guide command provides a navigation method
related to a hierarchical organization of applications pro-
vided on network 10, and are described by a series of

sequentially presented overlaying windows of a type known
in the art, each of which presents an increasing degree of
detail for a particular subject area, terminating in a final
window that gives keywords associated with the relevant

5 applications. The Guide command makes use of the key-
word segment which describes the location of the PTO in a
hierarchy (referred to, in the preferred embodiment, as the
"BFD," or Building-Floor-Department) as well as an asso-
ciated keyword character string. The BFD describes the set

lo of menus that are to be displayed on the screen as the
sequence of pop-up windows. The Guide command may be
invoked by requesting it from the Jump window described
above, or by selecting the Menu command on Command Bar
290. As noted above, in the case ofthe Guide command, the

15 PTO and object-ids for the application entry screen are
directly associated with the graphic of the keyword pre-
sented in the final pop-up window. This enables direct access
of the application entry screen without need to access the
sequence set and keyword table, and thus, reduces response

20 time by reducing the number of objects that must be pro-
cessed at RS 400.

Activation ofthe Path command accesses the user's list of
pre-selected keywords without their display, and permits the
user to step through the list viewing the respective applica-

25 tions by repeatedly invoking the Path command. As will be
appreciated, the user can set a priority for selecting key-
words and viewing their associated applications by virtue of
where on the list the user places the keywords. More
specifically, if the user has several application of particular

30 interest; e.g., news, weather, etc., the user can place them at
the top of the list, and quickly step through them with the
Path command. Further, the user can view and randomly
access the keywords of his list with the Viewpath operation
noted above. On activation of Viewpath, the user's Path

35 keywords are displayed and the user can cursor through
them in a conventional manner to select a desired one.
Further, the user can amend the list as desired by changing
the keywords on the list and/or adjusting their relative
position. This is readily accomplished by entering the

40 amendments to the list presented at the screen 414 with a
series of amendment options presented in a conventional
fashion with the list. As noted, the list may be personally
selected by the user in the manner described, or created as
a default by network 10.

45 Collectively, the Jump command, Index command, Direc-
tory command, Guide command, and Path command as
described enable the user to quickly and easily ascertain the
"location" of either the partitioned application presently
displayed or the "location" of a desired partitioned applica-

50 tion. "Location," as used in reference to the preferred
embodiment means the specific relationships that a particu-
lar partitioned application bears to other such applications,
and the method for selecting particular partitioned applica-
tions from such relationships. The techniques for querying a

55 database of objects, embodied in network 10 is an advance
over the prior art, insofar as no foreknowledge of either
database structure or query technique or syntax is necessary,
the structure and search techniques being made manifest to
the user in the course of use of the commands.

60

RS Application Protocol

RS protocol defines the way the RS supports user appli-
cation conversation (input and output) and the way RS 400

65 processes a partitioned application. Partitioned applications
are constructed knowing that this protocol will be supported
unless modified by the application. The protocol is illus-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 69 of 147 PageID #: 86

US 7,072,849 Bl

23
trated FIG. 6. The boxes in FIG. 6 identify processing states
that the RS 400 passes through and the arrows indicate the
transitions permitted between the various states and are
annotated with the reason for the transition.

The various states are: (A) Initialize RS, (B) Process
Objects, (C) Interpretively Execute Pre-processors, (D) Wait
for Event, (E) Process Event, and (F) Interpretively Execute
Function Extension and/or Post-processors.

The transitions between states are: (la) Logon Page
Template Object Identification (PTO-id), (lb) Object Iden-
tification, (2) Trigger Program Object identification (PO-id)
& return, (3) Page Partition Template (PPT) or Window
Stack Processing complete, (4) Event Occurrence, and (5)
Trigger PO-id and Return.

Transition (la) from Initialize RS (A) to Process Objects
(B) occurs when an initialization routine passes the object-id
ofthe logon PTO to object interpreter 435, when the service
is first invoked. Transition (lb) from Process Event (E) to
Process Objects (B) occurs whenever a navigation event
causes a new page template object identification (PTO-id) to
be passed to object interpreter 435; or when a open window
event (verb or function key) occurs passing a window
object-id to the object interpreter 435; or a close window
event (verb or function key) occurs causing the current
top-most window to be closed.

While in the process object state, object interpreter 435
will request any objects that are identified by external
references in call segments. Objects are processed by pars-
ing and interpreting the object and its segments according to
the specific object architecture. As object interpreter 435
processes objects, it builds a linked list structure called a
page processing table (PPT), shown in FIG. 10, to reflect the
structure of the page, each page partition, Page Element
Objects (PEOs) required, program objects (POs) required
and each window object (WO) that could be called. Object
interpreter 435 requests all objects required to build a page
except objects that could be called as the result of some
event, such as a HELP window object.

Transition (2) from Process Objects (B) to Interpretively
Execute Pre-processors (C) occurs when the object inter-
preter 435 determines that a pre-processor is to be triggered.
Object processor 436 then passes the object-id of the pro-
gram object to the TBOL interpreter 438. TBOL interpreter
438 uses the RS virtual machine to interpretively execute the
program object. The PO can represent either a selector or an
initializer. When execution is complete, a transition auto-
matically occurs back to Process Objects (B).

Selectors are used to dynamically link and load other
objects such as PEOs or other PDOs based upon parameters
that they are passed when they are called. Such parameters
are specified in call segments or selector segments. This
feature enables RS 400 to conditionally deliver information
to the user base upon predetermined parameters, such as his
personal demographics or locale. For example, the param-
eters specified may be the transaction codes required to
retrieve the user' s age, sex, and personal interest codes from
records contained in user profiles stored at the switchlfile
server layer 200.

Initializers are used to set up the application processing
environment for a partitioned application and determine
what events RS 400 may respond to and what the action will
be.

Transition (3) from Process Objects (B) to Wait for Event
(D) occurs when object interpreter 435 is finished processing
objects associated with the page currently being built or
opening or closing a window on a page. In the Wait for Event
state (D), an input manager, which in the preferred form

shown includes keyboard manager 434 seen in FIG. 8,
accepts user inputs. All keystrokes are mapped from their
physical codes to logical keystrokes by the Keyboard Man-
ager 434, representing keystrokes recognized by the RS

5 virtual machine.
When the cursor is located in a field of a page element,

keystrokes are mapped to the field and the partitioned
external variable (PEV) specified in the page element object
(PEO) field definition segment by the cooperative action of

lo keyboard manager, 434 and display manager 461. Certain
inputs, such as RETURN or mouse clicks in particular fields,
are mapped to logical events by keyboard manager 434,
which are called completion (or commit) events. Comple-
tion events signiFy the completion of some selection or

15 specification process associated with the partitioned appli-
cation and trigger a partition level and/or page level post-
processor to process the "action" parameters associated with
the user's selection and commit event.

Such parameters are associated with each possible choice
20 or input, and are set up by the earlier interpretive execution

of an initializer pre-processor in state (C). Parameters usu-
ally speciFy actions to perform a calculation such as the
balance due on an order of several items with various prices
using sales tax for the user' s location, navigate to PTO-id,

25 open window WO-id or close window. Actions parameters
that involve the specification ofa page or window object will
result in transition (lb) to the Process Objects (B) state after
the post-processor is invoked as explained below.

Function keys are used to specify one or more functions
30 which are called when the user strikes these keys. Function

keys can include the occurrence of logical events, as
explained above. Additionally, certain functions may be
"filtered", that is, extended or altered by SET_FUNCTION
or TRIGGER_FUNCTION verbs recognized by the RS

35 virtual machine. Function keys cause the PO specified as a
parameter ofthe verb to be interpretively executed whenever
that function is called. Applications use this technique to
modify or extend the functions provided by the RS.

Transition (5) from Process Event (E) to Interpretively
40 Execute Pre-processors (F) occurs when Process Event State

determines that a post-processor or function extension PDO
is to be triggered. The id ofthe program object is then passed
to the TBOL interpreter 438. The TBOL interpreter 438 uses
the RS virtual machine to interpretively execute the PO.

45 When execution is complete a transition automatically
occurs back to Process Event (E).

Reception System Software

50 The reception system 400 software is the interface
between the user of personal computer 405 and interactive
network 10. The object of reception system software is to
minimize mainframe processing, minimize transmission
across the network, and support application extendibility

55 and portability.
RS 400 software is composed of several layers, as shown

in FIG. 7. It includes external software 451, which is
composed of elements well known to the art such as device
drivers, the native operating systems; i.e., MS-DOS,

60 machine-specific assembler functions (in the preferred
embodiment; e.g., CRC error checking), and "C" runtime
library functions; native software 420; and partitioned appli-
cations 410.

Again with reference to FIG. 7, native software 420 is
65 compiled from the "C" language into a target machine-

specific executable, and is composed of two components:
the service software 430 and the operating environment 450.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 70 of 147 PageID #: 87

US 7,072,849 Bl

Operating environment 450 is comprised of the Logical
Operating System 432, or LOS; and a multitasker 433.
Service software 430 provides functions specific to provid-
ing interaction between the user and interactive network lo,

while the operating environment 450 provides pseudo mul-
titasking and access to local physical resources in support of
service software 430. Both layers of native software 420
contain kernel, or device independent functions 430 and
432, and machine-specific or device dependent functions
433. All device dependencies are in code resident at RS 400,
and are limited to implementing only those functions that are
not common across machine types, to enable interactive
network 10 to provide a single data stream to all makes of
personal computer which are ofthe IBM or IBM compatible
type. Source code for the native software 420 is included in
parent application Ser. No. 388,156 now issued as U.S. Pat.
No. 5,347,632, the contents ofwhich patent are incorporated
herein by reference. Those interested in a more detailed
description ofthe reception system software may refer to the
source code provided in the referenced patent.

Service software 430 is comprised ofmodules, which are
device-independent software components that together
obtain, interpret and store partitioned applications existing
as a collection of objects. The functions performed by, and
the relationship between, the service software 430 module is
shown in FIG. 8 and discussed further below.

Through facilities provided by LOS 432 and multitasker
433, here called collectively operating environment 450,
device-independent multitasking and access to local
machine resources, such as multitasking, timers, buffer
management, dynamic memory management, file storage
and access, keyboard and mouse input, and printer output
are provided. The operating environment 450 manages com-
munication and synchronization of service software 430, by
supporting a request/response protocol and managing the
interface between the native software 420 and external
software 437.

Applications software layer 410 consists ofprograms and
data written in an interpretive language, "TRINTEX Basic
Object Language" or "TBOL," described above. TBOL was
written specifically for use in RS 400 and interactive net-
work 10 to facilitate videotext-specific commands and
achieve machine-independent compiling. TBOL is con-
structed as objects, which in interaction with one another
comprise partitioned applications.

RS native software 420 provides a virtual machine inter-
face for partitioned applications, such that all objects com-
prising partitioned applications "see" the same machine. RS
native software provides support forthe following functions:
(1) keyboard and mouse input; (2) text and graphics display;
(3) application interpretation; (4) application database man-
agement; (5) local application storage; (6) network and link
level communications; (7) user activity data collection; and
(8) advertisement management.

With reference to FIG. 8, service software 430 is com-
prised of the following modules: start-up (not shown);
keyboard manger 434; object interpreter 435; TBOL inter-
preter 438; object storage facility 439; display manager 461;
data collection manager 441; ad manager 442; object/com-
munications manager interface 443 ; link communications
manager 444; and fatal error manager 469. Each of these
modules has responsibility for managing a different aspect
ofRS 400.

Startup reads RS 400 customization options into RAM,
including modem, device driver and telephone number
options, from the file CONFIG.SM. Startup invokes all RS
400 component startup functions, including navigation to

the first page, a logon screen display containing fields
initialized to accept the user's id and password. Since
Startup is invoked only at initialization, for simplicity, it has
not been shown in FIG. 8.

5 The principal function of keyboard manger 434 is to
translate personal computer dependent physical input into a
consistent set of logical keys and to invoke processors
associated with these keys. Depending on the LOS key, and

lo the associated function attached to it, navigation, opening of
windows, and initiation of filter or post-processor TBOL
programs may occur as the result input events handled by the
keyboard manger 434. In addition, keyboard manger 434
determines inter and intra field cursor movement, and coor-

15
dinates the display of field text and cursor entered by the
user with display manager 461, and sends information
regarding such inputs to data collection manager 441.

Object interpreter 435 is responsible for building and
recursively processing a table called the "Page Processing

20 Table," or PPT. Object interpreter 435 also manages the
opening and closing ofwindows at the current page. Object
interpreter 435 is implemented as two sub-components: the
object processor 436 and object scanner 437.

Object processor 436 provides an interface to keyboard
25 manger 434 for navigation to new pages, and for opening

and closing windows in the current page. Object processor
436 makes a request to object storage facility 439 for a page
template object (PTO) or window object (WO), as requested
by keyboard manger 434, and for objects and their segments

30 which comprise the PTO or WO returned by object storage
facility 439 to object processor 436. Based on the particular
segments comprising the object(s) making up the new PTO
or WO, object processor 436 builds or adds to the page
processing table (PPT), which is an internal, linked-list,

35 global data structure reflecting the structure of the page or
page format object (PFO), each page partition or page
element object (PEO), and program objects (POs) required
and each window object (WO) that could be called. Objects
are processed by parsing and interpreting each object and

40 its-segment(s) according to their particular structure as for-
malized in the data object architecture (DOA). While in the
process object state, (state "B" of FIG. 6), object processor
436 will request any objects specified by the PTO that are
identified by external references in call segments (e.g. field

45 level program call 518, page element selector call 524, page
format call 526 program call 532, page element call 522
segments) of such objects, and will, through a request to
TBOL interpreter 438, fire initializers and selectors con-
tamed in program data segments of all PTO constituent

50 program objects, at the page, element, and field levels.
Object processor 436 requests all objects required to build a
page, except objects that could only be called as the result
of some event external to the current partitioned application,
such as a HELP window object. When in the course of

55 building or adding to the PPT and opening/closing WOs,
object processor encounters a call to an "ADSLOT" object
id, the next advertisement object id at ad manager 442 is
fetched, and the identified advertisement object is retrieved
either locally, if available, or otherwise from the network, so

60 that the presentation data for the advertisement can be sent
to display manager 461 along with the rest of the presenta-
tion data for the other objects to enable display to the user.
Object processor 436 also passes to data collection manager
441 all object ids that were requested and object ids that

65 were viewed. Upon completion of page or window process-
ing, object processor 436 enters the wait for event state, and
control is returned to keyboard manger 434.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 71 of 147 PageID #: 88

US 7,072,849 Bl

The second component of object interpreter 435, object
scanner 437, provides a file-like interface, shared with object
storage facility 439, to objects currently in use at RS 400, to
enable object processor 436 to maintain and update the PPT.
Through facilities provided by object scanner 437, object
processor recursively constructs a page or window in the
requested or current partitioned application, respectively.

Object storage facility 439 provides an interface through
which object interpreter 435 and TBOL interpreter 438
either synchronously request (using the TBOL verb operator
"GET") objects without which processing in either module
cannot continue, or asynchronously request (using the TBOL
verb operator "FETCH") objects in anticipation oflater use.
Object storage facility 439 returns the requested objects to
the requesting module once retrieved from either local store
440 or interactive network 10. Through control structures
shared with the object scanner 437, object storage facility
determines whether the requested object resides locally, and
ifnot, makes an attempt to obtain it from interactive network
10 through interaction with link communications manager
444 via object/communications manager interface 443.

When objects are requested from object storage facility
439, only the latest version of the object will be provided to
guarantee currency ofinformation to the user. Object storage
facility 439 assures currency by requesting version verifi-
cation from network 10 for those objects which are available
locally and by requesting objects which are not locally
available from delivery system 20 where currency is main-
tamed.

Version verification increases response time. Therefore,
not all objects locally available are version checked each
time they are requested. Typically, objects are checked only
the first time they are requested during a user session.
However, there are occasions, as for example in the case of
objects relating to news applications, where currency is
always checked to assure integrity of the information.

The frequency with which the currency of objects is
checked depends on factors such as the frequency of updat-
ing of the objects. For example, objects that are designated
as ultrastable in a storage control parameter in the header of
the object are never version checked unless a special version
control object sent to the RS as part of logon indicates that
all such objects must be version checked. Object storage
facility 439 marks all object entries with such a stability
category in all directories indicating that they must be
version checked the next time they are requested.

Object storage facility 439 manages objects locally in
local store 440, comprised of a cache (segmented between
available RAM and a fixed size disk file), and stage (fixed
size disk file). Ram and disk cached objects are retained only
during user sessions, while objects stored in the stage file are
retained between sessions. The storage control field, located
in the header portion of an object, described more fully
hereafter as the object "storage candidacy", indicates
whether the object is stageable, cacheable or trashable.

Stageable objects must not be subject to frequent change
or update. They are retained between user sessions on the
system, provided storage space is available and the object
has not discarded by a least-recently-used (LRU) algorithm
of a conventional type; e.g., see Operating System Theo,y,
by Coliman, Jr. and Denning, Prentice Hall Publishers, New
York, i 973, which in accordance with the design of network
10, operates in combination with the storage candidacy
value to determine the obj ect storage priority, thus rendering
the stage self-confguring as described more fully hereafter.
Over time, the self-configuring stage will have the effect of
retaining within local disk storage those objects which the

28
user has accessed most often. The objects retained locally
are thus optimized to each individual user' s usage of the
applications in the system. Response time to such objects is
optimized since they need not be retrieved from the inter-

5 active computer system.
Cacheable objects can be retained during the current user

session, but cannot be retained between sessions. These
objects usually have a moderate update frequency. Object
storage facility 439 retains objects in the cache according to

lo the LRU storage retention algorithm. Object storage facility
439 uses the LRU algorithm to ensure that objects that are
least frequently used forfeit their storage to objects that are
more frequently used.

Trashable objects can be retained only while the user is in
15 the context ofthe partitioned application in which the object

was requested. Trashable objects usually have a very high
update frequency and must not be retained to ensure that the
user has access to the most current data.

More particularly and, as noted above, in order to render
20 a public informational and transactional network of the type

considered here attractive, the network must be both eco-
nomical to use and fast. That is to say, the network must
supply information and transactional support to the user at
minimal costs and with a minimal response time. These

25 objectives are sought to be achieved by locating as many
information and transactional support objects which the user
is likely to request, as close to the user as possible; i.e.,
primarily at the user's RS 400 and secondarily at delivery
system 20. In this way, the user will be able to access objects

30 required to support a desired application with minimal
intervention ofdelivery system 20, thus reducing the cost of
the session and speeding the response time.

However, the number of objects that can be maintained at
RS 400 is restricted by at least two factors: the RS 400

35 storage capacity; i.e., RAM and disk sizes, and the need to
maintain the stored objects current.

In order to optimize the effectiveness of the limited
storage space at RS 400, the collection of objects is
restricted to those likely to be requested by the user; i.e.,

40 tailored to the user' s tastes-and to those least likely to be
time sensitive; i.e., objects which are stable. To accomplish
this, objects are coded for storage candidacy to identiFy
when they will be permitted at RS 400, and subject to the
LRU algorithm to maintain presence at RS 400. Addition-

45 ally, to assure currency of the information and transaction
support provided at RS 400, objects are further coded for
version identification and checking in accordance with a
system of priorities that are reflected in the storage candi-
dacy coding.

50 Specifically, to effect object storage management, objects
are provided with a coded version id made up of the storage
control byte and version control bytes identified above as
elements of the object header, specifically, bytes 16 and 18
shown in FIG. 4b. In preferred form, the version id is

55 comprised ofbytes 16 and 18 to define two fields, a first 13
bit field to identiFy the object version and a second three bite
field to identiFy the object storage candidacy.

In this arrangement, the storage candidacy value of the
object is addressed to not only the question of storage

60 preference but also object currency. Specifically, the storage
candidacy value establishes the basis upon which the object
will be maintained at RS 400 and also identifies the suscep-
tibility ofthe object to becoming stale by dictating when the
object will be version checked to determine currency.

65 The version value of the object on the other hand,
provides a parameter that can be checked against predeter-
mined values available from delivery system 20 to deter-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 72 of 147 PageID #: 89

US 7,072,849 Bl

mine whether an object stored at RS 400 is sufficiently
current to permit its continued use, or whether the object has
become stale and needs to be replaced with a current object
from delivery system 20.

Still further, object storage management procedure further
includes use ofthe LRU algorithm, for combination with the
storage and version coding to enable discarding of objects
which are not sufficiently used to warrant retention, thus
personalizing the store of objects at RS 400 to the user's
tastes. Particularly, object storage facility 439, in accordance
with the LRU algorithm maintains a usage list for objects.
As objects are called to support the user's applications
requests, the objects are moved to the top of a usage list. As
other objects are called, they push previously called objects
down in the list. If an object is pushed to the bottom of the
list before being recalled, it will be forfeited from the list if
necessary to make room for the next called object. As will
be appreciated, should a previously called object be again
called before it is displaced from the list, it will be promoted
to the top ofthe list, and once more be subject to depression
in the list and possible forfeiture as other objects are called.

As pointed out above, in the course ofbuilding the screens
presented to the user, objects will reside at various locations
in RS 400. For example, objects may reside in the RS 400
RAM where the object is supporting a particular application
screen then running or in a cache maintained at either RAM
or disk 424 where the object is being held for an executing
application or staged on the fixed size file on disk 424 noted
above where the object is being held for use in application
likely to be called by the user in the future.

In operation, the LRU algorithm is applied to all these
regions and serves to move an object from RAM cache to
disk cache to disk file, and potentially off RS 400 depending
on object usage.

With regard to the storage candidacy value, in this
arrangement, the objects stored at RS 400 include a limited
set of permanent objects; e.g., those supporting logon and
logoff, and other non-permanent objects which are subject to
the LRU algorithm to determine whether the objects should
be forfeited from RS 400 as other objects are added. Thus,
in time, and based on the operation of the LRU algorithm
and the storage candidacy value, the collection of objects at
RS 400 will be tailored to the usage characteristics of the
subscriber; i.e., self-configuring.

More particularly, the 3-bit field of the version id that
contains the storage candidacy parameter can have 8 differ-
cnt values. A first candidacy value is applied where the
object is very sensitive to time; e.g., news items, volatile
pricing information such as might apply to stock quotes, etc.
In accordance with this first value, the object will not be
permitted to be stored on RS 400, and RS 400 will have to
request such objects from delivery system 20 each time it is
accessed, thus, assuring currency. A second value is applied
where the object is sensitive to time but less so than the first
case; e.g., the price of apples in a grocery shopping appli-
cation. Here, while the price might change from day to day,
it is unlikely to change during a session. Accordingly the
object will be permitted to persist in RAM or at the disk
cache during a session, but will not be permitted to be
maintained at RS 400 between sessions.

Continuing down the hierarchy of time sensitivity, where
the object concerns information sufficiently stable to be
maintained between sessions, a third storage candidacy
value is set to permit the object to be stored at RS 400
between sessions, on condition that the object will be
version check the first time it is accessed in a subsequent
session. As will be appreciated, during a session, and under

30
the effect ofthe LRU algorithm, lack ofuse at RS 400 of the
object may result in it being forfeited entirely to accommo-
date new objects called for execution at RS 400.

Still further, a fourth value of storage candidacy is applied
5 where the object is considered sufficiently stable as not to

require version checking between sessions; e.g., objects
concerning page layouts not anticipated to change. In this
case, the storage candidacy value may be encoded to permit
the object to be retained from session to session without

lo version checking. Here again, however, the LRU algorithm
may cause the object to forfeit its storage for lack of use.

Where the object is of a type required to be stored at RS
400, as for example, objects needed to support standard
screens, it is coded for storage between sessions and not

15 subject to the LRU algorithm forfeiture. However, where
such objects are likely to change in the future they may be
required to be version checked the first time they are
accessed in a session and thus be given a fifth storage
candidacy value. If, on the other hand, the required stored

20 object is considered likely to be stable and not require even
version checking; e.g., logon screens, it will be coded with
a sixth storage candidacy value for storage without version
checking so as to create a substantially permanent object.

Continuing, where a RS 400 includes a large amount of
25 combined RAM and disk capacity, it would permit more

objects to be stored. However, if objects were simply coded
in anticipation of the larger capacity, the objects would
potentially experience difficulty, as for example, undesired
forfeiture due to capacity limitations if such objects were

30 supplied to RS 400 units having smaller RAM and disk
sizes. Accordingly, to take advantage ofthe increased capac-
ity of certain RS 400 units without creating difficulty in
lower capacity units, objects suitable for storage in large
capacity units can be so coded for retention between ses-

35 sions with a seventh and eighth storage candidacy value
depending upon whether the stored large capacity object
requires version checking or not. Here, however, the coding
will be interpreted by smaller capacity units to permit only
cacheable storage to avoid undesirable forfeiture that might

40 result from over filling the smaller capacity units.
Where an object is coded for no version checking need

may nonetheless arise for a version check at some point. To
permit version checking of such objects, a control object is
provided at RS 400 that may be version checked on receipt

45 of a special communication from delivery system 20. If the
control object fails version check, then a one shot version
checking attribute is associated with all existing objects in
RS 400 that have no version checking attributes. Thereafter,
the respective objects are version checked, the one shot

50 check attribute is removed and the object is caused to either
revert to its previous state if considered current or be
replaced if stale.

Still further, objects required to be stored at RS 400 which
are not version checked either because of lack of require-

55 ment or because of no version check without a control
object, as described above, can accumulate in RS 400 as
dead objects. To eliminate such accumulation, all object
having required storage are version checked over time.
Particularly, the least recently used required object is version

60 checked during a session thus promoting the object to the top
of the usage list if it is still to be retained at RS 400.
Accordingly, one such object will be checked per session
and over time, all required objects will be version checked
thereby eliminating the accumulation of dead objects.

65 However, in order to work efficiently, the version check
attribute of the object should be ignored, so that even
required object can be version checked. Yet, in certain

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 73 of 147 PageID #: 90

US 7,072,849 Bl

31
circumstances, e.g., during deployment of new versions of
the reception system software containing new objects not yet
supported on delivery system 20 which may be transferred
to the fixed storage file of RS 400 when the new version is
loaded, unconditional version checking may prematurely
deletes the object from the RS 400 as not found on delivery
system 20. To avoid this problem, a sweeper control segment
in the control object noted above can be used to act as a
switch to turn the sweep of dead objects on and off.

With respect to version checking for currency, where an
object stored at RS 400 is initially fetched or accessed during
a session, a request to delivery system 20 is made for the
object by specifying the version id ofthe object stored at RS
400.

In response, delivery system 20 will advise the reception
system 400 either that the version id of the stored object
matches the currency value; i.e., the stored object is accept-
able, or deliver a current object that will replace the stored
object shown to be stale. Alternatively, the response may be
that the object was not found. If the version of the stored
object is current, the stored object will be used until verified
again in accordance with its storage candidacy. If the stored
object is stale, the new object delivered will replace the old
one and support the desired screen. If the response is object
not found, the stored object will be deleted.

Therefore, based on the above description, network 10 is
seen to include steps for execution at storage facility 439
which enables object reception, update and deletion by
means of a combination of operation of the LRU algorithm
and interpretation of the storage candidacy and version
control values. In turn, these procedures cooperate to assure
a competent supply of objects at RS 400 so as to reduce the
need for intervention of delivery system 20, thus reducing
cost of information supply and transactional support so as to
speed the response to user requests.

TBOL interpreter 438 shown in FIG. 8 provides the means
for executing program objects, which have been written
using an interpretive language, TBOL described above.
TBOL interpreter 438 interprets operators and operand con-
tamed in program object 508, manages TBOL variables and
data, maintains buffer and stack facilities, and provides a
runtime library of TBOL verbs.

TBOL verbs provide support for data processing, program
flow control, file management, object management, commu-
nications, text display, command bar control, openlclose
window, page navigation and sound. TBOL interpreter also
interacts with other native modules through commands
contained in TBOL verbs. For example: the verb "navigate"
will cause TBOL interpreter 438 to request object interpreter
435 to build a PPT based on the PTO id contained in the
operand of the NAVIGATE verb; "fetch" or "GET" will
cause TBOL interpreter 438 to request an object from object
storage facility 439; "SET_FUNCTION" will assign a filter
to events occurring at the keyboard manger 434; and "FOR-
MAT," "SEND," and "RECEIVE" will cause TBOL inter-
preter 438 to send application level requests to object!
communications manager interface 433.

Data areas managed by TBOL interpreter 438 and avail-
able to TBOL programs are Global External Variables
(GEVs), Partition External Variables (PEVs), and Runtime
Data Arrays (RDAs).

GEVs contain global and system data, and are accessible
to all program objects as they are executed. GEVs provide
a means by which program objects may communicate with
other program objects or with the RS native code, if declared
in the program object. GEVs are character string variables
that take the size of the variables they contain. GEVs may

preferably contain a maximum of 32,000 variables and are
typically used to store such information as program return
code, system date and time, or user sex or age. TBOL
interpreter 438 stores such information in GEVs when

5 requested by the program which initiated a transaction to
obtain these records from the RS or user's profile stored in
the interactive system.

Partition external variables (PEVs) have a scope restricted
to the page partition on which they are defined. PEVs are

lo used to hold screen field data such that when PEOs and
window objects are defined, the fields in the page partitions
with which these objects are to be associated are each
assigned to a PEV. When applications are executed, TBOL
interpreter 438 transfers data between screen fields and their

15 associated PEV. When the contents ofa PEV are modified by
user action or by program direction, TBOL interpreter 428
makes a request to display manager 461 to update the screen
field to reflect the change. PEVs are also used to hold
partition specific application data, such as tables of infor-

20 mation needed by a program to process an expected screen
input.

Because the scope of PEVs is restricted to program
objects associated with the page partition in which they are
defined, data that is to be shared between page partitions or

25 is to be available to a page-level processor must be placed
in GEVs or RDAs.

RDAs are internal stack and save buffers used as general
program work areas. RDAs are dynamically defined at
program object "runtime" and are used for communication

30 and transfer of data between programs when the data to be
passed is not amenable to the other techniques available.
Both GEVs and RDAs include, in the preferred embodi-
ment, 8 integer registers and 8 decimal registers. Preferably,
there are also 9 parameter registers limited in scope to the

35 current procedure of a program object.
All variables may be specified as operand ofverbs used by

the virtual machine. The integer and decimal registers may
be specified as operand for traditional data processing. The
parameter registers are used for passing parameters to

40 "called" procedures. The contents of these registers are
saved on an internal program stack when a procedure is
called, and are restored when control returns to the "calling"
procedure from the "called" procedure.

TBOL interpreter 438, keyboard manger 434, object inter-
45 preter 435, and object storage facility 439, together with

device control provided by operating environment 450, have
principal responsibility for the management and execution
of partitioned applications at the RS 400. The remaining
native code modules function in support and ancillary roles

50 to provide RS 400 with the ability display partitioned
applications to the user (display manager 461), display
advertisements (ad manager 442), to collect usage data for
distribution to interactive network 10 for purposes of tar-
geting such advertisements (data collection manager 441),

55 and prepare for sending, and send, objects and messages to
interactive network 10 (object!communications manager
interface 443 and link communications manager 444)
Finally, the fatal error manager exists for one purpose: to
inform the user of RS 400 and transmit to interactive

60 network 10 the inability ofRS 400 to recover from a system
error.

Display manager 461 interfaces with a decoder using the
North American Presentation Level Protocol Syntax (NA-
PLPS), a standard for encoding graphics data, or text code,

65 such as ASCII, which are displayed on monitor 412 of the
user's personal computer 405 as pictorial codes. Codes for
other presentation media, such as audio, can be specified by

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 74 of 147 PageID #: 91

US 7,072,849 Bl

33
using the appropriate type code in the presentation data
segments. Display manager 461 supports the following
functions: send NAPLPS strings to the decoder; echo text
from a PEV; move the cursor within and between fields;
destructive or non-destructive input field character deletion;
"ghost" and "unghost" fields (a ghosted field is considered
unavailable, unghosted available); turn off or on the current
field cursor; open, close, save and restore bit maps for a
graphics window; update all current screen fields by dis-
playing the contents of their PEVs, reset the NAPLPS
decoder to a known state; and erase an area ofthe screen by
generating and sending NAPLPS to draw a rectangle over
that area. Display manager 461 also provides a function to
generate a beep through an interface with a machine-depen-
dent sound driver.

In accordance with the method of the present invention,
Ad manager 442 is invoked by object interpreter 435 to
return the object id ofthe next available advertisement to be
displayed. Ad manager 442 maintains a queue of advertising
object id's targeted to the specific user currently accessing
interactive network 10. Advertising objects are pre-fetched
from interactive system 10 from a personalized queue of
advertising ids that is constructed using data previously
collected from user generated events and/or reports of
objects used in the building ofpages or windows, compiled
by data collection manager 466 and transmitted to interac-
tive system 10.

Advertising objects 510 are PEOs that, through user
invocation of a "LOOK" command, cause navigation to
partitioned applications that may themselves support, for
example, ordering and purchasing of merchandise.

An advertising object id list, or "ad queue," is requested
in a transaction message to delivery system 20 by ad
manager 442 immediately after the initial logon response.
The logon application at RS 400 places the advertising list
in a specific RS global storage area called a SYS_GEV
(system global external variable), which is accessible to all
applications as well as to the native RS code). The Logon
application also obtains the first two ad object id's from the
queue and provides them to object storage facility 439 so the
advertising objects can be requested. However, at logon,
since no advertising objects are available at RS local storage
facilities 440, ad objects, in accordance with the described
storage candidacy, not being retained at the reception system
between sessions, they must be requested from interactive
network 10.

In a preferred embodiment, the following parametric
values are established for ad manager 442: advertising
object is queue capacity, replenishment threshold for adver-
tising object id's and replenishment threshold for number of
outstanding pre-fetched advertising objects. These param-
eters are set up in GEVs of the RS virtual machine by the
logon application program object from the logon response
from high function system 110. The parameters are then also
accessible to the ad manager 442. Preferred values are an
advertising queue capacity of 15, replenishment value of 10
empty queue positions and a pre-fetched advertising object
threshold of 3.

Ad manager 442 pre-fetches advertising objects by pass-
ing advertising object id's from the advertising queue to
object storage facility 439 which then retrieves the object
from the interactive system if the object is not available
locally. Advertising objects are pre-fetched, so they are
available in RS local store 440 when requested by object
interpreter 435 as it builds a page. The ad manager 442
pre-fetches additional advertising objects whenever the
number of pre-fetched advertising objects not called by

34
object interpreter 435; i.e. the number of remaining adver-
tising objects, falls below the pre-fetch advertising thresh-
old.

Whenever the advertising object id queue has more empty
5 positions than replenishment threshold value, a call is made

to the advertising object id queue application in high func-
tion system 110 shown in FIG. 2, via object/communications
manager interface 443 for a number of advertising object
id' s equal to the threshold value. The response message from

lo system 110 includes a list of advertising object id's, which
ad manager 442 enqueues.

Object interpreter 435 requests the object id of the next
advertising object from ad manager 442 when object inter-
preter 435 is building a page and encounters an object call

15 for a partition and the specified object-id equals the code
word, "ADSLOT." If this is the first request for an adver-
tising object id that ad manager 442 has received during this
user's session, ad manager 442 moves the advertising object
id list from the GEV into its own storage area, which it uses

20 as an advertising queue and sets up its queue management
pointers, knowing that the first two advertising objects have
been pre-fetched.

Ad manager 442 then queries object storage facility 439,
irrespective ofwhether it was the first request ofthe session.

25 The query asks if the specified advertising object id pre-
fetch has been completed, i.e., is the object available locally
at the RS. If the object is available locally, the object-id is
passed to object interpreter 435, which requests it from
object storage facility 439. If the advertising object is not

30 available in local store 440, ad manager 442 attempts to
recover by asking about the next ad that was pre-fetched.
This is accomplished by swapping the top and second entry
in the advertising queue and making a query to object
storage facility 439 about the new top advertising object id.

35 Ifthat object is not yet available, the top position is swapped
with the third position and a query is made about the new top
position.

Besides its ability to provide advertising that have been
targeted to each individual user, two very important response

40 time problems have been solved by ad manager 442 of the
present invention. The first is to eliminate from the new page
response time the time it takes to retrieve an advertising
object from the host system. This is accomplished by using
the aforementioned pre-fetching mechanism.

45 The second problem is caused by pre-fetching, which
results in asynchronous concurrent activities involving the
retrieval of objects from interactive system 10. If an adver-
tising object is pre-fetched at the same time as other objects
required for a page are requested, the transmission of the

50 advertising object packets could delay the transmission of
the other objects required to complete the current page by
the amount of time required to transmit the advertising
object(s). This problem is solved by the structuring the
requests from object interpreter 435 to the ad manager 442

55 in the following way:
1 . Return next object id of pre-fetched advertising object

& pre-fetch another;
2. Return next advertising object id only; and
3. Pre-fetch next advertising object only.

60 By separating the function request (1) into its two com-
ponents, (2) and (3), object interpreter 435 is now able to
determine when to request advertising object id's and from
its knowledge of the page build process, is able to best
determine when another advertising object can be pre-

65 fetched, thus causing the least impact on the page response
time. For example, by examining the PPT, object interpreter
435 may determine whether any object requests are out-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 75 of 147 PageID #: 92

US 7,072,849 Bl

standing. If there are outstanding requests, advertising
request type 2 would be used. When all requested objects are
retrieved, object interpreter 435 then issues an advertising
request type 3. Alternatively, if there are no outstanding
requests, object interpreter 435 issues an advertising request
type i . This typically corresponds to the user' s "think time"
while examining the information presented and when RS
400 is in the Wait for Event state (D).

Data collection manager 441 is invoked by object inter-
preter 435 and keyboard manger 434 to keep records about
what objects a user has obtained (and, if a presentation data
segment 530 is present, seen) and what actions users have
taken (e.g. "NEXT," "BACK," "LOOK," etc.)

The data collection events that are to be reported during
the user's session are sensitized during the logon process.
The logon response message carries a data collection indi-
cator with bit flags set to "on" for the events to be reported.
These bit flags are enabled (on) or disabled (off) for each
user based on information contained in the user's profile
stored and sent from high function host 110. A user's data
collection indicator is valid for the duration of his session.
The type of events to be reported can be changed at will in
the host data collection application. However, such changes
will affect only users who logon after the change.

Data collection manager 441 gathers information con-
cerning a user's individual system usage characteristics. The
types of informational services accessed, transactions pro-
cessed, time information between various events, and the
like are collected by data collection manager 441, which
compiles the information into message packets (not shown).
The message packets are sent to network 10 via object!
communication manager interface 443 and link communi-
cations manager 444. Message packets are then stored by
high function host 110 and sent to an offline processing
facility for processing. The characteristics of users are
ultimately used as a means to select or target various display
objects, such as advertising objects, to be sent to particular
users based on consumer marketing strategies, or the like,
and for system optimization.

Object!communications manager interface 443 is respon-
sible for sending and receiving DIA (Data Interchange
Architecture described above) formatted messages to or
from interactive network 10. Object!communications man-
ager 443 also handles the receipt of objects, builds a DIA
header for messages being sent and removes the header from
received DIA messages or objects, correlates requests and
responses, and guarantees proper block sequencing. Object!
communications manager interface 443 interacts with other
native code modules as follows: object!communications
manager 443 (1) receives all RS 400 object requests from
object storage facility 439, and forwards objects received
from network 10 via link communications manager 444
directly to the requesting modules; (2) receives ad list
requests from ad manager 442, which thereafter periodically
calls object!communications manager 443 to receive ad list
responses; (3) receives data collection messages and send
requests from data collection manager 441; (4) receives
application-level requests from TBOL interpreter 438,
which also periodically calls object!communications man-
ager interface 443 to receive responses (ifrequired); and (5)
receives and sends DIA formatted objects and messages
from and to link communications manager 444.

Object!communications manager interface 443 sends and
receives DIA formatted messages on behalf of TBOL inter-
preter 438 and sends object requests and receives objects on
behalf of object storage facility 439. Communication pack-
cts received containing parts ofrequested objects are passed

to object storage facility 439 which assembles the packets
into the object before storing it. If the object was requested
by object interpreter 435, all packets received by object
storage facility 439 are also passed to object interpreter 435

5 avoiding the delay required to receive an entire object before
processing the object. Objects which are pre-fetched are
stored by object storage facility 439.

Messages sent to interactive network 10 are directed via
DIA to applications in network 10. Messages may include

lo transaction requests for records or additional processing of
records or may include records from a partitioned applica-
tion program object or data collection manager 441. Mes-
sages to be received from network 10 usually comprise
records requested in a previous message sent to network 10.

15 Requests received from object storage facility 439 include
requests for objects from storage in interactive system 10.
Responses to object requests contain either the requested
object or an error code indicating an error condition.

Object!communications manager 443 is normally the
20 exclusive native code module to interface with link com-

munications manager 444 (except in the rare instance of a
fatal error). Link communications manager 444 controls the
connecting and disconnecting of the telephone line, tele-
phone dialing, and communications link data protocol. Link

25 communications manager 444 accesses network 10 by
means of a communications medium (not shown) link
communications manager 444, which is responsible for a
dial-up link on the public switched telephone network
(PSTN). Alternatively, other communications means, such

30 as cable television or broadcast media, may be used. Link
communications manager 444 interfaces with TBOL inter-
preter for connect and disconnect, and with interactive
network 10 for send and receive.

Link communications manager 444 is subdivided into
35 modem control and protocol handler units. Modem control

(a software function well known to the art) hands the modem
specific handshaking that occurs during connect and discon-
nect. Protocol handler is responsible for transmission and
receipt of data packets using the TCS (TRINTEX Cornu-

40 nications Subsystem) protocol (which is a variety of OSI
link level protocol, also well known to the art).

Fatal error manager 469 is invoked by all reception
system components upon the occurrence of any condition
which precludes recovery. Fatal error manager 469 displays

45 a screen to the user with a textual message and an error code
through display manager 461. Fatal error manager 469 sends
an error report message through the link communications
manager 444 to a subsystem of interactive network 10.

The source code for the reception system software as
50 noted above is described in parent application Ser. No.

388,156 filed Jul. 28, 1989, now issued as U.S. Pat. No.
5,347,632, the contents of which are incorporated herein by
reference.

55 Sample Application

Page 255 illustrated in FIG. 3b corresponds to a parti-
tioned application that permit's a user to purchase apples. It
shows how the monitor screen 414 of the reception system

60 400 might appear to the user. Displayed page 255 includes
a number of page partitions and corresponding page ele-
ments.

The page template object (PTO) 500 representing page
255 is illustrated in FIG. 9. PTO 500 defines the composition

65 of the page, including header 250, body 260, display fields
270, 271, 272, advertising 280, and command bar 290. Page
element objects (PEOs) 504 are associated with page parti-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 76 of 147 PageID #: 93

US 7,072,849 Bl

37
tions numbered; e.g., 250, 260, 280. They respectively,
present information in the header 250, identiFying the page
topic asABCAPPLES; inthebody 260, identifingthe cost
of apples; and prompt the user to input into fields within
body 260 the desired number of apples to be ordered. In
advertising 280, presentation data and a field representing a
post-processor that will cause the user to navigate to a
targetable advertising, is presented.

In FIG. 9, the structure of PTO 500 can be traced. PTO
500 contains a page format call segment 526, which calls
page format object (PFO) 502. PFO 502 describes the
location and size of partitions on the page and numbers
assigned to each partition. The partition number is used in
page element call segments 522 so that an association is
established between a called page element object (PEO) 504
and the page partition where it is to be displayed. Programs
attached to this PEO can be executed only when the cursor
is in the page partition designated within the PEO.

PTO 500 contains two page element call segments 522,
which reference the PEOs 504 for partitions 250 and 260.
Each PEO 504 defines the contents of the partition. The
header in partition 250 has only a presentation data segment
530 in its PEO 504. No input, action, or display fields are
associated with that partition.

The PEO 504 for partition 260 contains a presentation
data segment 530 and field definition segments 516 for the
three fields that are defined in that partition. Two ofthe fields
will be used for display only. One field will be used for input
of user supplied data.

In the example application, the PEO 504 for body parti-
tion 260 specifies that two program objects 508 are part of
the body partition. The first program, shown in Display field
270, 271, 272, is called an initializer and is invoked uncon-
ditionally by TBOL interpreter 438 concurrently with the
display of presentation data for the partition. In this appli-
cation, the function of the initializer is represented by the
following pseudo-code:

i . Move default values to input and display fields;
2. "SEND" a transaction to the apple application that is

resident on interactive system 10;
3. "RECEIVE" the result from interactive system 10; i.e.

the current price of an apple;
4. Move the price of an apple to PEV 271 so that it will

be displayed;
5. Position the cursor on the input field; and
6. Terminate execution of this logic.
The second program object 508 is a field post-processor.

It will be invoked conditionally, depending upon the user
keystroke input. In this example, it will be invoked if the
user changes the input field contents by entering a number.
The pseudo code for this post-processor is as follows:

i . Use the value in PEV 270 (the value associated with the
data entered by the user into the second input data field 270)
to be the number of apples ordered.

2. Multiply the number of apples ordered times the cost
per apple previously obtained by the initializer;

3. Construct a string that contains the message "THE
COST OF THE APPLES YOU ORDERED IS $45.34;";

4. Move the string into PEV 272 so that the result will be
displayed for the user; and

5. Terminate execution of this logic.
The process by which the "APPLES" application is

displayed, initialized, and run is as follows.
The "APPLES" application is initiated when the user

navigates from the previous partitioned application, with the
navigation target being the object id of the "APPLES" PTO
500 (that is, object id ABC1). This event causes keyboard

38
manager 434 to pass the PTO object id, ABC1 (which may,
for example, have been called by the keyword navigation
segment 520 within a PEO 504 of the previous partitioned
application), to object interpreter 435. With reference to the

5 RS application protocol depicted in FIG. 6, when the par-
titioned application is initiated, RS 400 enters the Process
Object state (B) using transition (1). Object interpreter 435
then sends a synchronous request for the PTO 500 specified
in the navigation event to object storage facility 439. Object

lo storage facility 439 attempts to acquire the requested object
from local store 440 or from delivery system 20 by means
of object/communication manager 443, and returns an error
code if the object cannot be acquired.

Once the PTO 500 is acquired by object/communications
15 manager 443, object interpreter 435 begins to build PPT by

parsing PTO 500 into its constituent segment calls to pages
and page elements, as shown in FIG. 4d and interpreting
such segments. PFO and PEO call segments 526 and 522
require the acquisition of the corresponding objects with

20 object id's <ABCF>, <ABCX> and <ABCY>. Parsing and
interpretation of object ABCY requires the further acquisi-
tion of program objects <ABCI> and <ABCJ>.

During the interpretation of the PEOs 504 for partitions
250 and 260, other RS 400 events are triggered. This

25 corresponds to transition (2) to interpret pre-processors state
(C) in FIG. 6. Presentation data 530 is sent to display
manager 461 for display using a NAPLPS decoder within
display manager 461, and, as the PEO <ABCY> for partition
260 is parsed and interpreted by object interpreter 435,

30 parameters in program call segment 532 identify the pro-
gram object <ABCI> as an initializer. Object interpreter 435
obtains the program object from object storage facility 439,
and makes a request to TBOL interpreter 438 to execute the
initializer program object 508 <ABCI>. The initializer per-

35 forms the operations specified above using facilities of the
RS virtual machine. TBOL interpreter 438, using operating
environment 450, executes initializer program object 506
<ABCI>, and may, if a further program object 508 is
required in the execution of the initializer, make a synchro-

40 nous application level object request to object storage facil-
ity 439. When the initializer terminates, control is returned
to object interpreter 435, shown as the return path in
transition (2) in FIG. 6.

Having returned to the process object state (B), object
45 processor 435 continues processing the objects associated

with PTO <ABC1>. Object interpreter continues to con-
struct the PPT, providing RS 400 with an environment for
subsequent processing of the PTO <ABC1> by pre-proces-
sors and post-processors at the page, partition, and field

50 levels. When the PPT has been constructed and the initializer
executed, control is returned to keyboard manager 434, and
the RS enters the wait for event (E) State, via transition (4),
as shown in FIG. 6.

In the wait for event state, the partitioned application
55 waits for the user to create an event. In any partitioned

application, the user has many options. For example, the
user may move the cursor to the "JUMP" field 296 on the
command bar 290, which is outside the current application,
and thus cause subsequent navigation to another application.

60 For purposes of this example, it is assumed that the user
enters the number of apples he wishes to order by entering
a digit in display field 271.

Keyboard manager 434 translates the input from the
user' s keyboard to a logical representation independent of

65 any type of personal computer. Keyboard manager. 434
saves the data entered by the user in a buffer associated with
the current field defined by the location of the cursor. The

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 77 of 147 PageID #: 94

US 7,072,849 Bl

buffer is indexed by its PEV number, which is the same as
the field number assigned to it during the formation of the
page element. Keyboard manager 434 determines for each
keystroke whether the keystroke corresponds to an input
event or to an action or completion event. Input events are
logical keystrokes and are sent by keyboard manager to
display manager 461, which displays the data at the input
field location. Display manager 461 also has access to the
field buffer as indexed by its PEV number.

The input data are available to TBOL interpreter 438 for
subsequent processing. When the cursor is in a partition,
only the PEVs for that partition are accessible to the RS
virtual machine. After the input from the user is complete (as
indicated by a user action such as pressing the RETURN key
or entry of data into a field with an action attribute), RS 400
enters the Process Event state (E) via transition (4).

For purposes ofthis example, let us assume that the user
enters the digit "5" in input field 270. A transition is made
to the process event state (E). Keyboard manager 434 and
display manager 437 perform a number of actions, such as
the display of the keystroke on the screen, the collection of
the keystroke for input, and optionally, the validation of the
keystroke, i.e. numeric input only in numeric fields. When
the keystroke is processed, a return is made to the wait for
event state (D) Edit attributes are specified in the field
definition segment.

Suppose the user inputs a "6" next. A transition occurs to
the PE state and after the "6" is processed, the Wait for Event
(D) state is reentered. If the user hits the "completion" key
(e.g., ENTER) the Process Event (E) state will be entered.
The action attributes associated with field 272 identify this
as a system event to trigger post-processor program object
<ABCJ>. When the interpretive execution ofprogram object
<ABCJ> is complete, the wait for event state (D) will again
be entered. The user is then free to enter another value in the
input field, or select a command bar function and exit the
apples application.

While this invention has been described in its preferred
form, it will be appreciated that changes may be made in the
form, construction, procedure and arrangement ofits various
elements and steps without departing from its spirit or scope.

We claim:
1. A method for presenting advertising obtained from a

computer network, the network including a multiplicity of
user reception systems at which respective users can request
applications, from the network, that include interactive
services, the respective reception systems including a moni-
tor at which at least the visual portion ofthe applications can
be presented as one or more screens of display, the method
comprising the steps of:

a. structuring applications so that they may be presented,
through the network, at a first portion of one or more
screens of display; and

b. structuring advertising in a manner compatible to that
of the applications so that it may be presented, through
the network, at a second portion of one or more screens
of display concurrently with applications, wherein
structuring the advertising includes configuring the
advertising as objects that include advertising data and;

c. selectively storing advertising objects at a store estab-
lished at the reception system.

2. The method of claim i wherein storing advertising
objects at the reception system includes replenishing the
store ofadvertising objects from the network when the store
of advertising objects falls below a predetermined level.

3. The method of claim 2 wherein storing advertising
objects at the reception system includes storing advertising

40
object identifications at the reception system, and wherein
the storing ofadvertising object identification is based on an
establishing ofa characterization for the respective reception
system users.

5 4. The method of claim 3 wherein establishing the char-
acterization for the respective reception system users
includes basing the characterization at least in part on the
applications requested by the respective users.

5. The method of claim 3 wherein establishing the char-
lo acterization for the respective reception system users

includes basing the characterization at least in part on the
demographic data for the respective users.

6. The method of claim 3 wherein establishing the char-
acterization for the respective reception system users

15 includes basing the characterization at least in part on data
concerning the geographical location ofthe respective user's
reception system.

7. The method of claim 3 wherein establishing the char-
acterization for the respective reception system users

20 includes basing the characterization at least in part on a
combination of data concerning user application requests,
user demographics and geographical location of the respec-
tive user's reception system.

8. A method for presenting advertising in a computer
25 network, the network including a multiplicity of user recep-

tion systems at which respective users can request applica-
tions that include interactive services, the method compris-
ing the steps of:

a. compiling data concerning the respective users;
30 b. establishing characterizations for respective users

based on the compiled data; and
c. structuring advertising so that it may be selectively

supplied to and retrieved at the reception systems for
presentation to the respective users in accordance with

35 the characterizations established for the respective
reception system users, wherein structuring advertising
includes supplying advertising data to the reception
system and storing a predetermined amount of the
advertising data in a store established at the respective

40 reception systems.
9. The method of claim 8 wherein supplying advertising

data to the reception system includes pre-fetching advertis-
ing data from the network when the store ofadvertising data
falls below a predetermined level.

45 10. The method of claim 9 wherein pre-fetching adver-
tising data is dependent on the size of the advertising data
store.

11. The method of claim 10 wherein storing advertising

50
data at the reception system includes maintaining a list
identifying the advertising data to be presented.

12. The method of claim 8 wherein the supplying of
advertising data to the reception system for presentation
includes the reception system requesting advertising data

55
from the network when advertising data sought to be pre-
sented is unavailable at the reception system.

13. A method for presenting advertising in a computer
network, the network including a multiplicity of user recep-
tion systems at which respective users can request applica-

60 tions that include interactive services, the respective recep-
tion systems including a monitor at which at least the visual
portion of the applications can be presented as one or more
screens of display, the method comprising the steps of:

a. structuring applications so that they may be presented
65 at a first portion of one or more screens of display;

b. configuring the advertising as objects that include
advertising data,

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 78 of 147 PageID #: 95

US 7,072,849 Bl

41
C. structuring the advertising objects in a manner corn-

patible to that of the applications so that advertising
data frorn an advertising object rnay be presented at a
second portion of one or rnore screens of display
concurrently with applications, and;

d. selectively storing advertising objects at a store estab-
lished at the reception systern.

14. A rnethod for presenting advertising obtained frorn a
cornputer network, the network including a rnultiplicity of
user reception systerns at which respective users can request
applications frorn the network that include interactive ser-
vices, the respective reception systerns including a rnonitor
at which at least the visual portion ofthe applications can be
presented as one or rnore screens of display, the rnethod
cornprising the steps of:

a. structuring applications so that a user requested appli-
cation rnay be presented, through the network, at a first
portion of one or rnore screens of display;

b. separately structuring the advertising in a rnanner
cornpatible to that of the applications so that advertis-
ing rnay be presented, through the network, at a second
portion of one or rnore screens of display concurrently
with any one of a plurality of user requested applica-
tions,

c. confguring the advertising as objects that include
advertising data, and

d. selectively storing advertising objects at a store estab-
lished at the reception systern.

15. The rnethod of clairn 14 wherein storing advertising
objects at the reception systern includes replenishing the
store ofadvertising objects frorn the network when the store
of advertising objects falls below a predeterrnined level.

16. The rnethod of clairn 15 wherein storing advertising
objects at the reception systern includes storing advertising
object identifications at the reception systern, and wherein
the storing ofadvertising object identification is based on an
establishing ofa characterization for the respective reception
systern users.

17. The rnethod of clairn 16 wherein establishing the
characterization for the respective reception systern users
includes basing the characterization at least in part on the
applications requested by the respective users.

18. The rnethod of clairn 16 wherein establishing the
characterization for the respective reception systern users
includes basing the characterization at least in part on the
dernographic data for the respective users.

19. The rnethod of clairn 16 wherein establishing the
characterization for the respective reception systern users

42
includes basing the characterization at least in part on data
concerning the geographical location ofthe respective user's
reception systern.

20. The rnethod of clairn 16 wherein establishing the
5 characterization for the respective reception systern users

includes basing the characterization at least in part on a
cornbination of data concerning user application requests,
user dernographics and geographical location of the respec-

lo tive user's reception systern.
21. A rnethod for presenting advertising obtained frorn a

cornputer network, the network including a rnultiplicity of
user reception systerns at which respective users can request,
frorn the network, applications that include interactive ser-

15 vices, the rnethod cornprising the steps of:
a cornpiling data concerning the respective users;
b. establishing characterizations for respective users

based on the cornpiled data; and

20 c. structuring advertising separately frorn the applications
so that the advertising rnay be selectively supplied,
through the network, to and retrieved at the reception
systerns for presentation to the respective users along
with a requested application in accordance with the

25 characterizations established for the respective recep-
tion systern users,

wherein supplying advertising data to the reception sys-
tern includes storing a predeterrnined arnount of the
advertising data in a store established at the respective

30 reception systerns.
22. The rnethod of clairn 21 wherein supplying advertis-

ing data to the reception systern includes pre-fetching adver-
tising data frorn the network when the store of advertising
data falls below a predeterrnined level.

35 23. The rnethod of clairn 22 wherein pre-fetching adver-
tising data is dependent on the size of the advertising data
store.

24. The rnethod of clairn 23 wherein storing advertising

40
data at the reception systern includes rnaintaining a list
identifying the advertising data to be presented.

25. The rnethod of clairn 21 wherein the supplying of
advertising data to the reception systern for presentation
includes the reception systern requesting advertising data

45 frorn the network when advertising data sought to be pre-
sented is unavailable at the reception systern.

* * * * *

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 79 of 147 PageID #: 96

EXHIBIT C

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 80 of 147 PageID #: 97

United States Patent [19

Iyengar

[541 PRESERVING STATE INFORMATION IN A
CONTINUING CONVERSATION BETWEEN
A CLIENT AND SERVER NETWORKED VIA
A STATELESS PROTOCOL

[751 Inventor: Arun K. Iyengar, Yorktown Heights,
N.Y

F 731 Assignee: International Business Machines
Corporation, Armonk, N.Y.

[211 Appi. No. : 08/660,633

[221 Filed: Jun. 7, 1996

[511 Int. CI.6 GO6F 13/38; GO6F 15/17

[521 U.S. CI 709/229; 709/228; 709/218;
709/203

[581 Field of Search 395/200.32, 200.48,
395/200.53, 200.59, 182.02, 182.03, 182.05;

709/202, 218, 223, 229, 228, 203; 714/4,
5, 7

[561 References Cited

U.S. PATENT DOCUMENTS

5,218,695 6/1993 Noveck et al
5,623,656 4/1997 Lyons 395/200.49
5,668,943 9/1997 Attanasio et al 395/182.05
5,701,451 12/1997 Rogers et al 395/200.32
5,708,780 1/1998 Levergood et al 395/200.12
5,710,918 1/1998 Lagarde et al 395/200.32
5,774,670 6/1998 Montulli 395/200.57

FOREIGN PATENT DOCUMENTS

0604010 10/1993 European Pat. Off.
0625750 11/1994 European Pat. Off.

OTHER PUBLICATIONS

"Haht Software Premiers Hahtsite at Demo 96", PR News-
wire, Jan. 29, 1996.
"Proposed HTTP State Management Mechanism", Montulli
et al., HTTP Working Group, Feb. 16, 1996.
Louis Perrochon et al., "IDLE: Unified W3access to inter-
active information servers", Computer Networks and ISDN
Systems, Elsevier Science By., pp. 927-938, (1995).

III III IID III IDI IDI IDI DII iDO III Dliv IID II
US005961601A

["1 Patent Number: 5,961,601

[451 Date of Patent: Oct. 5, 1999

Bertrand Ibrahim, "Worldwide algorithm animation",
Computer Networks and ISDN Systems, Elsevier Science
By., pp. 255-265, (1994).
Alan Falconer Slater, "Extending W3 clients", Computer
Networks and ISDN Systems, Elsevier Science By., pp.
61-68, (1995).

(List continued on next page.)

Primary Examiner-Mark H. Rinehart
Attorney, Agent, or Firm-Kevin M. Jordan

[571 ABSTRACT

A method and system for preserving state in computers
communicating over networks, such as the World Wide Web
(WWW) using stateless protocols, e.g., HTTP. State is
preserved in a conversation between a client requesting
services from a served by performing the service and
identifying all continuations (hyperlinks) in an output from
the service; recursively embedding the state information in
all identified continuations in the output sent to the client.
The state information may be embedded and communicated
by the server to the client. Alternatively, dynamically down-
loadable program code may be used to embed the state
information at the client. Additional features enable the
filtering and/or addition of hyperlinks and data output from
the services according to predetermined criteria. State infor-
mation may be embedded by modifying an identified con-
tinuation which is a request for an HTML file, to invoke a
CGI converter program with the identified continuation and
the state information passed as arguments. State information
may also be embedded by modifying an identified continu-
ation which is an invocation to a CGI program with the
identified continuation and the state information passed as
arguments, and the embedding step is performed by the CGI
program. Alternatively, an identified continuation which is
an invocation of a CGI program may be modified to invoke
a CGI converter program with the identified continuation, an
argument counter which indicates a number of arguments
associated with the CGI program, and the state information
passed as arguments. Here, the embedding is performed by
the converter program.

68 Claims, 10 Drawing Sheets

450 HTTP

SERVER

CON VE RTE

CGI

414
460

PROGRAMS

HTML/CG413

412
I

DBkIS

CTI0N

470

:::
HTnL:,

429

0GRAMS

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 81 of 147 PageID #: 98

5,961,601

Page 2

OTHER PUBLICATIONS

"Behind The Scenes of The Adventure Web", http://tjww-
w.stanford.edu/adventure/impl.html Feb. 23, 1996.
"Aug. 1995 Web Watch", http:www.netgen.com/corpinfo/
press/webwtchv6n8.html Feb. 2, 1996.
"Zebrafish Database", http://zfish.uoregon.edu/zf info!
dbasej'arch.html Oct. 24, 1995.
"Porting Interactive Applications to the Web", http:!!ksi.cp-
sc.ucalgary.ca!articles!WWW!PortWeb/PortWeb.html Dec.
7, 1995.
"MBA/MBARI Live Link to The Technology Museum of
Innovation in San Jose" http:llrockfish.mbari.org/BayLink!
http prb.html Aug. 2, 1995.
"Persistent Client State HTTP Cookies", Netscape Commu-
nications Corporation, 1996 http:!!home.netscape.com!
newsref!std!cookie_spec.html.

"Hypertext Transfer Protocol-HTTP!1 .0" http:llwww.ic-
s.uci.edu!pub!ietf!http!draftietfhttpvlOspec-03.html,
by T. BernersLee, R. Fielding, and H. Frystyk, Sep. 4,
1995.

"Network News Transfer Protocol: A Proposed Standard for
the StreamBased Transmission of News", RFC 977, B.
Kantor and P. Lapsley, UC San Diego and UC Berkeley, Feb.
1986, http:!!ds.internic.net!rfc!rfc977.txt.

"Simple Mail Transfer Protocol", RFC 821, J.B. Postel,
Information Sciences http:!!ds.internic.net!std!stdl0.txt.

J. Postel and J.K. Reynolds, "File Transfer Protocol (FTP)",
RFC 959, Information Sciences Institute, USC, Oct. 1985
http:!!ds.internic.net!std!std9.txt.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 82 of 147 PageID #: 99

U.S. Patent Oct. 5, 1999

Re3 ear

l9 IM Corpo tor

Sheet 1 of 10 5,961,601

IBM T.J. Watson Research Center

T.J. Watson Research Center: Yorktown (left) and Hawthorne.

s Welcome!
. Local Education Outreach
. Visitor info and local site directions
. Local hotels
. IBM home page -- 113M Research home page

oClick on icon to send your comments.

Or, contact webmaster@warson. ibm. corn

E IBM home page J Order J Search J Contact IBM J Help (C) J (TM) I

FIG. I
PRIOR ART

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 83 of 147 PageID #: 100

U.S. Patent Oct. 5, 1999

FIG.2

PRIOR ART

SKYLINE SUPPLIERS REGISTRATION FORM

Sheet 2 of 10 5,961,601

USERID I

PASSWORD I I

PASSWORD (FoR VERIFICATION) I I

ACTUAL NAME I I

COMPANY I i

E-MAIL ADDRESS i i

PHONE NUMBER i i

i
SEND

i
RESET (RESET FORM)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 84 of 147 PageID #: 101

U.S. Patent Oct. 5, 1999 Sheet 3 of 10 5,961,601

FIG.3

PRIOR ART

4.5û

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 85 of 147 PageID #: 102

U.S. Patent Oct. 5, 1999 Sheet 4 of 10 5,961,601

FIG.4
SERVERCLIENT

A SERVICE

STATELESS
505

TO STEP

510 530

STAT

NO PRESERVATION

525

ECUTESERVIEYES

CLIENT RECEIVES STATELE

SERVICE OUTPUT
COLSENDT0CUENT 520

WITH CONTINUATIONS

'CONVERT 1'

_ø-z___________ LOGIC MODIFIES ALL CONTINUATIONS

STATELESS PRODUCED BY THE SERVICE TO

PROTOCOL EMBED STATE AND EXPUCIT

540 CALL TO'CONVERT 2'

NTINUA

lION____________________________
SELECT

530 'CONVERT 2'

INVOKES SERVICE WITH ARGUMENTS

AND STATE VARIABLES

E- END
CONVERSATION9

535----H
PASS OUTPUT AND STATE

VARIABLES TO"CONVERT 1' I

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 86 of 147 PageID #: 103

U.S. Patent Oct. 5, 1999 Sheet 5 of 10 5,961,601

601 (605 (610

ROUTING AND I

SERVICE i SERVICE ARGUMENTS
CONTROL INFO

FIG.5

601 (650 (_605 685(610 ¡t/ (670

I ROUTING AND I

STATE

CONTROL INFO
CONVERT 2 SERVICE i SERVICE ARGUMENTS VARIABLES

FIG.6

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 87 of 147 PageID #: 104

U.S. Patent

450

CLiENT

WEB

BROWSER

460

Oct. 5, 1999

FIG.7a

HTTP

INTERNET

Sheet 6 of 10

416
z

415

414

413

412

470

DASD
475

DATABASE
427

HTML FILES
429

CGI PROGRAMS

SERVER

-
CONVERTER

L'CGt Pl'

r- OTHER
CGI

PROGRAMS

HIM L/CGI

5,961,601

lo'

CONNECTION

MANAGER

(OPTIONAL)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 88 of 147 PageID #: 105

U.S. Patent Oct. 5, 1999 Sheet 7 of 10 5,961,601

FIG.7b

CLIENT ACCESSES
I

HOME PAGE
I 700

(STATELESS) I-

CLIENT BEGINS BROWSING
PRODUCT CATALOG

(STATELESS) H 710

CLIENT BROWSES NEW
CATALOG PAGE

(STATELESS) H 720

CLIENT DESIRES TO
PURCHASE AN ITEM

(STATELESS) H 730

740
CLIENT ENTERS

USER-ID. PASSWORD

745
STATE VARIABLES EMBEDDED;

USER-ID. SESSION-ID

CLIENT BROWSES ADDITIONAL

CATALOG PAGES

(CONTINUATION SELECTED).
STATE VARIABLES PRESERVED

FOR REMAINDER OF CONVERSATION

750

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 89 of 147 PageID #: 106

U.S. Patent Oct. 5, 1999 Sheet 8 of 10 5,961,601

CLIENT

CLIENT SELECTS

HYPERLINK

74O'

813

CLIENT RECEIVES

MODIFIED HTML TEXT

814

CLIENT SELECTS
HYPERTEXT LINK

FIG.8

INTERNET

CGI PROGRAM BEGINS 810
PRESERVING STATE BY
CALLING 'CONVERT 1'

I 811

'CONVERT 1 ' MODIFIES
LINKS TO HTML FILES

I -812

'
CONVERT 1 ' MODIFIES

LINKS TO CGI PROGRAMS

CALL TO

815

REQUEST YES
.-817

- FILE OR '-'---

PROGRAM PASSED TO

..JCONVERT 2'? ,-

FILE

FETCH FILE AND PASS
819 WITH STATE ARGS

TO 'CONVERT i '

EXECUTE PROGRAM &
PASS OUTPUT WITH

STATE ARGS TO

818 'CONVERT 1'

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 90 of 147 PageID #: 107

F
I
G
.
9
a

I
I

I

<
 A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
 =

P
R

O
T

O
C

O
L

:
1
/

H
O

S
IN

A
M

E
/

H
T

M
L

F
IL

E
 >

I
I

F
I
G
.
9
a
'

91
5

I
I

I
I

I

<
A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
=

P
R

O
T

O
C

O
L

://
 H

O
S

T
N

A
M

E
/

C
G

, C
A

LL
?

H
O

S
T
/

I

H
T

M
L

&
S

T
A

T
E

>
I

I
I

I
'C

O
N

V
E

R
T

E
R

'
i

N
A

M
E

F
IL

E
i

V
A

R
S

.

91
5

93
0

F
I
G
.
9
b

I
I

I
I

I

<
 A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
 =

P
R

O
T

O
C

O
L

://
 H

O
S

T
N

A
M

E
/

C
O

I C
A

LL
 ?

A
R

G
U

M
E

N
T

S
 >

I
I

I
I

'T
Y

P
E

1'
i

F
I
G
.
9
b
'

94
0

I
i

I
I

i
I

<
 A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
 =

P
R

O
T

O
C

O
L

://
 H

O
S

T
N

A
M

E
/

C
G

I C
A

LL
 ?

A
R

G
U

M
E

N
T

S
 >

&
 S

T
A

T
E

 >
I

I
I

I
T

Y
P

E
 1

'
i

I
V

A
R

S
.

94
0

93
0'

U
i

'
D

'
D

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 91 of 147 PageID #: 108

F
I
G
.
9
c

I
I

I
I

<
 A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
 =

P
R

O
T

O
C

O
L

://
 H

O
S

T
N

A
M

E
/

C
G

I C
A

LL
 ?

A
R

G
U

M
E

N
T

S
 >

I
'S

E
R

V
IC

E
'

i

95
0

96
0

F
I
G
.

9
c
'

I
i

i
I

I
I

i

<
 A

N
C

H
O

R
I

H
Y

P
E

R
LI

N
K

 T
A

G
P

R
O

T
O

C
O

L
://

 H
O

S
T

N
A

M
E

/
C

G
I C

A
LL

?
I

N
U

M
I

I
S

T
A

T
E

i
i

i
i

'C
O

N
V

E
R

T
E

R
'i

i
A

R
G

S
i

V
A

R
S

.

92
O

95
0

97
0

96
0

93
0"

U
i

'
D

'
D

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 92 of 147 PageID #: 109

5,961,601

PRESERVING STATE INFORMATION IN A
CONTINUING CONVERSATION BETWEEN
A CLIENT AND SERVER NETWORKED VIA

A STATELESS PROTOCOL

FIELD OF THE INVENTION

This invention is related to computers and computer
networks. In particular, the invention is related to computers
preserving state while communicating over networks via
stateless protocols. Even more particularly, the invention is
related to a method and system for preserving state in
computers communicating over the Internet, specifically the
World Wide Web, using the HyperText Transfer Protocol
(HTTP).

CROSS-REFERENCE TO RELATED PATENTS

The present invention is related to the following United
States of America Patents:

U.S. Pat. No. 5,752,022, issued May 12, 1998, entitled:
"A Method for Creating a Hypertext Language for a
Distributed Computer Network," by Chiu et al.; and

U.S. Pat. No. 5,710,918, issued Jan. 20, 1998, entitled
"Method for Distributed Task Fulfillment of Web
Browser Requests," by Lagarde et al. These patents,
which have a common assignee, International Business
Machines Corporation, Armonk, N.Y., are hereby
incorporated by reference in their entirety.

GLOSSARY OF TERMS

While dictionary meanings are also implied by certain
terms used here, the following glossary of some terms may
be useful.
Internet

The network of networks and gateways that use the
TCP/IP suite of protocols.
TCP/IP

Transmission Control Protocol/Internet protocol. A packet
switching scheme the Internet uses to chop, route, and
reconstruct the data it handles, from e-mail to video.
Client

A client is a computer which issues commands to the
server which performs the task associated with the com-
mand.
Server

Any computer that performs a task at the command of
another computer is a server. A Web server typically sup-
ports one or more clients.
World Wide Web (WWW or Web)

The Internet's application that lets people seeking infor-
mation on the Internet switch from server to server and
database to database by clicking on highlighted words or
phrases of interest (hyperlinks). An Internet WWW server
supports clients and provides information. The Web can be
considered as the Internet with all of the resources addressed
as URLs and which uses HTML to display the information
corresponding to URLs and provide a point-and-click inter-
face to other URLs.
Universal Resource Locator (URL)

A way to uniquely identify or address information on the
Internet. Can be considered to be a Web document version
of an e-mail address. URLS can be cumbersome if they
belong to documents buried deep within others. They can be
accessed with a Hyperlink. An example of a URL is "http://
www.arun.com:80/table.html". A URL has four compo-
nents. Starting from the left, the first specifies the protocol

2
to use, separated from the rest of the locator by a ":". Next
is the hostname or IP address of the target host; this is
delimited by the "//" on the left and on the right by a "/" or
optionally a ":". The port number is optional, and is delim-

5 ited on the left from the hostname by a ":" and on the right
by a "/". The fourth component is the actual file name or
program name. In this example, the "html" extension means
that this is an HTML file.
Hyperlink (or Hypertext Link)

lo A network address embedded in a word, phrase, icon or
picture that is activated when you select it. Information
about that item is returned to the client and displayed using
a Web browser.
HyperText Markup Language (HTML)

15 HTML is the language used by Web servers to create and
connect documents that are viewed by Web clients. HTML
uses Hypertext documents. Other uses of Hypertext docu-
ments are described in U.S. Pat. No. 5,204,947, granted Apr.
20, 1993 to Bernstein et al.; U.S. Pat. No. 5,297,249, granted

20 Mar. 22, 1994 to Bernstein et al.; U.S. Pat. No. 5,355,472,
granted Oct. 11, 1994 to Lewis; all of which are assigned to
International Business Machines Corporation, and which are
incorporated by reference herein.
Hypertext Transfer Protocol (HTTP)

25 HTTP is an example of a stateless protocol, which means
that every request from a client to a server is treated
independently. The server has no record of previous con-
nections. At the beginning of a URL, "http:" indicates the
file contains hyperlinks.

30 Home Page
A multi-media table of contents that guides a web user to

stored information, e.g., about an organization, on the Inter-
net.
Web Browser

35 Aprogram running on a computer that acts as an Internet
tour guide, complete with pictorial desktops, directories and
search tools used when a user "surfs" the Internet. In this
application the Web browser is a client service which
communicates with the World Wide Web.

40 HTTP Daemon (HTTPD)
An IBM OS/2 Web Server or other server having Hyper-

text Markup Language and Common Gateway Interface
capability. The HTTPD is typically supported by an access
agent which provides the hardware connections to machines

45 on the intranet and access to the Internet, such as TCP/IP
couplings.
Continuations

Hypertext links (or hyperlinks) are examples of continu-
ations in client-server communications. A continuation is a

50 new request which a client may send to a server. Whenever
a client requests something from a server, the server may
include one or more continuations in its response. When a
server responds to a request, it may include one or more
continuations which could be any valid requests. However,

55 useful continuations are generally logically related to the
original request.
Conversation

A sequence of communications between a client and
server in which the server responds to each request with a set

60 of continuations and the client always picks the next request
from the set of continuations. On the Web, hypertext links
represent continuations and a client engages in a conversa-
tion whenever it follows hypertext links.

65
BACKGROUND

Networks have transformed the way people do comput-
ing. Someone with access to a personal computer or work-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 93 of 147 PageID #: 110

5,961,601

3
station can connect to the Internet and communicate with
systems and people all over the world. The World Wide Web
(WWW or Web) is a way of using the Internet that provides
the user with access via linked documents to a wealth of
information distributed throughout the globe. The WWW
also allows users to execute programs running on remote
servers. This capability enables users to obtain the results
from programs which the user cannot run locally due to
hardware and/or software limitations. It is also possible to
download and run programs stored remotely on the World
Wide Web. This has the potential to greatly increase the
amount of software which is available to a computer con-
nected to the World Wide Web.
Network Protocols

Network protocols provide standard methods for
machines to communicate with one another. The protocols
indicate how data should be formatted for receipt and
transmission across networks. Heterogeneous machines can
communicate seamlessly over a network via standard pro-
tocols. Examples of standard Internet protocols include:
HTTP, see, e.g., "Hypertext Transfer Protocol-HTTP/1.O",
http ://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-vlO-
spec-03.html, by T. Berners-Lee, R. Fielding, and H.
Frystyk, Sep. 4, 1995; SMTP, see, cg, "Simple Mail Trans-
fer Protocol". RFC 821, J. B. Postel, Information Sciences
Institute, USC, August 1982, http://ds.internic.net/std/
stdlO.txt.; NNTP, see, e.g., "Network News Transfer Proto-
col: A Proposed Standard for the Stream-Based Transmis-
sion of News", RFC 977, B. Kantor and P. Lapsley, UC San
Diego and UC Berkeley, February 1986, http://
ds.internic.net/rfc/rfc977.txt.; FTP, see e.g., J. Postel and J.
K. Reynolds. "File Transfer Protocol (FTP)", RFC 959,
Information Sciences Institute, USC, October 1985, http://
ds.internic.net/std/std9.txt.; Gopher, see, e.g., F. Anklesaria,
M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B.
Alberti. "The Internet Gopher Protocol: A distributed docu-
ment search and retrieval protocol", RFC 1436, University
of Minnesota, March 1993, http://ds.internic.net/rfc/
rfc1436.txt.; and WATS, see, e.g., F. Davis, B. Kahle, H.
Morris, J. Salem, T. Shen, R. Wang, J. Sui, and M. Grin-
baum. "WAdS Interface Protocol Prototype Functional
Specification" (y 1.5), Thinking Machines Corporation,
April 1990.

The client-server model constitutes one of the dominant
paradigms in network programming, see, e.g., W. R.
Stevens, "Unix Network Programming", Prentice Hall PTR,
Englewood Cliffs, N.J., 1990; and D. E. Comer, "Internet-
working with TCP/IP" vol 1., Prentice Hall, Englewood
Cliffs, N.J., 1991 which is hereby incorporated by reference
in its entirety. A server program offers a service which can
be accessed by multiple users over the network. A program
becomes a client when it sends a message to a server and
waits for a response from the server. The client process,
which is typically optimized for user interaction, uses the
requested service without having to know any of the detailed
workings of the requested service or server. On the World
Wide Web, "browsers" constitute client programs while the
programs sending back information to the browser constitute
server programs.

A client and server may communicate either synchro-
nously or asynchronously. In a synchronous communication,
a client waits for a response from a server before issuing the
next request. In an asynchronous communication, the client
may issue a request to a server before one or more responses
from previous requests to the server have been received.

Many network protocols between a client and server are
stateless. This means that every request from a client to a

server is treated independently. The server has no record of
previous connections. HTTP is an example of a stateless
protocol. Two advantages of using stateless protocols are
efficiency and simplicity. However, there are situations

5 where it is desirable for maintaining state information during
communications between the client and server. For these
types of interactions, the statelessness of protocols can
present problems.

lo
The HITP Protocol and the World Wide Web

The most compelling application of the present invention

5
is for browsing the World Wide Web via the HTTP protocol,

e.g., "Hypertext Transfer Protocol-HTTP/1.0", http://
www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v 10-spec-
03.html, by T. Berners-Lee, R. Fielding, and H. Frystyk,
Sep. 4, 1995, which is hereby incorporated by reference in

20 its entirety. Those skilled in the art will understand, however,
that the present invention is not limited to HITP. The
relevant aspects of the Web and the limitations imposed by
the statelessness of protocols, such as HTTP, will now be
discussed.

25

The World Wide Web consists of multiple servers net-
worked together. Clients typically communicate with servers
using a standard browser such as are sold under the trade-

30 marks "NETSCAPE NAVIGATOR" by Netscape,
"MOSAIC" from NCSA, or "WEB EXPLORER" by IBM.
The most common method of communicating between cli-
ents and servers is via the HTTP protocol. HITP allows the
client to obtain data from the server either by requesting a

35 file or invoking a program known as a Common Gateway
Interface (CGI) program which executes on the server. CGI
programming is well known in the art. See, e.g.,"HTML and
CGI Unleashed" by John December and Mark Ginsburg,

40 Sams.net Publishing, Indianapolis, Ind. (1995). The server
then sends file or the output from the CGI program to the
client. Servers typically restrict the files and programs which
a client has the ability to access.

45 The server sends information to the client using the
HyperText Markup Language (HTML), see, e.g., "The
HTML Sourcebook" by Ian S. Graham, John Wiley & Sons,
Inc., New York, 1995, which is hereby incorporated by

50 reference in its entirety. HTML documents consist of con-
ventional ASCII text in which the information to be dis-
played is interspersed with HTML markup tags. These tags
are surrounded by greater than and less than signs (< . . . >)
and instruct the browser how to interpret different parts of

55 documents. Browsers use Uniform Resource Locators
(URLs) to uniquely identify or address information on the
Internet. Browsers read HTML documents corresponding to
the URLs and display them by following the instructions

60
stored in the markup tags.

The HTML code sequence below (Table 1) shows the
HTML text corresponding to the Web home page of the IBM
T. J. Watson Research Center on Jun. 3, 1996. This Web page

65 corresponds to the URL "http://www.watson.ibm.com/".
The corresponding output that would be displayed on a
standard browser accessing this page is shown in FIG. 1.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 94 of 147 PageID #: 111

5

TABLE i

5,961,601

The HTML source code corresponding to the IBM T. J Watson Research Center home page.

<HTML><HEAD>
<TITLE>IBM T. J. Watson Research Center home page</TITLE>
<meta name="owner" content="calyson@watson.ibm.com">
<meta name="review" content="19960202">
</HEAD>
<BODY>
<1MG SRC="/watson/mast.gif" alt="Research" >
<p>
<hl>IBM T.J. Watson Research Center</hl>

<p>
<1MG SRC="/watson/night.gif" > <1MG SRC="/watson/haw2.gif" >

<i>T.J. Watson Research Center: Yorktown (left) and Hawthorne.</i>
<p>

<1MG align=middle SRC="/watson/bullet.gif" >
Welcome!

<1MG align=middle SRC="/watson/bullet.gif" >Local Education Outreach

<1MG align=middle SRC="/watson/bullet.gif" > Visitor info and local
site directions

<1MG align=middle SRC="/watson/bullet.gif" > Local hotels

<1MG align=middle SRC="/watson/bullet.gif" > IBM home
page -- IBM Research home page

<p>
<hr>
<IMG align=middle
SRC="/research/images/mail.gif" > Click on icon to send your comments.<Th>
<p>
Or, contact <i>webmaster@watson.ibm.com</i>

<p>
<hr>
<Address><homepage@watson.ibm.com></address>

IBM home pageI
OrderI
SearchI
Contact IBMI
HelpI
(C)I
ÇFM)

<ib>

</BODY>
</HTML>

Many Web browsers allow users to view the HTML
source code of any document being viewed. The HTML text
in Table i is stored in a file accessible to a Web server at the
IBM T. J. Watson Research Center. When this Web server
receives a request for the URL "http://
www.watson.ibm.com/", it sends the appropriate file to the
client's browser. The client's browser will then read and
display the HTML file. (Table i contains a number of
relative links. The hypertext links and image files are only
valid if the file is stored in a specific directory. If, for
example the "night.gif" file in Table i is stored at an
arbitrary location, the hypertext links will be invalid and the
associated images will not appear.)

The line in Table i reading "Visitor info and local site
directions" is an example of a hypertext link (also called a
hyperlink). The corresponding output as it would be dis-
played by a standard browser is depicted in FIG. 1. When the
user clicks on this link as depicted in FIG. i when displayed

50 by the browser, a new HTML file, "menu.html", is fetched
from the server and displayed by the browser. Hypertext
links to documents on both local and remote servers can be
placed in an HTML file. The ability to incorporate hyper-
links within an HTML file to link documents on servers all

55 over the world is one of the key features of the World Wide
Web. In other words, a Web browser can be used to access
information from servers all over the world by simply
pointing and clicking on hypertext links.

Recall that Hypertext links are examples of "continua-
60 tions" in client-server communication. A continuation is a

new request which a client may send to a server. Whenever
a client requests something from a server, the server may
include one or more continuations in its response. The
continuations could represent any valid requests. However,

65 useful continuations are generally logically related to the
original request. A good set of continuations makes it easy
for a client to communicate synchronously with a server.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 95 of 147 PageID #: 112

5,961,601

7
After each request, the server responds with a set of con-
tinuations. The client chooses one of the continuations for
the next request. A "conversation" is a sequence of commu-
nications between a client and server in which the server
responds to each request with a set of continuations and the
client always picks the next request from the set of continu-
ations.

On the Web, hypertext links represent continuations and
a client engages in a conversation whenever it follows
hypertext links. A conversation is interrupted whenever the
client obtains a new page by explicitly requesting a new
URL instead of following hypertext links. It is possible to
continue an interrupted conversation if a page corresponding
to the interrupted conversation is still available to the client,
e.g., in the browser cache or in disk memory. If so, the
conversation may be continued by reloading the page and
continuing to follow hyperlinks. A client may communicate
with multiple servers during the same conversation.

More formally, a series of HTML pages pi, p2 pn
constitutes a conversation if:
1. pl, p2 pn were all viewed by a client, and
2. for all i, such that 1<i<=n, page pi was obtained by

following a hypertext link on page pi-1.
In an uninterrupted conversation, the client simply fol-

lows n-1 hypertext links to get from page pi to pn without
ever "backtracking". In an interrupted conversation, the
client backtracks at least once. By backtracking, we mean
that the client:
1. Initially visits a page pi where 1<=i<n,
2. Views other pages either by following hyperlinks or

explicitly accessing URL's, and
3. Returns to page pi by reloading pi from memory

(presuming that pi is still available).
All requests for URL's are stateless. Even if a client

requests a page multiple times, the server doesn't maintain
any history or knowledge of previous connections. When a
client requests an HTML file, there is no way for the client
to communicate additional information with the request.
Thus, a need exists in the Web environment to preserve state
information throughout a conversation while a client is
browsing HTML files. The present invention addresses such
a need.

For example, consider a server which is handling business
transactions. In order to function properly, the server needs
state information such as the client's user ID and the
transaction number corresponding to the current transaction
number. Thus, there is a need to preserve this information
while the client is browsing HTML files by following
hyperlinks in a conversation. The present invention
addresses such a need.
Current Methods for Handling State on the Web

One current method for handling state on the Web
involves the use of CGI programs. Aclient can invoke a CCI
program by passing arguments to it. For example, the
command, http://tranman.watson.ibm.com/cgi-bin/get-
args?varl=7 & var2=1O invokes a CGI program passing the
variables varl=7 and var2=1O. It is cumbersome to expect
the client to follow the exact syntax for passing variables to
CGI programs. A more user-friendly method is to allow the
user to input arguments via an HTML "form" . An example
of an HTML form as displayed by a Web browser is shown
in FIG. 2. The user fills in the appropriate fields and sends
the information to the server by clicking on the send button.
The values typed in by the user are passed along as argu-
ments to a CGI script. "Forms" provide a convenient inter-
face for passing arguments to CGI programs. The client does
not need to know the details of the CGI program being
invoked or the format of the arguments expected by the
program.

8

Forms allow the client to pass state variables to the server.
Servers can also use forms to pass variables to the client.
Forms may include hidden variables which are not displayed
to clients and which are passed back to a server when the

5 client submits the form. Web servers typically preserve state
by passing state variables as hidden variables within forms.
When the client submits the form, the server receiving the
form can obtain the state variables from the hidden fields.

For example, suppose that a business transaction server is
lo communicating with a client. The transaction server needs to

obtain a client user ID and a session ID for the remainder of
the conversation with the client. The server can obtain the
client's user ID from a form submitted by the client. The
form invokes a CGI program which then generates a session

15 ID. Each subsequent response from the server is a form. The
form is generated dynamically and contains the user and
session ID's embedded as hidden variables. Clients respond
by completing and submitting the forms generated by the
server.

20 FIG. 3 depicts an example of a current method for
preserving state using HTML forms. As depicted, the server
410 embeds state variables in hidden arguments to HTML
forms 420 which are generated dynamically. The state
variables 425 are passed back and forth between the client

25 450 and the server 410. Using forms, the client 450 and the
server 410 pass the state information 425 back and forth. The
server 410 passes the state information to the client by
creating HTML forms 420 on the fly and embedding the
state variables 425 in hidden fields. The client 450 passes the

30 state information 425 back to the server by completing and
submitting the forms 420' generated by the server 410.
Limitations of the Current Technology for Handling State

The problem with the approach just outlined is that it
seriously limits the types of interactions between a client and

35 a server during a conversation. The server 410 must always
respond to the client 450 with a dynamically generated
HTML form 420 containing hidden variables 425. There is
no way to preserve state while the client browses HTML
files. For example, suppose that the client wishes to browse

40 a catalog in the middle of the session. The catalog consists
of HTML files. There is no way to allow the client to browse
(different HTML files in) the catalog without losing the state
information using current technology. If the server allows
the client to continue a conversation by viewing the catalog,

45 the state information will be lost as soon as the client
accesses an HTML file from the catalog.

Thus, there is a need for a system and method that allows
the client to browse the catalog, i.e., access different HTML
files while preserving the state information. The present

50 invention addresses such a need, regardless of whether the
HTML files constituting the catalog reside on different
servers.

The limitations of the current technology for preserving
state have been noted by others, see, e.g., "Persistent Client

55 State HTTP Cookies", Netscape Communications
Corporation, 1996, http://home.netscape.com/newsref/std/
cookiespec.html; see also, "Proposed HTTP State-Info
Mechanism", D. M Kristol, AT&T Bell Laboratories, Sep.
22, 1995, http://www.research.att.com/.-dmk/sessionO1 .txt.;

60 and M. Cutler and D. Hall, "August 1995 Web Watch",
http://www.netgen.com/corpinfo/press/webwtchv6n8.html.
Unlike the solution suggested by Kristol which would
modify the HTTP protocol to preserve state, the present
invention preserves state without requiring changes to the

65 underlying protocol.
Another solution, by Netscape Communications has been

to add a feature called Cookies to their browsers; see

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 96 of 147 PageID #: 113

5,961,601

¿
"Persistent Client State HTTP Cookies", Netscape Commu-
nications Corporation, 1996, http://home.netscape.com/
newsref/std/cookiespec.html. Here, a server can satisfy an
HTTP request by appending a state object known as a cookie
to its response. The cookie contains a description of the
range of URL's for which the state is valid. The cookie is
stored by the Netscape browser running on the client. Any
future HTTP requests made by the client to one of the URL's
specified in the cookie will include a transmittal of the state
object stored in the cookie from the client back to the server.

There are a number of drawbacks to this approach. The
server application which wishes to preserve state must
provide a list of all URL's which might make use of the
state. This is cumbersome and may sometimes be impos-
sible. Cookies also lack a method for correlating state
information with specific conversations. For example, sup-
pose a browser accesses the same URL in two separate
conversations. During the first conversation, state informa-
tion exists at the time the URL is accessed and is passed to
the server via a cookie. During the second conversation, no
state information exists at the time the URL is accessed.
However, the old cookie still exists and the old state is still
passed back to the server. This would confuse the server into
believing that the old state information still applies to the
new conversation. Another problem is that cookies are not a
standard feature and will only work with servers and brows-
ers which support Netscape's protocol.

Thus, there is a need for a method and system for
preserving state in a stateless protocol which is not limited
to a list of URL's which need to make use of the state
information and where state information is correlated with
specific conversations to avoid the problem of passing
outdated state information to a server. Moreover, there is a
need for a system of preserving state in a protocol as HTTP
that works with any browser supporting the HITP protocol
and doesn't require specialized nonstandard features on the
client or server.

SUMMARY OF THE INVENTION

The present invention, in accordance with the aforemen-
tioned needs, is directed to a method and system for pre-
serving state in computers communicating over networks
using stateless protocols. Although, the preferred embodi-
ment is for computers communicating over the World Wide
Web (WWW or Web) using the Hypertext Transfer Protocol
(HITP), the present invention applies to other forms of
networked communication as well.

lo
identified continuations; and communicating the output to
the client; wherein the state information is preserved and
provided to all services for the duration of the conversation.

According to another aspect of the present invention, the
5 embedding of state information is performed by the server

and communicated by the server to the client. Another aspect
of the present invention includes storing at least part of the
state information in a memory coupled to the server and
embedding an index representing the part of the state

lo information in all identified continuations.
Still another aspect of the present invention includes

dynamically downloading computer program code to the
client to embed the state information in the output from the
service which is also communicated to the client. Yet

15 another aspect of the present invention includes storing at
least part of the state information in a memory coupled to the
client and embedding an index representing the stored state
information.

20

25

30

35

40

45

It is assumed that the services performed by the server on
behalf of a client are programs which the client invokes. A
service can accept a variable number of arguments. A so

conversation is a sequence of communications between the
client and one or more servers for services wherein each
response from the server includes one or more continuations
which enable another request for services and wherein the
client must invoke one of the continuations to continue the ss

conversation.
Accordingly, a computerized method, system, and com-

puter program product having features of the present inven-
tion which preserves state information in a conversation
between a client adapted to request services from one or 60

more servers which are networked via a stateless protocol to
the client, includes: the client initiating the conversation
with the server using the stateless protocol; detecting when
the request for a service requires preservation of the state
information; performing the service and identifying all con- 65

tinuations in an output from the service, when state is to be
preserved; recursively embedding the state information in all

In a preferred embodiment, our method allows state to be
preserved while traversing hypertext links using a Web
browser on the World Wide Web. Hypertext links constitute
continuations. A client browser follows a conversation by
following hypertext links to fetch new pages. The present
invention has features which preserves state variables across
any conversation. According to one aspect of the present
invention, state variables to be preserved throughout a
conversation, are passed to every CGI program which could
be invoked throughout the conversation.

When the client and the server are networked via the
World Wide Web, the stateless protocol is the hypertext
transfer protocol (HTTP), and the continuations are hyper-
links to one of hypertext markup language (HTML) files and
common gateway interface (CGI) programs, the present
invention has features which enable the filtering and/or
addition of hyperlinks and data output from the services
according to a predetermined criteria. Yet another aspect of
the present invention for embedding state information
includes modifying an identified continuation which is a
request for an HTML file to invoke a CGI converter program
with the identified continuation and the state information
passed as arguments. Still another aspect of the present
invention for embedding state information includes modi-
fying an identified continuation which is an invocation to a
CGI program with the identified continuation and the state
information passed as arguments, wherein the embedding
step is performed by the CGI program. Another aspect of the
present invention for embedding state information includes
modifying an identified continuation which is an invocation
to a CGI program to invoke a CGI converter program with
the identified continuation, an argument counter which indi-
cates a number of arguments associated with the CGI
program, and the state information passed as arguments,
wherein the embedding step is performed by the converter
program.

III. BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention will become apparent from the following detailed
description taken in conjunction with the accompanying
drawings, wherein:

FIG. i is an example of an HTML page as displayed by
a standard browser;

FIG. 2 depicts an example of an HTML "form" as viewed
by a Web browser;

FIG. 3 shows a block diagram of a client and server using
a "form" to preserve state variables;

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 97 of 147 PageID #: 114

5,961,601

11

FIG. 4 is a block diagram of a general method for
preserving state according to the present invention on a
network using a stateless protocol;

FIG. 5 is a generalized diagram of a data packet for
transmission via a stateless protocol;

FIG. 6 is an example of the data packet of FIG. 5 modified
in accordance with the present invention to preserve state
information;

FIG. 7a depicts an embodiment of a system having
features of the present invention for transacting business
over the World Wide Web while preserving state;

FIG. 7h depicts an embodiment of a method for preserv-
ing state on the system of FIG. 7a;

FIG. S depicts a more detailed example of a method
according to the present invention for preserving state in the
system shown in FIG. 7a, and method step 745 of FIG. 7h;

FIG. 9a depicts a structure of a hypertext link to an HTML
file;

FIG. 9a' depicts the structure of FIG. 9a modified to
preserve state in accordance with the present invention;

FIG. 9h depicts a structure of a hypertext link to a type i
CGI program;

FIG. 9h' depicts the structure of FIG. 9h with embedded
state arguments in accordance with the present invention;

FIG. 9c depicts a structure of a hypertext link to a type 2
CGI program; and

FIG. 9c' depicts the structure of FIG. 9c modified to
preserve state in accordance with the present invention.

DETAJLED DESCRIPTION OF A METHOD FOR
PRESERVING STATE IN A CONVERSATION

USING A STATELESS PROTOCOL

The present invention is an enabling technology for
computers communicating over networks via stateless pro-
tocols. Although the preferred embodiment is for computers
communicating over the World Wide Web (WWW or Web)
using the Hypertext Transfer Protocol (HTTP), the present
invention also applies to other forms of networked commu-
nication as well.

FIG. 4 depicts a general method in accordance with the
present invention for preserving state using a stateless
protocol, i.e., it is not restricted to clients and servers
communicating over the World Wide Web. The preferred
embodiment, which is described later, is specifically applied
to the World Wide Web. Here, it is assumed, for simplicity,
that the services performed by the server on behalf of a client
are programs which the client invokes and that a service can
accept a variable number of arguments.

As depicted, in step 500, a client requests a service from
a server. The path represented by steps 505, 510, and 515
would be taken when the services provided do not require
state preservation. In step 510, at some point the server
processes a request for which the server determines that state
variables need to be made available to all services which
could be invoked in the current conversation. The server
then passes its output and all of the state variables denoted
by <state-variable-list> to a program denoted by converti
and the process continues to step 520. In step 520, the
converti program modifies the continuations produced by
the service but passes back all other data to the client
unmodified.

For example, as depicted in FIG. 5, under normal
circumstances, a continuation representing a call to a pro-
gram servicel would be of the form:

12
servicel<service-arg-list> (1)

where servicel 605 is a service and <service-arg-list> is the
list of service arguments 610 passed to the service if the

5
client chooses the continuation. As depicted in FIG. 6, the
converti program of the present invention preserves state by
modifying each continuation (i) to be of the form:

convert2 service-string <state-variable-list>, (2)

lo where convert2 650 is a call to a special service (which will
be described later), and service-string 680 is a string con-
taming servicei 605 and <service-arg-list> 610 and some
delimiting information 685 to distinguish the service argu-
ments 610 from <state-variable-list> 670 in the call to

15 convert2 shown in FIG. 6. The <state-variable-list> 670
represents the state information to be preserved and made
available to all services for the duration of the conversation.

Referring again to FIG. 4, in step 525, the client receives
the output and modified continuations sent from the server.

20 Each modified continuation for the conversation is now a
call to the convert2 program, as in (2). In step 540, the client
examines the output. If a continuation is selected, the
process returns to step 500 where the (modified) service
request is sent to the server. In step 505, the server processes

25 the modified service request and invokes the convert2 pro-
gram and processing continues at step 530 (due to the
explicit embedded call ofprior step 520). In step 530, (with
reference to FIGS. 5 and 6) the convert2 program parses the
service 605 and the arguments to be passed to the server

30 (<service-arg-list>) 610 from service-string 680. The con-
vert2 program 650 invokes the requested service 605 (here,
servicei) by passing it all variables on <service-arg-list> 610
as well as <state-variable-list>. That way, servicei has
access to all state variables, as needed. In step 535, the

35 convert2 program receives the service (servicei) output and
passes the output and the <state-variable-list> to converti. In
step 520, converti modifies each of the continuations as
discussed above. The output is again communicated to the
client in step 525 and the process repeats with the state

40 information 670 preserved for the duration of the conver-
sation.
The Preferred Embodiment

FIG. 7a depicts an embodiment of a system having
features of the present invention for transacting business

45 over the World Wide Web. A Web server 410' allows
businesses to sell goods over the Internet. Customers access
the server 410' via a client 450 running a standard browser
460. In order to communicate securely, the 'browser' 460
should be able to communicate using SSL. See, e.g., A. O.

50 Freier, P. Karlton, P. C. Kocher. "The SSL Protocol Version
3.0", Internet Draft, March i996, http://home.netscape.com/
eng/ssl3/ssl-toc.html, which is hereby incorporated by ref-
erence in its entirety. However, some services can be used by
browsers which don't support SSL. Users may browse

55 catalogs which may be stored on a stable storage medium
such as direct access storage device (DASD) 470. As with
conventional catalogs, users browse product descriptions
and can pick and choose which items to add to their purchase
lists. When the user has determined that the purchase list is

60 complete, he commits to the purchase and is subsequently
billed.

As depicted, the server 410' may include a traditional
database management system (DBMS) 412 to manage infor-
mation about the customer, inventory, and products stored in

65 the database 475. An exemplary DBMS is that sold by IBM
under the trademark 'DB2'. In addition, the server 410'
allows users to browse product catalogs in the course of a

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 98 of 147 PageID #: 115

5,961,601

13
conversation. The server 410' assumes very little about the
format of product catalogs. Catalogs may consist of HTML
files 425 as well as conventional CGT programs. The files
and/or programs may be associated with local or remote
servers. State information, e.g., a User-ID and session-ID
must be maintained between the server 410' and a client 450
during conversations. The present invention provides an
improved method and system to transparently maintain this
state information during a conversation.

Any client 450 may access a 'home page' associated with
the server 410' as well as view product catalogs. In order to
purchase products, update customer information, or access
certain types of information, it is necessary for the user to
provide authentication by entering a User-Id and password.
According to the present invention, authentication is only
required once per conversation. As soon as a user has been
authenticated, the user-id is embedded (preserved) into the
conversation by the converter 416 of the present invention.

FIG. 7h depicts an example of a method according to the
present invention for a client 450 to interact with the server
410' using HTTP while preserving state. As depicted, in step
700, the client accesses a home page residing on server 410'.
In step 710, the client begins browsing a product catalog and
in step 720, continues browsing the catalog offerings, e.g.,
by selecting hyperlinks from the on-line product catalog.
Since no authentication is needed to merely browse the
catalog, communication is stateless and the number of
people which may browse the catalog is maximized. In step
730, an item is found which is to be added to a purchase list.
In step 740, the client must then enter a user ID and
password to continue. If the client is new to the system, the
client picks a user-ID, password, and provides some addi-
tional optional information to the server (address, phone
number, etc.). In step 745, the converter 416 embeds the
user-ID and session-ID into the conversation in accordance
with the present invention. In step 750, the user can view
additional products, add additional items to the purchase list,
commit to purchases, or view and update database informa-
tion. The state variables are advantageously preserved and
re-authentication is not required. The state information, i.e.,
the user-ID and session-ID will be preserved and made
available to every CGI program which is invoked during the
remainder of the conversation.

Recall that using current "forms" technology, the user
would have to re-enter the user-ID and password each time
an action requiring authentication such as adding a new item
to the purchase list was attempted. The session-ID would
present even greater difficulties in that the server would have
to tell the client to remember the session-ID and enter it
whenever authentication is needed.

Recall also that using "cookies" limits the range of URL's
for which state is preserved. Using cookies further lacks the
ability to correlate state information with specific conver-
sations which may cause outdated state information to be
provided a server. Lastly, cookies require the use of a
specific browser and may require specialized and/or non-
standard features on the client or server.

FIG. S depicts a more detailed example of a method
according to the present invention for preserving state in the
system shown in FIG. 7a, and method step 745 of FIG. 7h.
Assume that server 410' is a conventional Web server
including typical Internet connections and access such as
TCP/IP couplings and further has HTML and Common
Gateway Interface (CGI) capabilities 413.

As depicted, in step 740', assume a client 450 running
Web browser 460 selected a hyperlink to request a service
via (stateless protocol) HTTP to a Web server 410'. In step

14
810, the server 410' interprets the URL, for example, as
being a call to a CGI program 'pi' 415 which determines
that state variables, e.g., 'xl, x2 xn', should be
embedded in the conversation so that all CGI programs

5 which could be invoked from the conversation are given
access. Pl generates an HTML page 'h' with hypertext links
for the client 450 to continue the conversation. Instead of
returning the output, page 'h' to the client unmodified, 'pl'
has been adapted to invoke the converter program 416 of the

lo present invention by passing to a convertl module of the
converter 416 the arguments 'h, xl, x2 xn' . The call
to convertl could be of the form:

converti 'h, xi, x2 xn

15
In steps 811 and 812, the convertl module of the con-

verter program modifies all the hypertext links to HTML in
h, to preserve the state variables. All relative hypertext links
are converted to absolute hypertext links (also called

20
hyperlinks). See the aforementioned and incorporated by
reference U.S. Pat. No. 5,752,022, issued May 12, 1998 to
Chiu et al., for an example of a relative to absolute address
conversion scheme. As noted, these applications have a
common assignee, International Business Machines

25
Corporation, Armonk, N.Y Those skilled in the art will
appreciate that the modification of links to HTML files (step
811) and links to CGI programs (step 812) could be done in
a one-pass or a two-pass process within the scope and spirit
of the present invention.

30
depicted, in step 811 the convertl module of the

converter program 416 takes HTML page h and modifies all
the hypertext links to HTML files to preserve the state
variables. Hypertext links to HTML files may be modified to
be a call to a CGI program convert2 with arguments con-

35
sisting of h, xl xn. With reference to FIG. 9a, consider,
for example that h contains the following reference to an
HTML file 915 "mail.html", and suppose that the state
variables 930 were x=32 and y=45:

40

would be modified by the convertl logic to the form
depicted in FIG. 9a':

<A HREF="http://www.watson.ibm.com/cgi-bin/convert2?url=//

45 www.watson.ibm.com/mail.html&x=32& y=45">

In step 812, the convertl module of the converter program
modifies all the hypertext links to CGI programs. Note that
hypertext links which are calls to CGI programs may have

50
the state variables preserved two different ways:

(a) As depicted in FIG. 9h', pass the state variables 930'
to the CGI program 940 but don't embed the state
variables within any hypertext links generated by the
CGI program, i.e., don't embed a call to convert2.

55 Using this approach, the CGI program is responsible
for propagating state within hypertext links it gener-
ates; or

(b) Preferably, as depicted in FIG. 9c', pass the state
variables 930" to the CGI program 950 and embed the

60 state variables (by an embedded call to the converter
920') within hypertext links generated by the CGI
program.

In order to take advantage of both approaches (a) and (b),
the converter may determine how to distinguish CGI pro-

65 grams based on any one of a variety of techniques within the
scope of the present invention. As depicted in FIG. 9h, for
example, a naming convention could be used whereby any

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 99 of 147 PageID #: 116

5,961,601

15
CGT program whose name begins with the substring "type"
may be considered a type I CGT program and is processed
using the first method (a). Any substring whose name does
not begin with the substring "type" may be considered a type
TT CCI program and is processed using the second method
(b).

For example, consider (with reference to FTG. 9h) the
following example of a type i CGT call:
<A HREF="http://www.watson.ibm.com/cgi-bin/
typel?argl=55">

Suppose that the state variables are x=32 and y=45. The
converter 416 would append the state variables 930' to the
hypertext link to the following form (as depicted in FTG.
9b:

<A HREF="http ://www.watson.ibm.com/cgi-bin/typel?&argl=
55&x=32&y=45">

Now consider, with reference to FTG. 9c, an example of
a hypertext link to a type 2 CGT program:

Suppose again that the state variables 930" are x=32 and
y=45. The converter would modify this hypertext link to the
following form (as depicted in FTG. 9c'):

<A HREF="http ://www.watson.ibm.com/cgi-bin/convert2?url=//
www.watson.ibm.com/cgi-bin/prog&numargs=1 &argl=55&x=

where the "numargs=i" argument 970 indicates to convert2
that the CGT program 950 initially only had i argument
passed to it and the remaining arguments are state variables
930" passed by the converter. The modified output is then
returned to the requesting client. In step 813, the client 450
receives HTML file h from the server 410'. Every hypertext
link (with the exception of hypertext links resulting from
type i CGT programs) returned to the client is now a call to
the convert2 routine of the converter. Tn step 814 the client
450 running browser 460 selects one of the hypertext links.
Tn step 815, the server determines if the selected hypertext
link is a call to convert2. Tf yes, the process continues at step
817. Tn step 817, there are two possibilities:

(i) The URL passed to convert2 references an HTML file.
Here, the process continues at step 819. Suppose, for
example, the client had selected the following link:

<A HREF="http ://www.watson.ibm.com/cgi-bin/convert2?url=//
www.watson.ibm.com/mail.html&x=32&y=45">

Tn step 819, convert2 fetches the HTMLpage contained in
the file "mail.html". Tt then passes the HTML page and the
state arguments x=32 y=45 to the converti module of the
converter and the process returns to step Sii, as described
previously, or,

(2) The hypertext link is a call to a CGT program. Tn this
case, the process continues to step SiS. Suppose, for
example, the client had selected the following link:

<A HREF="http ://www.watson.ibm.com/cgi-bin/convert2?url=//
www.watson.ibm.com/cgi-bin/prog&numargs=1 &argl=55&x=

Here, the second argument to convert2, numargs=i, indi-
cates that the initial hypertext link only passed one argument
to "prog", i.e., "argi=55". The other two arguments, "x=32"
and "y=45", are state variables which were embedded by the
converter 4i6. Convert2 passes all three arguments to prog,
including the state variables. The process then returns to step
sii, as described previously.

16
This method of the present invention advantageously

preserves state information by embedding the state in all
hyperlinks passed back and forth between the client 450 and
server 4i0. Those skilled in the art will appreciate that, the

5 level of detail which is communicated between the client
and server may be reduced by storing most of the state
information in a file system or a database 425 coupled to the
server 4i0'. Tn this case, it is only necessary to pass an index
(or pointer) to the state variables back and forth between the

lo client and server.
The present invention is designed to work for a standard

browser 460 which doesn't necessarily support downloading
of programs from the server which can then execute on the
client. For a browser which supports downloadable server

15 programs such as those written using Java ("applets"), or
any other such language, additional features are possible.
The Java programming environment is well known in the
art. See for example, P. Tyma, G. Torok, and T. Downing.
"Java Primer Plus", Waite Group Press, i996, which is

20 hereby incorporated by reference in its entirety. See also
Patrick Naughton, "The Java Handbook" Osborne Mcgraw-
Hill, i996, which is hereby incorporated by reference in its
entirety. For example, the server 4i0' could contain a
downloadable program which causes the state to be stored at

25 the client. Using this approach, all or part of the state could
be stored on the client. An index referencing the location of
the state information in memory, as noted above, may be
passed back and forth between the server and client to allow
the state to be retrieved from the client.

30 Another application of downloadable server code to the
present invention would be to allow the 'converter' 4i6 to
run on the client. Here, clients would download all or part of
the 'converter' logic 4i6 from the server 4i0' to the client for
execution. This would allow the full functionality of the

35 present invention with all (or part of) the processing taking
place locally on the client 450. The client no longer has to
go through a remote server to filter HTML pages during a
conversation; all of the filtering takes place locally. An
advantage here is that the load on the server is reduced. Tn

40 addition, the client will be able to continue conversations
even if the server from which the client obtains the applet
goes down or becomes unavailable due to a network failure.
Other Embodiments
Preserving State on Multiple Communicating Servers

45 Those skilled in the art will appreciate that within the
scope of the present invention multiple converters may be
used for state propagation on multiple servers. For example,
an airline reservation system over the Web might have a
converter (converter A) for maintaining state. One of the

50 hypertext links might be to a hotel booking system on a
remote server with its own converter (converter H). A client
might begin using the airline reservation system. At some
point, state information is attached to the conversation. The
client then follows a hypertext link to the hotel booking

55 system. Converter A continues to maintain state information
while the client is using the hotel booking system. All state
variables are propagated to the hotel booking system's CGT
programs. These remote server CGT programs might simply
ignore these state variables. On the other hand, if the hotel

60 booking system understands the state variables from the
airline reservation systems, these variables could be used by
the hotel booking system (converter H).

At some point, the hotel reservation system server may
invoke its converter (converter H) to embed additional state

65 variables. When this happens, the call to converter H may be
nested within the call to converter A. This will not present
problems. CGT programs will now be passed arguments

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 100 of 147 PageID #: 117

5,961,601

17
from both converter A and converter H. If converter A has
the ability to recognize a CGT function representing a call to
converter H, additional things are possible:

(1) Converter A could treat converter H as a type I CGT
program as discussed previously. In this case, converter A
can stop monitoring future hypertext links in the conversa-
tion.

(2) Converter A could treat converter H as a type TT CCI
program and continue to modify hypertext links. In addition,
converter A could add special links to future HTML pages
which would allow the user to escape from the control of
either converter.
Other Examples of Dynamic Page Modification

The present invention also has features which provide a
system and method for filtering all HTML text viewed by a
client while the client is browsing HTML files in a conver-
sation. For example, suppose that a client has contacted a
server and started a conversation. The server wishes to filter
all HTML text and leave out phrases and hypertext links
which have been determined to be objectionable. The
present invention provides a method for filtering and/or
modifying HTML text while a client accesses files and
programs which may be remote to the server doing the
filtering.

The present invention can be applied to a wide variety of
applications where HTML pages need to be modified during
a conversation. For example, suppose that a server applica-
tion wishes to filter all HTML pages which are passed to a
client in a conversation. The converter could modify and/or
remove undesirable parts of HTML pages before sending
them to the client. The converter would merely have to be
modified to search text for different substrings. Note that the
converter can censor pages and output from CCI programs
which reside on remote servers. If the client can download
programs from the server written in a language such as Java,
the converter doing the censoring can execute on the client.

As another example, suppose that a client 450 is in a
conversation where the names of major corporations appear
frequently in the text. Aserver 410' running a converter 416
has access to a database 475 of home page URL's for major
corporations. The server wishes to add hypertext links each
time the name of a company in the database appears in an
HTML page. For example, each time the name IBM or
International Business Machines appears in an HTML page,
the server would like to convert the reference to a hypertext
link to IBM's home page. By doing this, the client would be
able to obtain useful information about companies appearing
in the conversation by pointing and clicking. This can be
accomplished by modifying the converter 416 to search
HTML pages for all company names which appear in the
database. Whenever such a name is found, a hypertext link
to the company's home page would be inserted into the
HTML text returned to the client. The converter 416 can
continue to monitor the conversation in the event that
hypertext links are followed to remote servers. As noted
above, if the client can download programs from the server
written in a language such as Java, the converter can execute
on the client.

Now that the present invention has been described by way
of a preferred embodiment, with alternatives, various
improvements will occur to those of skill in the art. Thus, it
should be understood that the preferred embodiment has
been provided as an example and not as a limitation. The
scope of the invention is properly defined by the appended
claims.

What is claimed is:
1. A computerized method for preserving state informa-

tion in a conversation between a client adapted to request

18
services from one or more servers which are networked via
a stateless protocol to the client, said services including one
or more of data and programs which the client may request,
wherein the conversation is a sequence of communications

5 between the client and one or more servers for said services
wherein each response from the server includes one or more
continuations which enable another request for said services
and wherein the client must invoke one of the continuations
to continue the conversation, the method comprising the

lo
steps of:

the client initiating the conversation with the server using
the stateless protocol;

detecting when the request for a service requires preser-
vation of the state information;

15
performing said service and identifying all continuations

in an output from said service, in response to said step
of detecting;

recursively embedding the state information in all iden-
tified continuations; and

20
communicating the output to the client, in response to said

step of embedding; wherein the state information is
preserved and provided to all services for the duration
of the conversation.

2. The method of claim 1, wherein said step of embedding

25
performed by the server and said step of communicating

is in response to said step of embedding.
3. The method of claim 2, further comprising the step of

storing at least part of the state information in a memory
coupled to the server and wherein said step of embedding

30
includes embedding an index representing said part of the
state information in said all identified continuations.

4. The method of claim 1, further comprising the step of
dynamically downloading computer program code to the
client to perform said step of embedding which is responsive

35
to said step of communicating the output to the client.

5. The method of claim 4, further comprising the step of
storing at least part of the state information in a memory
coupled to the client and wherein said step of embedding
includes embedding an index representing said part of the

40
state information.

6. The method of claim 1, further comprising the steps of:
the client selecting a second continuation from said all

identified continuations with embedded state informa-
tion; and

45 restoring the state information from said second continu-
ation and invoking an associated second service with
restored state information;

recursively identifying and embedding the state informa-
tion in all continuations associated with an output from

50 said second service.
7. The method of claim 1, further comprising the step of

correlating the state information to a specific conversation.
8. The method of claim 1, wherein the client and the

server are networked via the World Wide Web, the stateless
55 protocol is hypertext transfer protocol, and the continuations

are hyperlinks to one of hypertext markup language files and
common gateway interface programs.

9. The method of claim 8, further comprising the step of
filtering one of said hyperlinks and data output from said

60 services according to a predetermined criteria.
10. The method of claim 8, further comprising the step of

adding one of said hyperlinks and data to said output from
said services according to a predetermined criteria.

11. The method of claim 8, wherein said step of embed-
65 ding further comprises the step of:

modifying an identified continuation which is a request
for an HTML file to invoke a CGT converter program

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 101 of 147 PageID #: 118

5,961,601

19
with the identified continuation and the state informa-
tion passed as arguments.

12. The method of claim 8, wherein said step of embed-
ding further comprises the step of:

modifying an identified continuation which is an invoca-
tion to a CGT program with the identified continuation
and the state information passed as arguments, wherein
said step of embedding is performed by the CGT
program.

13. The method of claim 8, wherein said step of embed-
ding further comprises the step of:

modifying an identified continuation which is an invoca-
tion to a CGT program to invoke a CGT converter
program with the identified continuation, an argument
counter which indicates a number of arguments asso-
ciated with the CGT program, and the state information
passed as arguments, wherein said step of embedding is
performed by the converter program.

14. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to provide a method for preserving state
information in a conversation between a client adapted to
request services from one or more servers which are net-
worked via a stateless protocol to the client, said services
including one or more of data and programs which the client
may request, wherein the conversation is a sequence of
communications between the client and one or more servers
for said services wherein each response from the server
includes one or more continuations which enable another
request for said services and wherein the client must invoke
one of the continuations to continue the conversation, the
method comprising the steps of:

the client initiating the conversation with the server using
the stateless protocol;

detecting when the request for a service requires preser-
vation of the state information;

performing said service and identifying all continuations
in an output from said service, in response to said step
of detecting;

recursively embedding the state information in all iden-
tified continuation; and

communicating the output to the client, in response to said
step of embedding; wherein the state information is
preserved and provided to all services for the duration
of the conversation.

15. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
14, wherein said step of embedding is performed by the
server and said step of communicating is in response to said
step of embedding.

16. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
15, further comprising the step of storing at least part of the
state information in a memory coupled to the server and
wherein said step of embedding includes embedding an
index representing said part of the state information in said
all identified continuations.

17. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
14, further comprising the step of dynamically downloading
computer program code to the client to perform said step of
embedding which is responsive to said step of communi-
cating the output to the client.

20
18. A program storage device readable by a computer,

tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
14, further comprising the step of storing at least part of the

5 state information in a memory coupled to the client and
wherein said step of embedding includes embedding an
index representing said part of the state information.

19. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by

lo the computer to perform method steps as claimed in claim
14, further comprising the steps of:

the client selecting a second continuation from said all
identified continuations with embedded state informa-
tion; and

15 restoring the state information from said second continu-
ation and invoking an associated second service with
restored state information;

recursively identifying and embedding the state informa-

20
tion in all continuations associated with an output from
said second service.

20. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim

25
14, further comprising the step of correlating the state
information to a specific conversation.

21. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim

30
14, wherein the client and the server are networked via the
World Wide Web, the stateless protocol is hypertext transfer
protocol, and the continuations are hyperlinks to one of
hypertext markup language files and common gateway inter-
face programs.

35
22. A program storage device readable by a computer,

tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
21, further comprising the step of filtering one of said
hyperlinks and data output from said services according to

40
a predetermined criteria.

23. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
21, further comprising the step of adding one of said

45
hyperlinks and data to said output from said services accord-
ing to a predetermined criteria.

24. The program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim

50
21, wherein said step of embedding further comprises the
step of:

modifying an identified continuation which is a request
for an HTML file to invoke a CGT converter program
with the identified continuation and the state informa-

55 tion passed as arguments.
25. The program storage device readable by a computer,

tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
21, wherein said step of embedding further comprises the

60 step of:
modifying an identified continuation which is an invoca-

tion to a CGT program with the identified continuation
and the state information passed as arguments, wherein
said step of embedding is performed by the CGT

65 program.
26. The program storage device readable by a computer,

tangibly embodying a program of instructions executable by

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 102 of 147 PageID #: 119

5,961,601

21
the computer to perform method steps as claimed in claim
21, wherein said step of embedding further comprises the
step of:

modifying an identified continuation which is an invoca-
tion to a CGT program to invoke a CGT converter
program with the identified continuation, an argument
counter which indicates a number of arguments asso-
ciated with the CGT program, and the state information
passed as arguments, wherein said step of embedding is
performed by the converter program.

27. A computer system for preserving state information in
a conversation between a client adapted to request services
from one or more servers which are networked via a stateless
protocol to the client, said services including one or more of
data and programs which the client may request, wherein the
conversation is a sequence of communications between the
client and one or more servers for said services, wherein
each response from the server includes one or more con-
tinuations which enable another request for said services and
wherein the client must invoke one of the continuations to
continue the conversation, the system comprising:

the client being adapted for initiating a conversation with
the server using the stateless protocol;

state detection logic for detecting when the request for a
service requires preservation of the state information;

search logic for identifying all continuations in an output
from said service, in response to said step of detecting;

converter logic for recursively embedding the state infor-
mation in all identified continuations; and

communication logic for communicating the output to the
client; wherein the state information is preserved and
provided to all services for the duration of the conver-
sation.

28. The computer system of claim 27, wherein said
converter logic is executed by the server and said commu-
nication logic communicates the output with embedded state
information from the server to the client.

29. The computer system of claim 28, further comprising:
a memory, coupled to the server, for storing at least part

of the state information; wherein said converter logic is
adapted for embedding an index representing said part
of the state information in said all identified continu-
ations.

30. The computer system of claim 27, wherein said
communication logic communicates the output without
embedded state information from the server to the client;
and wherein the server is adapted for dynamically down-
loading said converter logic to the client for execution.

31. The computer system of claim 30, further comprising:
a memory, coupled to the client, for storing at least part of

the state information; wherein said converter logic is
further adapted for embedding an index representing
said part of the state information.

32. The computer system of claim 27, wherein the client
selects a second continuation from said all identified con-
tinuations with embedded state information, further com-
prising:

the converter logic being further adapted for restoring the
state information from said second continuation, invok-
ing an associated second service with restored state
information, and recursively identifying and embed-
ding the state information in all continuations associ-
ated with an output from said second service.

33. The computer system of claim 27, wherein the state
information is correlated to a specific conversation.

34. The computer system of claim 27, wherein the client
and the server are networked via the World Wide Web, the

22
stateless protocol is hypertext transfer protocol, and the
continuations are hyperlinks to one of hypertext markup
language files and common gateway interface programs.

35. The computer system of claim 34, further comprising
5 filter logic for filtering one of said hyperlinks and data output

from said services according to a predetermined criteria.
36. The computer system of claim 34, further comprising

integration logic for adding one of said hyperlinks and data
to said output from said services according to a predeter-
mined criteria.

lo 37. The computer system of claim 34, wherein said step
of embedding further comprises the step of:

modifying an identified continuation which is a request
for an HTML file to invoke a CGT converter program
with the identified continuation and the state informa-

15 tion passed as arguments.
38. The computer system of claim 34, wherein said step

of embedding further comprises the step of:
modifying an identified continuation which is an invoca-

tion to a CGT program with the identified continuation
20 and the state information passed as arguments, wherein

said step of embedding is performed by the CGT
program.

39. The computer system of claim 34, wherein said step
of embedding further comprises the step of:

25 modifying an identified continuation which is an invoca-
tion to a CGT program to invoke a CGT converter
program with the identified continuation, an argument
counter which indicates a number of arguments asso-
ciated with the CGT program, and the state information

30 passed as arguments, wherein said step of embedding is
performed by the converter program.

40. A computer system for preserving state information in
a conversation between a client adapted to request services
from one or more servers which are networked via a stateless

35 protocol to the client, said services including one or more of
data and programs which the client may request, wherein the
conversation is a sequence of communications between the
client and one or more servers for said services wherein each
response from the server includes one or more continuations

40 which enable another request for said services and wherein
the client must invoke one of the continuations to continue
the conversation, the system comprising:

the client being adapted for initiating the conversation

45
with the server using the stateless protocol;

state detection means for detecting when the request for a
service requires preservation of the state information;

search means for identifying all continuations in an output
from said service, in response to said step of detecting;

50 converter means for recursively embedding the state
information in all identified continuations; and

communication means for communicating the output to
the client; wherein the state information is preserved
and provided to all services for the duration of the

55 conversation.
41. The computer system of claim 40, wherein said

converter means is executed by the server and said commu-
nication means communicates the output with embedded
state information from the server to the client.

60 42. The computer system of claim 41, further comprising:
a memory, coupled to the server, for storing at least part

of the state information; wherein said converter means
is adapted for embedding an index representing said
part of the state information in said all identified

65 continuations.
43. The computer system of claim 40, wherein said

communication means communicates the output without

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 103 of 147 PageID #: 120

5,961,601

23
embedded state information from the server to the client;
and wherein the server is adapted for dynamically down-
loading said converter means to the client for execution.

44. The computer system of claim 43, further comprising:
a memory, coupled to the client, for storing at least part of

the state information; wherein said converter means is
further adapted for embedding an index representing
said part of the state information.

45. The computer system of claim 41, wherein the client
selects a second continuation from said all identified con-
tinuations with embedded state information, further com-
prising:

the converter means being further adapted for restoring
the state information from said second continuation,
invoking an associated second service with restored
state information, and recursively identifying and
embedding the state information in all continuations
associated with an output from said second service.

46. The computer system of claim 45, further comprising
integration means for adding one of said hyperlinks and data
to said output from said services according to a predeter-
mined criteria.

47. The computer system of claim 40, wherein the client
and the server are networked via the World Wide Web, the
stateless protocol is hypertext transfer protocol, and the
continuations are hyperlinks to one of hypertext markup
language files and common gateway interface programs.

48. The system of claim 47, wherein said converter means
further comprises:

means for modifying an identified continuation which is
a request for an HTML file to invoke a CGT converter
program with the identified continuation and the state
information passed as arguments.

49. The system of claim 47, wherein said converter means
further comprises:

means for modifying an identified continuation which is
an invocation to a CGT program with the identified
continuation and the state information passed as
arguments, wherein said converter means comprises
the CGT program.

50. The system of claim 47, wherein converter means
further comprises:

means for modifying an identified continuation which is
an invocation to a CGT program to invoke a CGT
converter program with the identified continuation, an
argument counter which indicates a number of argu-
ments associated with the CGT program, and the state
information passed as arguments, wherein said con-
verter means comprises the converter program.

51. A computerized method for preserving state informa-
tion in a conversation via a stateless protocol between a
client adapted to request services from one or more servers,
the method comprising the steps of:

receiving a service request including state information,
via the stateless protocol;

identifying all continuations in an output from said ser-
vice and recursively embedding the state information in
all identified continuations, in response to said request;
and

communicating a response including the continuations
and embedded state information, wherein the continu-
ations enable another service request and one of the
continuations must be invoked to continue the conver-
sation.

52. The method of claim 51, wherein said embedding is
performed by a server and said step of communicating is in
response to said embedding step.

24
53. The method of claim 52, further comprising the step

of storing at least part of the state information in a memory
coupled to the server and wherein embedding step includes
embedding an index representing said part of the state

5 information in said all identified continuations.
54. The method of claim 51, further comprising the step

of dynamically downloading computer program code to the
client to perform said embedding step, in response to said
step of communicating the output to the client.

lo
55. The method of claim 54, further comprising the step

of storing at least part of the state information in a memory
coupled to the client and wherein said embedding step
includes embedding an index representing said part of the
state information.

56. The method of claim 51, further comprising the steps
15 of:

receiving a second request associated with a second
continuation from said all identified continuations with
embedded state information; and

20
restoring the state information from said second continu-

ation and invoking an associated second service with
restored state information;

recursively identifying and embedding the state informa-
tion in all continuations associated with an output from

25
said second service.

57. The method of claim 51, wherein the client and the
server are networked via the World Wide Web, the stateless
protocol is hypertext transfer protocol, and the continuations
are hyperlinks to one of hypertext markup language files and

30
common gateway interface programs.

58. The method of claim 57, further comprising the step
of filtering one of said hyperlinks and data output from said
services according to a predetermined criteria.

59. The method of claim 57, further comprising the step

35
of adding one of said hyperlinks and data to said output from
said services according to a predetermined criteria.

60. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to provide a method for preserving state

40 information in a conversation via a stateless protocol
between a client adapted to request services from one or
more servers, the method comprising the steps of:

receiving a service request including state information,
via the stateless protocol;

45 identifying all continuations in an output from said ser-
vice and recursively embedding the state information in
all identified continuations, in response to said request;
and

communicating a response including the continuations
50 and embedded state information, wherein the continu-

ations enable another service request and one of the
continuations must be invoked to continue the conver-
sation.

61. A program storage device readable by a computer,
55 tangibly embodying a program of instructions executable by

the computer to perform method steps as claimed in claim
60, wherein said step of embedding is performed by the
server and said step of communicating is in response to said
step of embedding.

60 62. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
60, further comprising the step of storing at least part of the
state information in a memory coupled to the server and

65 wherein said step of embedding includes embedding an
index representing said part of the state information in said
all identified continuations.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 104 of 147 PageID #: 121

5,961,601

25
63. A program storage device readable by a computer,

tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
60, further comprising the step of dynamically downloading
computer program code to the client to perform said step of
embedding which is responsive to said step of communi-
cating the output to the client.

64. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
60, further comprising the step of storing at least part of the
state information in a memory coupled to the client and
wherein said step of embedding includes embedding an
index representing said part of the state information.

65. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
60, further comprising the steps of:

receiving a second request associated with a second
continuation from said all identified continuations with
embedded state information; and

restoring the state information from said second continu-
ation and invoking an associated second service with
restored state information;

26
recursively identifying and embedding the state informa-

tion in all continuations associated with an output from
said second service.

66. A program storage device readable by a computer,
5 tangibly embodying a program of instructions executable by

the computer to perform method steps as claimed in claim
60, wherein the client and the server are networked via the
World Wide Web, the stateless protocol is hypertext transfer
protocol, and the continuations are hyperlinks to one of

lo
hypertext markup language files and common gateway inter-
face programs.

67. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim
66, further comprising the step of filtering one of said

15 hyperlinks and data output from said services according to
a predetermined criteria.

68. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform method steps as claimed in claim

20 66, further comprising the step of adding one of said
hyperlinks and data to said output from said services accord-
ing to a predetermined criteria.

* * * * *

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 105 of 147 PageID #: 122

EXHIBIT D

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 106 of 147 PageID #: 123

(12) United States Patent
Hinton et al.

(54) METHOD AND SYSTEM FOR A RUNTIME
USERACCOUNT CREATION OPERATION
WITHIN A SINGLE-SIGN-ON PROCESS IN A
FEDERATED COMPUTING ENVIRONMENT

(75) Inventors: Heather Maria Hinton, Austin, TX
(US); Ivan Matthew Milman, Austin,
TX (US); Venkat Raghavan, Austin, TX
(US); Shane Bradley Weeden, Gold
Coast (AU)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 827 days.

(21) Appl. No.: 11/097,587

(22) Filed: Apr. 1, 2005

(65) Prior Publication Data

US 2006/0236382 Al Oct. 19, 2006

(51) Int.Cl.
GO6F 7/04 (2006.01)
GO6F 15/16 (2006.01)
GO4L 9/32 (2006.01)
GO6F 17/30 (2006.01)

(52) U.S. Cl .. 726/8; 380/279
(58) Field of Classification Search 726/6,

726/5, 4, 8; 709/223, 229, 219; 713/202,
713/186, 169; 380/279; 715/500

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,290,278 B2 10/2007 Cahill et al 726/6
2003/0149781 Al 8/2003 Yaredetal.
2003/0154266 Al 8/2003 Bobick et al 709/223
2004/0010607 Al 1/2004 Lee et al 709/229
2004/0158746 Al 8/2004 Hu et al 7 13/202

III III IID IID III 1011 OI DIII III II II DI II
US00763 1346B2

(10) Patent No.: US 7,631,346 B2

(45) Date of Patent: Dec. 8, 2009

2004/0205176 Al 10/2004 Ting et al 709/223

2005/0074126 Al 4/2005 Stanko 380/279

2005/0210270 Al 9/2005 Rohatgi et al 7 13/186

2005/0240763 A9* 10/2005 Bhatetal 713/169

2005/0257130 Al* 11/2005 Ito 715/500.1

2006/0048213 Al 3/2006 Cheng et al 726/5

(Continued)

OTHER PUBLICATIONS

Gross, T.; Security analysis of the SAML single sign-on browser/
artifact profile; Publication Date: Dec. 8-12, 2003; IBM Zurich Res.
Lab; On pp. 298307.*

Primary Examiner-Kambiz Zand
Assistant Examiner-Monjour Rahim
(74) Attorney, Agent, or Firm-Jeffrey S. LaBaw; David H.
Judson

(57) ABSTRACT

A method, system, apparatus, and computer program product
are presented to support computing systems of different
enterprises that interact within a federated computing envi-
ronment. Federated single-sign-on operations can be initiated
at the computing systems of federation partners on behalf of
a user even though the user has not established a user account
at a federationpartner priorto the initiation ofthe single-sign-
on operation. For example, an identity provider can initiate a
single-sign-on operation at a service provider while attempt-
ing to obtain access to a controlled resource on behalf of a
user. When the service provider recognizes that it does not
have a linked user account for the user that allows for a
single-sign-on operation with the identity provider, the ser-
vice provider creates a local user account. The service pro-
vider can also pull user attributes from the identity provider as
necessary to perform the user account creation operation.

20 Claims, 14 Drawing Sheets

CLIENT DEVICE

BROWSER APPLICAflON OTHER

I

HTTP 2Q
I I

ML INTERPRETER m WE SERVICES CLIENT 32 APPS

FEDERATION FRONT-END LEGACY APPLICATIONS OR
FOR ENTERPRISEDOMAIN O BACK.END PROCESSING FOR

E NTERP R IS EJOOMAIN
I

POINT-OF-CONTACT (POC) SERVER 42
I

I

FEDETIOÑ CONFIGUTION APPL
AUTHENTICATION SERVICE

[J
RUNTIME (ASR) SERVERS

az
I

I

FEDERATION INTERFACE UNFI a

I

FEDERATION USER REGISTRY
I

[jj

APPLI CATION SERVERS I

FEDERATED USER LIFECYCLE MAN.GEMENT
(AiIM) APPLICATION 2 _____________________

I
PROTECTED RESOURCES

I

I I

__________ ___________

I SINGLE-SIGNN I

I TRUST PRO) I IPROTOL SERVICE1
I I

Ç1RLJSTSERVICE) 4
I _____ (s)

I SECURITY TOKEN I

I

SERVICE ISTS) 6 IDEN1TTY AND I

I IATTRIBUTE SER'ICEI

I

(lAS)

II LEGACY I

I ENTERPRISE
I I USER I

I USER
I IREGISTRATIONI

I REGISTRY
I I APPLICATION I

aa

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 107 of 147 PageID #: 124

US 7,631,346 B2
Page 2

U.S. PATENT DOCUMENTS 2007/0005730 Al * 1/2007 Torvinen eta! 709/2 19

2006/0059544 Al * 3/2006 Guthrie et a! 726/4
2006/0195893 Al * 8/2006 Caceres et a! 726/8 * cited by examiner

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 108 of 147 PageID #: 125

U.S. Patent Dec. 8, 2009 Sheet i of 14 US 7,631,346 B2

1OO\ 1O3j I!-1o5
109 102

()
SERVER CLIENT

I)

L=J1I iii
NETWORK

106__ __ iQi
CLIENT / SERVER CLIENT

K

104 STORAGE
107

110

114
11TAL ASSISTANT

PERSONAL

i 1 2
L__

Il

FIG. JA
DIGITAL ASSISTANT (PftJOR ART)

111

WIRELESS
PHONE

120 122

\
DIS PLAY

123
i 44

i 24 RAM

USER INTERFACE
R

i 48

1°126H ROM

H
142

MOUSE

I/O ADAPTER

HDK 140

134 KEYBOARD 136

COMMUNICATION

132 ADAPTER H COMMUNICATION
¿)

LINK

FIG. lB
(PRIOR ART)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 109 of 147 PageID #: 126

U.S. Patent Dec. 8, 2009 Sheet 2 of 14

15O

JI TYPICAL USER
CLIENT

E AUTHENTICATION

153USER REQUESTS WEB
PAGE AT IBM.COM HTTP REQUEST

i_bz -__________
155

s.1
ESTABLISH SSL SESSION

I 56

AUTHENTICATION CHALLENGE
USER/CLIENT

PROVIDES INFORMATION 158

i.5i AUTHENTICATION RESPONSE)

I 60

HTTP RESPONSE

USER REQUESTS 162
ANOTHER WEB PAGE HTTP REQUEST

AT IBMCOM - ___________________________

164

HTTP RESPONSE

FIG. JC
(PRIOR ART)

---------- jc'-

172

AUTHENTICATION WEB APPLICATION
SERVER SERVER

\'____\
DNS DOMAIN I

CLIENT

Z1i770i

Us 7,631,346 B2

ji--- i 51

SERVER
IBM.COM

NO IDENTITY
INFORMATION

AVAILABLE
i 54

SERVER
AUTHENTICATES

USER/CLIENT

SSL SESSION ID =

I i

USERID=USERA
I i6 iL_ ___________

AUTHENTICATION WEB APPLICATION
SERVER SERVER

DNS DOMAIN 2

FIG. JD
(PRIOR ART)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 110 of 147 PageID #: 127

U.S. Patent

AM
196

Dec. 8, 2009

BANKING
DOMAIN

195

ISP DOMAIN 191

AUTHENTICATION
MANAGER(AM) 192

ENTERPRISE A
204

USER HOME DOMAIN!
2QZ IDENTITY PROVIDER

ISSUING DOMAIN

FIG. 2

Sheet 3 of 14

USER
190

FIG. lE
(PRIOR ART)

I POINT-OF-CONTACT
ENTERPRISE A

(POC) SERVER
419

4i2

ASR
418

Us 7,631,346 B2

E-COMMERCE
DOMAIN

198
197

GOVERNM ENT
DOMAIN AM

193

ENTERPRISE B
206

RELYING DOMAIN!
SERVICE PROVIDER

ISSUING DOMAIN

SECURITY I
TOKEN I

TRUST PROXY (TP)

SERVICE I
(TRUST SERVICE)

(SIS) I

4191

F 1G. 4 ITRUSTBROKER

ENTERPRISE C

YING DOMAIN

ENTERPRISEB 42

POC SERVER
422

TRUST
SERVICE

424

SIS
426

ASR
428

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 111 of 147 PageID #: 128

U.S. Patent

FIG. 3

Dec. 8, 2009 Sheet 4 of 14 US 7,631,346 B2

CLIENT DEVICE

BROWSER APPLICATION

HTTP ML INTERPRETER 3Z WEB SERVICES CLIENT

FEDERATION FRONT-END
FOR ENTERPRISE/DOMAIN fl

I

POINT-OF-CONTACT (POC) SERVER 4Z

I

FEDERATION CONFIGURATION APPL.

I

FEDERATION INTERFACE UNIT 350

I

FEDERATION USER REGISTRY 35
I

FEDERATED USER LIFECYCLE MANAGEMENT
(FULM) APPLICATION Z

TRUST PROXY ÇrP)
(TRUSTSERVICE)

SECURITY TOKEN
SERVICE (STS)

SINGLE-SIGN-ON
PROTOCOL SERVICE

(SPS) 354

IDENTITY AND
ATTRIBUTE SERVICE

(lAS) 356

USER 312

OTHER
APPS
318

LEGACY APPLICATIONS OR
BACK-END PROCESSING FOR

ENTERPRISE/DOMAIN
330

IE i AUTHENTICATION SERVICE
EtjRUNTIME (ASR) SERVERS

Lu

t

APPLICATION SERVERS i
334

1

PROTECTED RESOURCES i

fi
j

I I LEGACY
I ENTERPRISE H USER I

REGISTRY ' I

USER IREGISTRATIONI
I I APPLICATION IHI

DIRECT TRUST
RELATIONSHIP FEDERATED

DOMAIN Y
TRUST PROXY_ e _ __

FEDERATED 514
DOMAIN X

502

TRUST PROXY
508

FIG. 5

I

BROKERED
522 TRUST

I RELATIONSHIP

FEDERATED ' II TRUST PROXY I
DOMAINZ I I

15i21

DIRECT TRUST
RELATIONSHIP

516

518

TRUST BROKER
520

DIRECT TRUST
RELATIONSHIP

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 112 of 147 PageID #: 129

U.S. Patent Dec. 8, 2009 Sheet 5 of 14

ENTERPRISE A ENTERPRISE B

POINT-OF-CONTACT POC SERVER ZZ(POC) SERVER 1Z

TRUST PROXY (TP)
I

TP2
I

FIG. 6 TRUSTBROKERfiQ

FIREWALL

REQUESTS
730

[iWII
EXTERNAL OMZ

710 712

POI NT-OF-CONTACT
(POC) SERVER iZ

US 7,631,346 B2

ENTERPRISE C

I
POCSERVER 2

I
TP4

I

PROTECTED
RESOURCES i

APPLICATION SERVERS

REQUESTS FOR
PROTECTED
RESOURCES

732

FULM REQUESTS
734

ENTERPRISE
USER

REGISTRY
722

FEDERATED USER LIFECYCLE MANAGEMENT (FULM)
APPLICATIONISERVICE iQ

I

FEDERATION USER REGISTRY Z2Q TRUST
SERVICE

SINGLE-SIGN-ON IDENTITY AND Zi

PROTOCOL SERVICE ATTRIBUTE SERVICE
(SPS) Zi (I&AS) Zi

I i I

I I I
FULM PLUG-INS

1
124

FIG. 7

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 113 of 147 PageID #: 130

U.S. Patent Dec. 8, 2009 Sheet 6 of 14

CLIEJ j TIME

USER HAS PREVIOUSLY ESTABLISHED ACCOUNT WITH SP

USER HAS VALID (AUTHENTICATED) SESSION WITH IdP

OFFER LINKS TO FEDERATED RESOURCES

SELECT OPERATION WITH FEDERATED RESOURCE
808 AT KNOWN SERVICE PROVIDERS

Us 7,631,346 B2

SERVICE IDENTITY
PROVIDER PROVIDER

BUILD SSO REQUEST I 810

804

HTTP REDIRECT WITH SSO FOR ACCESSING RESOURCE I
, 812

814 HTTP REQUEST (REDIRECTED) FOR RESOURCE ACCESS

816
PROCESS SSO REQUEST

818
PROCESS RESOURCE ACCESS

HTTP REDIRECT WITH RESPONSE , 820

TYPICAL SINGLE-SIGN-ON OPERATION
(INITIATED BY IDENTITY PROVIDER -- USER PREVIOUSLY PROVISIONED AT SP)

FIG. 8
(PRIOR ART)

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 114 of 147 PageID #: 131

U.S. Patent Dec. 8, 2009 Sheet 7 of 14 US 7,631,346 B2

I SERVICE I I IDENTITYCLIEj ,TIME
I

PROVIDER PROVIDER

USER HAS VALID (AUTHENTICATED) SESSION WITH IdP / 902
L J

OFFER LINKS TO RESOURCES AT FEDERATED SERVICE PROVIDERS / _904

, 906 SELECT OPERATION TO ACCESS RESOURCE AT SP

PERFORM IdP-SIDE ALIAS CREATION IF USER IS NOT FEDERATED I 908

BUILD SSO REQUEST 910

HTTP REDIRECT WITH SSO FOR ACCESSING RESOURCE / 912

914 HTTP REQUEST (REDIRECT) FOR RESOURCE ACCESS

916
PROCESS SSO REQUEST

USER IS NOT FEDERATED, SO CREATE NEW ACCOUNT FOR 918

USER WITH ALIAS INFORMATION THAT IS PROVIDED BY IdP

920
PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS , 922

PUSH-TYPE SINGLE-SIGN-ON OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(USER NOT PREVIOUSLY PROVISIONED AT SP)

FIG. 9A

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 115 of 147 PageID #: 132

U.S. Patent Dec. 8, 2009 Sheet 8 of 14 US 7,631,346 B2

CLIEj j,TIME
IPR01ERI PROVIDER
rSERVICE

I

I IDENTITY

USER HAS VALID (AUTHENTICATED) SESSION WITH IdP / 902
-(

OFFER LINKS TO RESOURCES AT FEDERATED SERVICE PROVIDERS /_
904

, 906 SELECT OPERATION TO ACCESS RESOURCE AT SP

PERFORM IdP-SIDE ALIAS CREATION IF USER IS NOT FEDERATED
I

908

BUILD SSO REQUEST 910

HTTP REDIRECT WITH SSO FOR ACCESSING RESOURCE /_
912

914 HUP REQUEST (REDIRECT) FOR RESOURCE ACCESS

916
PROCESS SSO REQUEST

USER DOES NOT HAVE ACCOUNT; m/ 930

SSO REQUEST DOES NOT INCLUDE ALL REQUIRED ATFRIBUTES J

HTTP REDIRECT FOR ADDITIONAL USER ATTRIBUTES / 932

934 HTFP REQUEST (REDIRECT) WITH ATTRIBUTE REQUEST

BUILD ATTRIBUTE RESPONSE 936 -
H1TP REDIRECT WITH ATTRIBUTE RESPONSE / _

938

940 HTFP REQUEST FOR REDIRECTED URI WITH ATFRIBUTES

942
BUILD USER ACCOUNT WITH ATTRIBUTES AND ALIAS

920
PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS , 924

PUSH-TYPE SINGLE-SIGN-ON OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(ADDITIONAL PULLING OF USER ATrRIBUTES BY SP FROM IDP)

FIG. 9B

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 116 of 147 PageID #: 133

U.S. Patent Dec. 8, 2009 Sheet 9 of 14 US 7,631,346 B2

CUEJ
ITIME PROVIDER

USER DROWSES PUBLIC RESOURCES AT IdP ,, 952I
USER REQUESTS PROTECTED RESOURCE FOR WHICH

IdP REQUIRES AUTHENTICATED SESSION / 954

AUTHENTICATE USER / 956
(

OFFER LINKS TO RESOURCES AT FEDERATED SERVICE PROVIDERS 958

, 960 SELECT OPERATION TO ACCESS RESOURCE AT SP

PERFORM IdP-SIDE ALIAS CREATION IF USER IS NOT FEDERATED I 962

BUILD PUSH-TYPE SSO REQUEST 964

HTTP REDIRECTWITH SSO FORACCESSING RESOURCE /_
966

968 H1TP REQUEST (REDIRECT) FOR RESOURCE ACCESS

970
PROCESS SSO RESPONSE

USER IS NOT FEDERATED, SO CREATE OR ATTEMPT TO CREATE 972
NEW ACCOUNT FOR USER WITH ALIAS INFORMATION

THAT IS PROVIDED BY IdP

SSO RESPONSE DOES NOT INCLUDE ALL REQUIRED USER 974
ATTRIBUTES FOR ACCOUNT CREATION OR TO COMPLETE ACCOUNT

CREATION

PUSH-TYPE SINGLE-SIGN-ON OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(ADDITIONAL PULLING OF USER AURIBUTES BY SP FROM IDP)

FIG. 9G

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 117 of 147 PageID #: 134

U.S. Patent Dec. 8, 2009

CLIENT TIME

Sheet 10 of 14 US 7,631,346 B2

SERVICE IDENTITY
PROVIDER PROVIDER

HTTP REDIRECT FOR ADDITIONAL USER ATTRIBUTES , 976

/ 978 HTTP REQUEST (REDIRECT) WITH ATTRIBUTE REQUEST

BUILD ATTRIBUTE RESPONSE 98O-«

I

HTTP REDIRECT WITH ATTRIBUTE RESPONSE 7 982

7 984 HTTP REQUEST FOR REDIRECTED URI WITH ATTRIBUTES
7

BUILD (OR COMPLETE CREATION OF) USERACCOUNT 986

WITH ATTRIBUTES AND ALIAS
988

PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS , 990

COMPLETION OF PUSH-TYPE SSO OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(FRONT-CHANNEL USER ATTRIBUTE RETRIEVAL BY SP FROM IDP)

FIG. 9D

CLIENT ITIME
I

PROVIDER PROVIDER
I SERVICE I IDENTITY

A)

7 992
SOAP REQUEST FOR ADDITIONAL ATTRIBUTES

BUILD ATTRIBUTE RESPONSE 994-(
, 996

SOAP RESPONSE WITH ATTRIBUTE RESPONSE '
BUILD (OR COMPLETE CREATION OF) USERACCOUNT 998

WITH ATTRIBUTES AND ALIAS
988

PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS , 990

COMPLETION OF PUSH-TYPE SSO OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(BACK-CHANNEL USER ATTRIBUTE RETRIEVAL BY SP FROM IDP)

FIG. 9E

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 118 of 147 PageID #: 135

U.S. Patent Dec. 8, 2009 Sheet 11 of 14 US 7,631,346 B2

L__BEGIN__) 4',

',
I EXTRACTANY USER
I ATTRIBUTES FROM RECEIVED

SERVICE PROVIDER
I REQUEST MESSAGE

RECEIVES REQUEST FROM
IDENTITY PROVIDER TO ACCESS

PROTECTED RESOURCE BASED ON
SINGLE-SIGN-ON OPERATION

1002 CIENT
INFORMATIONFOR

YES -...POVISIONING USER>-
EXTRACT USER IDENTIFIER FROM

RECEIVED REQUEST MESSAGE
TNO
¿4

SEND REQUEST TO
RECOGNIZE IDENTITY PROVIDER
ER IDENTITY? TO OBTAIN USER ATTRIBUTES

I 006 1Q12

S

RECEIVE RESPONSE FROM
IDENTITY PROVIDER WITH

ADDITIONAL USER AURIBUTES
1Q14

PROVISION USER
AT SERVICE PROVIDER

1016

SUFFICIE?CREATE ACTIVE SESSION FOR USER
1Q24 INFORMATION FOR

AKING USER ACTIVI
1Q1-

GENERATE RESPONSE BASED ON
ACCESS TO PROTECTED RESOURCE NO

j-Qz

SEND RESPONSE
TO IDENTITY PROVIDER

I 028

r END
-J

FIG. 10

UPPER LIMIT

ERROR HANDLING
I 022

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 119 of 147 PageID #: 136

U.S. Patent Dec. 8, 2009 Sheet 12 of 14 US 7,631,346 B2

CLJEJ
ITIME

USERBROWSES PUBLIC RESOURCESATSP , 1102
1'

USER REQUESTS PROTECTED RESOURCE FOR WHICH
SP REQUIRES SESSION (AUTHENTICATION) / i 104

sp CANNOT DETERMINE USER'S IdP;
SP ASKS USER FOR PREFERRED IdP / 1106

, 1108 USER PROVIDES OR SELECTS IDENTIFIER FOR IdP

BUILD SSO REQUEST FOR USER
(SP DOES NOT KNOW USER NOT FEDERATED)

HTTP REDIRECT FOR SSO REQUESTTO IdP 1112

1114 HTTP REQUEST(REDIRECT) WITH SSO REQUESTTO IdP

AUTHENTICATE USER, IF REQUIRED

EVALUATE REQUEST; SP IS NOT REQUESTING
TO FEDERATE A USER IDENTITY

PERFORM IdP-SIDE ALIAS CREATION IF USER IS NOT FEDERATED I i 120

IDENTITY
PROVIDER

1110

BUILD PULL-TYPE SSO RESPONSE 1122-(

HTTP REDIRECT WITH SSO RESPONSE / 1124

i 126 HTTP REQUEST (REDIRECT) FOR SSO RESPONSE

1128
PROCESS SSO RESPONSE

USER IS NOT FEDERATED, SO CREATE NEW ACCOUNT FOR 1130

USER WITH ALIAS INFORMATION THAT IS PROVIDED BY IdP

I 132
PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS .- 1134

PULL-TYPE SINGLE-SIGN-ON OPERATION WITH RUNTIME USE R PROVISIONING AT SP
(USER NOT PREVIOUSLY PROVISIONED AT SP)

FIG. liA

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 120 of 147 PageID #: 137

U.S. Patent Dec. 8, 2009 Sheet 13 of 14

CLIENT TIME

I
USER BROWSES PUBLIC RESOURCES AT SP

USER REQUESTS PROTECTED RESOURCE FOR WHICH
SP REQUIRES SESSION (AUTHENTICATION)

SP CANNOT DETERMINE USERS IdP;
SP ASKS USER FOR PREFERRED IdP

, 1108 USER PROVIDES OR SELECTS IDENTIFIER FOR IdP

US 7,631,346 B2

SERVICE IDENTITY
PROVIDER PROVIDER

1102

1104

1106

BUILD SSO REQUEST FOR USER
(SP DOES NOT KNOW USER NOT FEDERATED)

HTTP REDIRECT FOR SSO REQUEST TO IdP , i 112

1110

J 1114 HTTP REQUEST(REDIRECT)WITH SSO REQUESTTO IdP
7 J,

AUTHENTICATE USER, IF REQUIRED , 1116

EVALUATE REQUEST; SP IS NOT REQUESTING
j 1118TO FEDERATE A USER IDENTITY

PERFORM IdP-SIDE ALIAS CREATION IF USER IS NOT FEDERATED I 1120

BUILD PULL-TYPE SSO REQUEST I i 122

H1TP REDIRECT WITH SSO RESPONSE

1 126 HTTP REQUEST (REDIRECT) FOR SSO RESPONSE

PROCESS SSO RESPONSE

USER IS NOT FEDERATED, SO CREATE OR ATTEMPT TO CREATE
NEW ACCOUNT FOR USER WITH ALIAS INFORMATION

THAT IS PROVIDED BY IdP I

SSO RESPONSE DOES NOT INCLUDE ALL REQUIRED USER
ATTRIBUTES FOR ACCOUNT CREATION OR TO COMPLETE ACCOUNT I

CREATION I

IB

I 124

I 128

1150

1152

PULL-TYPE SINGLE-SIGN-ON OPERATION WITH RUNTIME USE R PROVISIONING AT SP
(REQUIRES ADDITIONAL PULLING OF USER A1TRIBUTES BY SP FROM IDP)

FIG. liB

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 121 of 147 PageID #: 138

U.S. Patent Dec. 8, 2009

CL1EJ ITIME

Sheet 14 of 14 US 7,631,346 B2

SERVICE IDENTITY
PROVIDER PROVIDER

HUP REDIRECT FOR ADDITIONAL USER AURIBUTES , 1154

1 1 56 HTTP REQUEST (REDIRECT) WITH ATIR IBUTE REQUEST
I/ _______

BUILD AURIBUTE RESPONSE 1158

HUP REDIRECT WITH ATTRIBUTE RESPONSE , i 160

1 162 HTTP REQUEST FOR REDIRECTED URI WITH ATTRIBUTES

BUILD (OR COMPLETE CREATION OF) USER ACCOUNT 1164

WITH ATTRIBUTES AND ALIAS
i 132

PROCESS RESOURCE ACCESS

HTTP RESPONSE FOR RESOURCE ACCESS , I 134

COMPLETION OF PULL-TYPE SSO OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(FRONT-CHANNEL USER ATTRIBUTE RETRIEVAL BY SP FROM lOP)

FIG. liC

CUEJ ITIME PROVIDER PROVIDER
I SERVICE I I IDENTITY

IBI\ / 1172
SOAP REQUEST FOR ADDITIONAL ATTRIBUTES '

BUILD ATTRIBUTE RESPONSE I

1176
SOAP RESPONSE WITH AlTRI BUTE RESPONSE

BUILD (OR COMPLETE CREATION OF) USERACCOUNT 1178

WITH ATTRIBUTES AND ALIAS

PROCESS RESOURCE ACCESS y'
1132

HTTP RESPONSE FOR RESOURCE ACCESS 1134

COMPLETION OF PULL-TYPE SSO OPERATION WITH RUNTIME USER ACCOUNT CREATION AT SP
(BACK-CHANNEL USER ATTRIBUTE RETRIEVAL BY SP FROM IDP)

FIG. liD

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 122 of 147 PageID #: 139

US 7,631,346 B2

i

METHOD AND SYSTEM FOR A RUNTIME
USER ACCOUNT CREATION OPERATION

WITHIN A SINGLE-SIGN-ON PROCESS IN A
FEDERATED COMPUTING ENVIRONMENT

BACKGROUND OF THE INVENTION

i . Field of the Invention
The present invention relates to an improved data process-

ing system and, in particular, to a method and apparatus for
multicomputer data transferring. Still more particularly, the
present invention is directedto networked computer systems.

2. Description of Related Art
Enterprises generally desire to provide authorized users

with secure access to protected resources in a user-friendly
manner throughout a variety ofnetworks, including the Inter-
net. Although providing secure authentication mechanisms
reduces the risks of unauthorized access to protected
resources, those authentication mechanisms may become
barriers to accessing protected resources. Users generally
desire the ability to change from interacting with one appli-
cation to another application without regard to authentication
barriers that protect each particular system supporting those
applications.

As users get more sophisticated, they expect that computer
systems coordinate their actions so that burdens on the user
are reduced. These types ofexpectations also apply to authen-
tication processes. A user might assume that once he or she
has been authenticated by some computer system, the authen-
tication should be valid throughout the user's working ses-
sion, or at least for a particular period oftime, without regard
to the various computer architecture boundaries that are
almost invisible to the user. Enterprises generally try to fulfill
these expectations in the operational characteristics of their
deployed systems, not only to placate users but also to
increase user efficiency, whether the user efficiency is related
to employee productivity or customer satisfaction.

More specifically, with the current computing environment
in which many applications have a Web-based user interface
that is accessible through a common browser, users expect
more user-friendliness and low or infrequent barriers to
movement from one Web-based application to another. In this
context, users are coming to expect the ability to jump from
interacting with an application on one Internet domain to
another application on another domain without regard to the
authentication barriers that protect each particular domain.
However, even ifmany systems provide secure authentication
through easy-to-use, Web-based interfaces, a usermay still be
forced to reckon with multiple authentication processes that
stymie user access across a set ofdomains. Subjecting a user
to multiple authentication processes in a given time frame
may significantly affect the user' s efficiency.

For example, various techniques have been used to reduce
authentication burdens on users and computer system admin-
istrators. These techniques are generally described as "single-
sign-on" (SSO) processes because they have a common pur-
pose: after a user has completed a sign-on operation, i.e. been
authenticated, the user is subsequently not required to per-
form another authentication operation. Hence, the goal is that
the user would be required to complete only one authentica-
tion process during a particular user session.

To reduce the costs of user management and to improve
interoperability among enterprises, federated computing
spaces have been created. A federation is a loosely coupled
affiliation ofenterprises which adhere to certain standards of
interoperability; the federation provides a mechanism for
trust among those enterprises with respect to certain compu-

2

tational operations for the users within the federation. For
example, a federation partner may act as a user's home
domain or identity provider. Other partners within the same
federation may rely on the user's identity provider for pri-

5 mary management of the user's authentication credentials,
e.g., accepting a single-sign-on token that is provided by the
user' s identity provider.

As enterprises move to support federated business interac-
lo tions, these enterprises should provide a user experience that

reflects the increased cooperation between two businesses . As
noted above, a user may authenticate to one party that acts as
an identity provider and then single-sign-on to a federated
business partner that acts as a service provider. In conjunction

15 with single-sign-on functionality, additional user lifecycle
functionality, such as single-sign-off, user provisioning, and
account linking/delinking, should also be supported.

Single-sign-on solutions require that a user be identifiable
20 in some form or another at both an identity provider and a

service provider; the identity provider needs to be able to
identify and authenticate a user, and the service provider
needs to be able to identify the user based on some form of

25
assertion about the user in response to a single-sign-on
request. Various prior art single-sign-on solutions, e.g., such
as those described in the Liberty Alliance ID-FF specifica-
tions, require that a user have an authenticatable account at
both an identity provider and a service provider as a prereq-

30 uisite to a federated single-sign-on operation. Some federated
solutions support an a priori user account creation event
across domains to be used to establish these accounts, thereby
satisfying a requirement that a user have an authenticatable
account at both an identity provider and a service provider as

35 a prerequisite to a federated single-sign-on operation.
Although some federated solutions provide a robust set of
federated user lifecycle management operations, such as user
account creation, user account management, user attribute
management, account suspension, and account deletion,

40 these federated management systems do not provide a light-
weight solution that is suitable for certain federation partners
or for certain federated purposes.

Therefore, it would be advantageous to have methods and

45
systems in which enterprises can provide comprehensive
single-sign-on experiences to users in a federated computing
environment in a lightweight manner that does not require an
extensive amount of a priori processing.

50 SUMMARY OF THE INVENTION

A method, system, apparatus, and computer program prod-
uct are presented to support computing systems of different
enterprises that interact within a federated computing envi-

55 ronment. Federated single-sign-on operations can be initiated
at the computing systems of federation partners on behalf of
a user even though the user has not established a user account
at a federationpartner priorto the initiation ofthe single-sign-

60
on operation. For example, an identity provider can initiate a
single-sign-on operation at a service provider while attempt-
ing to obtain access to a controlled resource on behalf of a
user. When the service provider recognizes that it does not
have a linked user account for the user that allows a single-

65 sign-on operation from the identity provider, the service pro-
vider creates a local user account based at least in part on
information from the identity provider. The service provider

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 123 of 147 PageID #: 140

US 7,631,346 B2

3

can also pull user attributes from the identity provider as
necessary to perform the user account creation operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
further objectives, and advantages thereof, will be best under-
stood by reference to the following detailed description when
read in conjunction with the accompanying drawings,
wherein:

FIG. lA depicts a typical network of data processing sys-
tems, each ofwhich may implement the present invention;

FIG. lB depicts a typical computer architecture that may
be used within a data processing system in which the present
invention may be implemented;

FIG. 1C depicts a data flow diagram that illustrates a typi-
cal authentication process that may be used when a client
attempts to access a protected resource at a server;

FIG. 1D depicts a network diagram that illustrates a typical
Web-based environment in which the present invention may
be implemented;

FIG. lE depicts a block diagram that illustrates an example
of a typical online transaction that might require multiple
authentication operations from a user;

FIG. 2 depicts a block diagram that illustrates the termi-
nology of the federated environment with respect to a trans-
action that is initiated by a user to a first federated enterprise,
which, in response, invokes actions at downstream entities
within the federated environment;

FIG. 3 depicts a block diagram that illustrates the integra-
tion ofpre-existing data processing systems at a given domain
with some federated architecture components that may be
used to support an embodiment of the present invention;

FIG. 4 depicts a block diagram that illustrates an example
of a manner in which some components within a federated
architecture may be used to establish trust relationships to
support an implementation of the present invention;

FIG. S depicts a block diagram that illustrates an exem-
plary set of trust relationships between federated domains
using trust proxies and a trust broker in accordance with an
exemplary federated architecture that is able to support the
present invention;

FIG. 6 depicts a block diagram that illustrates a federated
environment that supports federated single-sign-on opera-
tions;

FIG. 7 depicts a block diagram that illustrates some of the
components in a federated domain for implementing feder-
ated user lifecycle management functionality in order to sup-
port the present invention;

FIG. 8 depicts a dataflow diagram that shows a typical prior
art HTTP-redirection-based single-sign-on operation that is
initiated by a federated identity provider to obtain access to a
protected resource at a federated service provider;

FIGS. 9A-9B depicts dataflow diagrams that show an
HTTP-redirection-based single-sign-on operation that is ini-
tiated by a federated identity provider to obtain access to a
protected resource at a federated service provider while per-
forming a runtime linked-user-account creation operation at
the federated service provider in accordance with an embodi-
ment of the present invention;

FIGS. 9C-9E depict dataflow diagrams that show an
HTTP-redirection-based single-sign-on operation that is ini-
tiated by a federated identity provider to obtain access to a
protected resource at a federated service provider with alter-

4
native methods for obtaining user attributes by the federated
service provider in accordance with an embodiment of the
present invention;

FIG. 10 depicts a flowchart that shows a more detailed
5 process for performing a runtime linked-user-account cre-

ation operation at a service provider during a single-sign-on
operation that has been initiated by an identity provider;

FIG. liA depicts a dataflow diagram that shows an HTTP-
redirection-based pull-type single-sign-on operation that is

lo initiated by a federated service provider to allow access to a
protected resource at the federated service provider while
performing a runtime linked-user-account creation operation
at the federated service provider in accordance with an
embodiment of the present invention; and

15 FIGS. liB-liD depict a set ofdataflow diagrams that show
an HTTP-redirection-based pull-type single-sign-on opera-
tion that is initiated by a federated service provider to allow
access to a protected resource at the federated service pro-
vider with additional retrieval of user attribute information

20 from a federated identity provider while performing a runt-
ime linked-user-account creation operation at the federated
service provider in accordance with an embodiment of the
present invention.

25 DETAILED DESCRIPTION OF THE INVENTION

In general, the devices that may comprise or relate to the
present invention include a wide variety of data processing
technology. Therefore, as background, a typical organization

30 of hardware and software components within a distributed
data processing system is described prior to describing the
present invention in more detail.

With reference now to the figures, FIG. lA depicts a typical
network of data processing systems, each of which may

35 implement the present invention. Distributed data processing
system 100 contains network 101, which is a medium that
may be used to provide communications links between vari-
ous devices and computers connected together within distrib-
uted data processing system 100. Network 101 may include

40 permanent connections, such as wire or fiber optic cables, or
temporary connections made through telephone or wireless
communications. In the depicted example, server 102 and
server 103 are connected to network 101 along with storage
unit 104. In addition, clients 105-107 also are connected to

45 network 101. Clients 105-107 and servers 102-103 may be
represented by a variety ofcomputing devices, such as main-
frames, personal computers, personal digital assistants
(PDAs), etc. Distributed data processing system 100 may
include additional servers, clients, routers, other devices, and

50 peer-to-peer architectures that are not shown.
In the depicted example, distributed data processing sys-

tem 100 may include the Internet with network 101 represent-
ing a worldwide collection ofnetworks and gateways that use
various protocols to communicate with one another, such as

55 LDAP (Lightweight Directory Access Protocol), TCP/IP
(Transport Control Protocol/Internet Protocol), HTTP (Hy-
perText Transport Protocol), etc. Of course, distributed data
processing system 100 may also include a number of different
types of networks, such as, for example, an intranet, a local

60 area network (LAN), or a wide area network (WAN). For
example, server 102 directly supports client 109 and network
110, which incorporates wireless communication links. Net-
work-enabled phone 111 connects to network 110 through
wireless link 112, and PDA 113 connects to network 110

65 through wireless link 114. Phone 111 and PDA 113 can also
directly transfer data between themselves across wireless link
115 using an appropriate technology, such as BluetoothTM

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 124 of 147 PageID #: 141

US 7,631,346 B2

5

wireless technology, to create so-called personal area net-
works or personal ad-hoc networks . In a similar manner, PDA
113 can transfer data to PDA 107 via wireless communication
link 116.

The present invention could be implemented on a variety of
hardware platforms and software environments. FIG. lA is
intended as an example of a heterogeneous computing envi-
ronment and not as an architectural limitation for the present
invention.

With reference now to FIG. lB, a diagram depicts a typical
computer architecture of a data processing system, such as
those shown in FIG. lA, in which the present invention may
be implemented. Data processing system 120 contains one or
more central processing units (CPUs) 122 connected to inter-
nal system bus 123, which interconnects random access
memory (RAM) 124, read-only memory 126, and input/out-
put adapter 128, which supports various I/O devices, such as
printer 130, disk units 132, or other devices not shown, such
as a audio output system, etc. System bus 123 also connects
communication adapter 134 that provides access to commu-
nication link 13 6 . User interface adapter 148 connects various
user devices, such as keyboard 140 and mouse 142, or other
devices not shown, such as a touch screen, stylus, micro-
phone, etc. Display adapter 144 connects system bus 123 to
display device 146.

Those of ordinary skill in the art will appreciate that the
hardware in FIG. lB may vary depending on the system
implementation. For example, the system may have one or
more processors, such as an Intel® Pentium®-based proces-
sor and a digital signal processor (DSP), and one or more
types of volatile and non-volatile memory. Other peripheral
devices may be used in addition to or in place ofthe hardware
depicted in FIG. lB. The depicted examples are not meant to
imply architectural limitations with respect to the present
invention.

In addition to being able to be implemented on a variety of
hardware platforms, the present invention may be imple-
mented in a variety ofsoftware environments. A typical oper-
ating system may be used to control program execution
within each data processing system. For example, one device
may run a Unix® operating system, while another device
contains a simple Java® runtime environment. A representa-
tive computer platform may include a browser, which is a well
known software application for accessing hypertext docu-
ments in a variety of formats, such as graphic files, word
processing files, Extensible Markup Language (XML),
Hypertext Markup Language (HTML), Handheld Device
Markup Language (HDML), Wireless Markup Language
(WML), and various other formats and types offiles. It should
also be noted that the distributed data processing system
shown in FIG. lA is contemplated as being fully able to
support a variety of peer-to-peer subnets and peer-to-peer
services.

With reference now to FIG. 1C, a data flow diagram illus-
trates a typical authentication process that may be used when
a client attempts to access a protected resource at a server. As
illustrated, the user at a client workstation 150 seeks access
over a computer network to a protected resource on a server
151 through the user's web browser executing on the client
workstation. A protected or controlled resource is a resource
(an application, an object, a document, a page, a file, execut-
able code, or other computational resource, communication-
type resource, etc.) for which access is controlled or
restricted. A protected resource is identified by a Uniform
Resource Locator (TJRL), or more generally, a Uniform
Resource Identifier (TJRI), that can only be accessed by an
authenticated and/or authorized user. The computer network

6

may be the Internet, an intranet, or other network, as shown in
FIG. lA or FIG. lB, and the server may be a web application
server (WAS), a server application, a servlet process, or the
like.

5 The process is initiated when the user requests a server-side
protected resource, such as a web page within the domain
"ibm.com" (step 152). The terms "server-side" and "client-
side" refer to actions or entities at a server or a client, respec-
tively, within a networked environment. The web browser (or

lo associated application or applet) generates an HTTP request
(step 153) that is sent to the web server that is hosting the
domain "ibm.com". The terms "request" and "response"
should be understood to comprise data formatting that is
appropriate for the transfer of information that is involved in

1 5 a particular operation, such as messages, communication pro-
tocol information, or other associated information.

The server determines that it does not have an active ses-
sion for the client (step 154), so the server initiates and com-
pletes the establishment of an SSL (Secure Sockets Layer)

20 session between the server and the client (step 155), which
entails multiple transfers of information between the client
and the server. After an SSL session is established, subse-
quent communication messages are transferred within the
SSL session; any secret information remains secure because

25 ofthe encrypted communications within the SSL session.
However, the server needs to determine the identity of the

user before allowing the user to have access to protected
resources, so the server requires the user to perform an
authentication process by sending the client some type of

30 authentication challenge (step 156). The authentication chal-
lenge may be in various formats, such as an HTML form. The
user then provides the requested or required information (step
157), such as a usemame or other type ofuser identifier along
with an associated password or other form of secret informa-

35 tion.
The authentication response information is sent to the

server (step 158), at which point the server authenticates the
user or client (step 159), e.g., by retrieving previously sub-

40
mitted registration information and matching the presented
authentication information with the user' s stored informa-
tion. Assuming the authentication is successful, an active
session is established forthe authenticated user or client. The
server creates a session identifier for the client, and any sub-

45
sequent request messages from the client within the session
would be accompanied by the session identifier.

The server then retrieves the originally requested web page
and sends an HTTP response message to the client (step 160),
thereby fulfilling the user' s original request for the protected

50 resource. At that point, the user may request another page
within "ibm.com" (step 161) by clicking a hypertext link
within a browser window, and the browser sends another
HTTP request message to the server (step 162). At that point,
the server recognizes that the user has an active session (step

55 163) because the user's session identifier is returned to the
server in the HTTP request message, and the server sends the
requested web page back to the client in another HTTP
response message (step 164). Although FIG. 1C depicts a
typical prior art process, it should be noted that other alterna-

60 tive session state management techniques may be depicted,
such as URL rewriting or using cookies to identify users with
active sessions, which may include using the same cookie that
is used to provide proof of authentication.

With reference now to FIG. 1D, a diagram illustrates a
65 typical Web-based environment in which the present inven-

tion may be implemented. In this environment, a user of
browser 170 at client 171 desires to access a protected

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 125 of 147 PageID #: 142

US 7,631,346 B2

7
resource on web application server 172 in DNS domain 173,
or on web application server 174 in DNS domain 175.

In a manner similar to that shown in FIG. 1C, a user can
request a protected resource at one of many domains. In
contrast to FIG. 1C, which shows only a single server at a
particular domain, each domain in FIG. 1D has multiple
servers. In particular, each domain may have an associated
authentication server 176 and 177.

In this example, after client 171 issues a request for a
protectedresource at domain 173, web application server 172
determines that it does not have an active session for client
171, and it requests that authentication server 176 perform an
appropriate authentication operation with client 171 . Authen-
tication server 176 communicates the result of the authenti-
cation operation to web application server 172. Ifthe user (or
browser 170 or client 171 on behalfofthe user) is success-
fully authenticated, then web application server 172 estab-
lishes a session for client 171 and returns the requested pro-
tected resource. Typically, once the user is authenticated by
the authentication server, a cookie may be set and stored in a
cookie cache in the browser. FIG. 1D is merely an example of
one manner in which the processing resources of a domain
may be shared amongst multiple servers, particularly to per-
form authentication operations.

In a similar manner, after client 171 issues a request for a
protected resource at domain 175, authentication server 177
performs an appropriate authentication operation with client
171, after which web application server 174 establishes a
session for client 171 and returns the requested protected
resource. Hence, FIG. 1D illustrates that client 171 may have
multiple concurrent sessions in different domains yet is
required to complete multiple authentication operations to
establish those concurrent sessions.

With reference now to FIG. lE, a block diagram depicts an
example of a typical online transaction that might require
multiple authentication operations from a user. Referring
again to FIG. 1C and FIG. 1D, a user may be required to
complete an authentication operation prior to gaining access
to a controlled resource, as shown in FIG. 1C. Although not
shown in FIG. 1C, an authentication manager may be
deployed on server 151 to retrieve and employ user informa-
tion that is required to authenticate a user. As shown in FIG.
1D, a user may have multiple current sessions within different
domains 173 and 175, and although they are not shown in
FIG. 1D, each domain may employ an authentication man-
ager in place ofor in addition to the authentication servers. In
a similarmanner, FIG. lE also depicts a set ofdomains, each
ofwhich support some type of authentication manager. FIG.
lE illustrates some ofthe difficulties that a user may experi-
ence when accessing multiple domains that require the user to
complete an authentication operation for each domain.

User 190 may be registered at ISP domain 191, which may
support authentication manager 192 that authenticates user
190 for the purpose ofcompleting transactions with respect to
domain 191. ISP domain 191 may be an Internet Service
Provider (ISP) that provides Internet connection services,
email services, and possibly other e-commerce services.
Alternatively, ISP domain 191 may be an Internet portal that
is frequently accessed by user 190.

Similarly, domains 193, 195, and 197 represent typical web
service providers. Government domain 193 supports authen-
tication manager 194 that authenticates users for completing
various government-related transactions. Banking domain
195 supports authentication manager 196 that authenticates
users for completing transactions with an online bank.
E-commerce domain 197 supports authentication manager
198 that authenticates users for completing online purchases.

8

As noted previously, when a user attempts to move from
one domain to another domain within the Internet or World
Wide Web by accessing resources at the different domains, a
user may be subjected to multiple user authentication

5 requests or requirements, which can significantly slow the
user's progress across a set ofdomains. Using FIG. lE as an
exemplary environment, user 190 may be involved in a com-
plicated online transaction with e-commerce domain 197 in
which the user is attempting to purchase an on-line service

lo that is limited to users who are at least 18 years old and who
have a valid driver license, a valid credit card, and a U.S. bank
account. This online transaction may involve domains 191,
193, 195, and 197.

Typically, a user might not maintain an identity and/or
15 attributes within each domain that participates in a typical

online transaction. In this example, user 190 may have regis-
tered his or her identity with the user's ISP, but to complete
the online transaction, the user might also be required to
authenticate to domains 193, 195, and 197. If each of the

20 domains does not maintain an identity for the user, then the
user's online transaction may fail. Even if the user can be
authenticated by each domain, it is not guaranteed that the
different domains can transfer information between them-
selves in order to complete the user' s transaction.

25 Given the preceding briefdescription of some current tech-
nology, the description of the remaining figures relates to
federated computer environments in which the present inven-
tion may operate. Prior to discussing the present invention in
more detail, however, some terminology is introduced.

30 Terminology
The terms "entity" or "party" generally refers to an orga-

nization, an individual, or a system that operates on behalf of
an organization, an individual, or another system. The term
"domain" connotes additional characteristics within a net-

35 work environment, but the terms "entity", "party", and
"domain" can be used interchangeably. For example, the term
"domain" may also refer to a DNS (Domain Name System)
domain, or more generally, to a data processing system that
includes various devices and applications that appear as a

40 logical unit to exterior entities.
The terms "request" and "response" should be understood

to comprise data formatting that is appropriate for the transfer
ofinformation that is involved in a particular operation, such
as messages, communication protocol information, or other

45 associated information. A protected resource is a resource (an
application, an object, a document, a page, a file, executable
code, or other computational resource, communication-type
resource, etc.) for which access is controlled or restricted.

A token provides direct evidence ofa successful operation
50 and is producedby the entity that performs the operation, e.g.,

an authentication token that is generated after a successful
authentication operation. A Kerberos token is one example of
an authentication token that may be used with the present
invention. More information on Kerberos may be found in

55 Kohl et al., "The Kerberos Network Authentication Service
(V5)", Internet Engineering Task Force (IETF) Request for
Comments (RFC) 1510, 09/1993.

An assertion provides indirect evidence of some action.
Assertions may provide indirect evidence ofidentity, authen-

60 tication, attributes, authorization decisions, or other informa-
tion and/or operations. An authentication assertion provides
indirect evidence ofauthentication by an entity that is not the
authentication service but that listened to the authentication
service.

65 A SecurityAssertion Markup Language (SAML) assertion
is an example ofa possible assertion format that may be used
with the present invention. SAML has been promulgated by

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 126 of 147 PageID #: 143

US 7,631,346 B2

the Organization for the Advancement ofStructured Informa-
tion Standards (OASIS), which is a non-profit, global consor-
tium. SAML is described in "Assertions and Protocol for the
OASIS Security Assertion Markup Language (SAML)",
Committee Specification 01, May 31, 2002, as follows:

The Security Assertion Markup Language (SAML) is an
XML-based framework for exchanging security infor-
mation. This security information is expressed in the
form of assertions about subjects, where a subject is an
entity (either human or computer) that has an identity in
some security domain. A typical example ofa subject is
a person, identified by his or her email address in a
particular Internet DNS domain. Assertions can convey
information about authentication acts performed by sub-
jects, attributes of subjects, and authorization decisions
about whether subjects are allowed to access certain
resources. Assertions are represented as XML con-
structs and have a nested structure, whereby a single
assertion might contain several different internal state-
ments about authentication, authorization, and
attributes. Note that assertions containing authentication
statements merely describe acts of authentication that
happened previously. Assertions are issued by SAML
authorities, namely, authentication authorities, attribute
authorities, and policy decision points. SAML defines a
protocol by which clients can request assertions from
SAML authorities and get a response from them. This
protocol, consisting of XML-based request and
response message formats, can be bound to many differ-
cnt underlying communications and transport protocols;
SAML currently defines one binding, to SOAP over
HTTP. SAML authorities can use various sources of
information, such as external policy stores and asser-
tions that were received as input in requests, in creating
their responses. Thus, while clients always consume
assertions, SAML authorities can be both producers and
consumers of assertions.

The SAML specification states that an assertion is a package
ofinformation that supplies one or more statements made by
an issuer. SAML allows issuers to make three different kinds
ofassertion statements: authentication, inwhichthe specified
subject was authenticated by a particular means at a particular
time; authorization, in which a request to allow the specified
subject to access the specified resource has been granted or
denied; and attribute, in which the specified subject is asso-
ciated with the supplied attributes. As discussed further
below, various assertion formats can be translated to other
assertion formats when necessary.

Authentication is the process ofvalidating a set of creden-
tials that are provided by a user or on behalfofa user. Authen-
tication is accomplished by verifying something that a user
knows, something that a user has, or something that the user
is, i.e. some physical characteristic about the user. Something
that a user knows may include a shared secret, such as a user' s
password, or by verifying something that is known only to a
particular user, such as a user' s cryptographic key. Something
that a user has may include a smartcard or hardware token.
Some physical characteristic about the user might include a
biometric input, such as a fingerprint or a retinal map.

An authentication credential is a set of challenge/response
information that is used in various authentication protocols.
For example, a username and password combination is the
most familiar form ofauthentication credentials. Other forms
of authentication credential may include various forms of
challenge/response information, Public Key Infrastructure
(PKI) certificates, smartcards, biometrics, etc. An authentica-

lo
tion credential is differentiated from an authentication asser-
tion: an authentication credential is presented by a user as part
ofan authentication protocol sequence with an authentication
server or service, and an authentication assertion is a state-

5 ment about the successful presentation and validation of a
user' s authentication credentials, subsequently transferred
between entities when necessary.

Federation Model for Computing Environment that May
Incorporate the Present Invention

lo In the context ofthe World Wide Web, users are coming to
expect the ability tojump from interacting with an application
on one Internet domain to another application on another
domain with minimal regard to the information barriers
between each particular domain. Users do not want the frus-

15 tration that is caused by having to authenticate to multiple
domains for a single transaction. In other words, users expect
that organizations should interoperate, but users generally
want domains to respect their privacy. In addition, users may
prefer to limit the domains that permanently store private

20 information. These user expectations exist in a rapidly evolv-
ing heterogeneous environment in which many enterprises
and organizations are promulgating competing authentica-
tion techniques.

The present invention is supported within a federation
25 model that allows enterprises to provide a single-sign-on

experience to a user. In other words, the present invention
may be implemented within a federated, heterogeneous envi-
ronment. As an example of a transaction that would benefit
from a federated, heterogeneous environment, referring again

30 to FIG. lE, user 190 is able to authenticate to domain 191 and
then have domain 191 provide the appropriate assertions to
each downstream domain that might be involved in a trans-
action. These downstream domains need to be able to under-
stand and trust authentication assertions and/or other types of

35 assertions, even though there are no pre-established assertion
formats between domain 191 and these other downstream
domains. In addition to recognizing the assertions, the down-
stream domains need to be able to translate the identity con-
tamed within an assertion to an identity that represents user

40 190 within a particular domain, even though there is no pre-
established identity mapping relationship. It should be noted,
though, that the present invention is applicable to various
types ofdomains and is not limited to ISP-type domains that
are represented within FIG. lE as exemplary domains.

45 The present invention is supportedwithin a federated envi-
ronment. In general, an enterprise has its own user registry
and maintains relationships with its own set of users. Each
enterprise typically has its own means ofauthenticating these
users . However, the federated scheme for use with the present

50 invention allows enterprises to cooperate in a collective man-
ncr such that users in one enterprise can leverage relation-
ships with a set ofenterprises through an enterprise's partici-
pation in a federation of enterprises. Users can be granted
access to resources at any of the federated enterprises as if

55 they had a direct relationship with each enterprise. Users are
not required to register at each business ofinterest, and users
are not constantly required to identiFy and authenticate them-
selves. Hence, within this federated environment, an authen-
tication scheme allows for a single-sign-on experience within

60 the rapidly evolving heterogeneous environments in informa-
tion technology.

In the context ofthe present invention, a federation is a set
ofdistinct entities, such as enterprises, organizations, institu-
tions, etc., that cooperate to provide a single-sign-on, ease-

65 of-use experience to a user; a federated environment differs
from a typical single-sign-on environment in that two enter-
prises need not have a direct, pre-established, relationship

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 127 of 147 PageID #: 144

US 7,631,346 B2

11

defining how and what information to transfer about a user.
Within a federated environment, entities provide services
which deal with authenticating users, accepting authentica-
tion assertions, e.g., authentication tokens, that are presented
by other entities, and providing some form of translation of
the identity ofthe vouched-for user into one that is understood
within the local entity.

Federation eases the administrative burden on service pro-
viders. A service provider can rely on its trust relationships
with respect to the federation as a whole; the service provider
does not need to manage authentication information, such as
user password information, because it can rely on authenti-
cation that is accomplished by a user's authentication home
domain or an identity provider.

The system that supports the present invention also con-
cerns a federated identity management system that estab-
lishes a foundation in which loosely coupled authentication,
user enrollment, user profile management and/or authoriza-
tion services collaborate across security domains. Federated
identity management allows services residing in disparate
security domains to securely interoperate and collaborate
even though there may be differences in the underlying secu-
rity mechanisms and operating system platforms at these
disparate domains.

Identity Provider vs. Service Provider
As mentioned above and as explained in more detail further

below, a federated environment provides significant user ben-
efits. A federated environment allows a user to authenticate at
a first entity, which may act as an issuing party to issue an
authentication assertion about the user for use at a second
entity. The user can then access protected resources at a
second, distinct entity, termed the relying party, by presenting
the authentication assertion that was issued by the first entity
without having to explicitly re-authenticate at the second
entity. Information that is passed from an issuing party to a
relying party is in the form ofan assertion, and this assertion
may contain different types of information in the form of
statements. For example, an assertion may be a statement
about the authenticated identity of a user, or it may be a
statement about user attribute information that is associated
with a particular user.

With reference now to FIG. 2, a block diagram depicts the
terminology of the federated environment with respect to a
transaction that is initiated by a user to a first federated enter-
prise, which, in response, invokes actions at downstream
entities within the federated environment. FIG. 2 shows that
the terminology may differ depending on the perspective of
an entity within the federation for a given federated operation.
More specifically, FIG. 2 illustrates that a computing envi-
ronment that supports the present invention supports the tran-
sitivity oftrust andthe transitivity ofthe authentication asser-
tion process; a domain or an entity can issue an assertion
based on its trust in an identity as asserted by another domain
or another entity.

User 202 initiates a transaction through a request for a
protected resource at enterprise 204. If user 202 has been
authenticated by enterprise 204 or will eventually be authen-
ticated by enterprise 204 during the course of a transaction,
then enterprise 204 may be termed the user's home domain
for this federated session. Assuming that the transaction
requires some type of operation by enterprise 206 and enter-
prise 204 transfers an assertion to enterprise 206, then enter-
prise 204 is the issuing entity with respect to the particular
operation, and enterprise 206 is the relying entity for the
operation.

The issuing entity issues an assertion for use by the relying
domain; an issuing entity is usually, but not necessarily, the

12
user's home domain or the user's identity provider. Hence, it
would usually be the case that the issuing party has authenti-
cated the user using a typical authentication operation. How-
ever, it is possible that the issuing party has previously acted

5 as a relying party whereby it received an assertion from a
different issuing party. In other words, since a user-initiated
transaction may cascade through a series ofenterprises within
a federated environment, a receiving party may subsequently
act as an issuing party for a downstream transaction. In gen-

lo eral, any entity that has the ability to issue authentication
assertions on behalf of a user can act as an issuing entity.

The relying entity is an entity that receives an assertion
from an issuing entity. The relying party is able to accept,
trust, and understand an assertion that is issued by a third

15 py on behalfofthe user, i.e. the issuing entity; it is gener-
ally the relying entity's duty to use an appropriate authenti-
cation authority to interpret an authentication assertion. A
relying party is an entity that relies on an assertion that is
presented on behalfofa user or another entity. In this manner,

20 a user can be given a single-sign-on experience at the relying
entity instead ofrequiring the relying entity to prompt the user
for the user's authentication credentials as part ofan interac-
tive session with the user.

Referring again to FIG. 2, assuming that the transaction
25 requires further operations such that enterprise 206 transfers

an assertion to enterprise 208, then enterprise 206 is an
upstream entity that acts as the issuing entity with respect to
the subsequent or secondary transaction operation, and enter-
prise 208 is a downstream entity that acts as the relying entity

30 for the operation; in this case, enterprise 208 may be regarded
as another downstream entity with respect to the original
transaction, although the subsequent transaction can also be
described with respect to only two entities.

35
As shown in FIG. 2, a federated entity may act as a user's

home domain, which provides identity information and
attribute information about federated users. An entity within
a federated computing environment that provides identity
information, identity or authentication assertions, or identity

40
services may be termed an identity provider. Other entities or
federation partners within the same federation may rely on an
identity provider for primary management ofa user' s authen-
tication credentials, e.g., accepting a single-sign-on token
that is provided by the user's identity provider; a domain at

45
which the user authenticates may be termed the user' s (au-
thentication) home domain. The identity provider may be
physically supported by the user's employer, the user's ISP,
or some other commercial entity.

An identity provider is a specific type of service that pro-
50 vides identity information as a service to other entities within

a federated computing environment. With respect to most
federated transactions, an issuing party for an authentication
assertion would usually be an identity provider; any other
entity can be distinguished from the identity provider. Any

55 other entity that provides a service within the federated com-
puting environment can be categorized as a service provider.
Once a user has authenticated to the identity provider, other
entities or enterprises in the federation may be regarded as
merely service providers for the duration ofa given federated

60 session or a given federated transaction.
In some circumstances, there may be multiple entities

within a federated environment that may act as identity pro-
viders for a user. For example, the user may have accounts at
multiple federated domains, each ofwhich is able to act as an

65 identity provider for the user; these domains do not necessar-
ily have information about the other domains nor about a
user's identity at a different domain.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 128 of 147 PageID #: 145

US 7,631,346 B2

13
Although it may be possible that there could be multiple

enterprises within a federated environment that may act as
identity providers, e.g., because there may be multiple enter-
prises that have the ability to generate and validate a user's
authentication credentials, etc., a federated transaction usu-
ally involves only a single identity provider. Ifthere is only a
single federated entity that is able to authenticate a user, e.g.,
because there is one and only one entity within the federation
with which the user has performed a federated enrollment or
registration operation, then it would be expected that this
entity would act as the user' s identity provider in order to
support the user's transactions throughout the federated envi-
ronment.

Within some federated transactions that require the inter-
operation ofmultiple service providers, a downstream service
provider may accept an assertion from an upstream service
provider; the conditions in which an upstream service pro-
vider may act as an issuing entity to a downstream service
provider that is acting as a relying party may depend upon the
type of trust relationship between the service providers and
the type oftransaction between the service providers. Within
the scope of a simple federated transaction, however, there is
only one entity that acts as an issuing entity.

The present invention may be supported within a given
computing environment in which a federated infrastructure
can be addedto existing systems while minimizing the impact
on an existing, non-federated architecture. Hence, operations,
including authentication operations, at any given enterprise
or service provider are not necessarily altered by the fact that
an entity may also participate within a federated environment.
In other words, even though an entity's computing systems
may be integrated into a federated environment, a user may be
able to continue to perform various operations, including
authentication operations, directly with an enterprise in a
non-federated manner. However, the user may be able to have
the same end-user experience while performing a federated
operation with respect to a given entity as if the user had
performed a similar operation with the given entity in a non-
federated manner. Hence, it should be noted that not all of a
given enterprise's users necessarily participate federated
transactions when the given enterprise participates in a fed-
eration; some ofthe enterprise's users may interact with the
enterprise's computing systems without performing any fed-
crated transactions.

Moreover, user registration within the computing environ-
ment of a given enterprise, e.g., establishment of a user
account in a computer system, is not necessarily altered by the
fact that the enterprise may also participate within a federated
environment. For example, a user may still establish an
account at a domain through a legacy or pre-existing regis-
tration process that is independent of a federated environ-
ment. Hence, in some cases, the establishment of a user
account at an enterprise may or may not include the estab-
lishment ofaccount information that is valid across a federa-
tion when the enterprise participates within a federated com-
puting environment.

FederatedArchitecture-Federation Front-End for Legacy
Systems

With reference now to FIG. 3, a block diagram depicts the
integration ofpre-existing data processing systems at a given
domain with some federated architecture components that
may be used to support an embodiment ofthe present inven-
tion. A federated environment includes federated entities that
provide a variety of services for users . User 3 12 interacts with
client device 314, which may support browser application
216 and various other client applications 318. User 312 is
distinct from client device 314, browser 316, or any other

14
software that acts as interface between user and other devices
and services. In some cases, the following description may
make a distinction between the user acting explicitly within a
client application and a client application that is acting on

5 behalf of the user. In general, though, a requester is an inter-
mediary, such as a client-based application, browser, SOAP
client, etc., that may be assumed to act on behalfofthe user.

Browser application 316 may be a typical browser, includ-

lo ing those found on mobile devices, that comprises many
modules, such as HTTP communication component 320 and
markup language (ML) interpreter 322. Browser application
316 may also support plug-ins, such as web services client
324, and/or downloadable applets, which may or may not

15
require a virtual machine runtime environment. Web services
client 324 may use Simple Object Access Protocol (SOAP),
which is a lightweight protocol for defining the exchange of
structured and typed information in a decentralized, distrib-
uted environment. SOAP is an XML-based protocol that con-

20
sists ofthree parts: an envelope that defines a framework for
describing what is in a message and how to process it; a set of
encoding rules for expressing instances of application-de-
fined datatypes; and a convention for representing remote
procedure calls and responses. User 312 may access web-

25
based services using browser application 316, but user 312
may also access web services through other web service
clients on client device 314. Some ofthe federated operations
may employ HTTP redirection via the user's browser to
exchange information between entities in a federated envi-

30
ronment. However, it should be noted that the present inven-
tion may be supported over a variety of communication pro-
tocols and is not meant to be limited to HTTP-based
communications. For example, the entities in the federated
environment may communicate directly when necessary;

35
messages are not required to be redirected through the user' s
browser.

The present invention may be supported in a manner such
that components that are required for a federated environment
can be integrated with pre-existing systems. FIG. 3 depicts

40 one embodiment for implementing these components as a
front-end to a pre-existing system. The pre-existing compo-
nents at a federated domain can be considered as legacy
applications or back-end processing components 330, which
include authentication service runtime (ASR) servers 332 in

45 a manner similar to that shown in FIG. 4. ASR servers 332 are
responsible for authenticating users when the domain con-
trols access to application servers 334, which can be consid-
cred to generate, retrieve, or otherwise support or process
protected resources 335. The domain may continue to use

50 legacy user registration application 336 to register users for
access to application servers 334. Information that is needed
to authenticate a registered user with respect to legacy opera-
tions is stored in enterprise user registry 338; enterprise user
registry 338 may be accessible to federation components as

55 well.
After joining a federated environment, the domain may

continue to operate without the intervention of federated
components. In other words, the domain may be configured
so that users may continue to access particular application

60 servers or other protected resources directly without going
through a point-of-contact server or other component imple-
menting this point-of-contact server functionality; a user that
accesses a system in this manner would experience typical
authentication flows and typical access. In doing so, however,

65 a user that directly accesses the legacy system would not be
able to establish a federated session that is known to the
domain' s point-of-contact server.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 129 of 147 PageID #: 146

US 7,631,346 B2

15
The domain's legacy functionality can be integrated into a

federated environment through the use of federation front-
end processing 340, which includes point-of-contact server
342 and trust proxy server 344 (or more simply, trust proxy
344 or trust service 344) which itself interacts with Security 5

Token Service (STS) 346, which are described in more detail
below with respect to FIG. 4. Federation configuration appli-
cation 348 allows an administrative user to confgure the
federation front-end components to allow them to interface
with the legacy back-end components through federation io
interface unit 350. Federated functionality may be imple-
mented in distinct system components or modules. In a pre-
ferred embodiment, most ofthe functionality for performing
federation operations may be implemented by a collection of
logical components within a single federation application; is
federated user lifecycle management application 352
includes trust service 344 along with single-sign-on protocol
service (SPS) 354. Trust service 344 may comprise identity-
and-attribute service (I&AS) 356, which is responsible for
identity mapping operations, attribute retrieval, etc., as part of 20

federation functionality. Identity-and-attribute service 356
may also be employed by single-sign-on protocol service 354
during single-sign-on operations. A federation user registry
358 may be employed in certain circumstances to maintain
user-related information for federation-specific purposes. 25

Legacy or pre-existing authentication services at a given
enterprise may use various, well known, authentication meth-
ods or tokens, such as usemame/password or smart card
token-based information. However, in a preferred federated
computing system for supporting the present invention, the 30

functionality ofa legacy authentication service can be used in
a federated environment through the use of point-of-contact
servers. Users may continue to access a legacy authentication
server directly without going through a point-of-contact
server, although a user that accesses a system in this manner 35

would experience typical authentication flows and typical
access; a user that directly accesses a legacy authentication
system would not be able to generate a federated authentica-
tion assertion as proof of identity in accordance with the
present invention. One ofthe roles ofthe federation front-end 40

is to translate a federated authentication token received at a
point-of-contact server into a format understood by a legacy
authentication service. Hence, a user accessing the federated
environment via the point-of-contact server would not neces-
sarily be required to re-authenticate to the legacy authentica- 45

tion service. Preferably, the user would be authenticated to a
legacy authentication service by a combination of the point-
of-contact server and a trust proxy such that it appears as if the
user was engaged in an authentication dialog.

Federated Architecture-Point-of-Contact Servers, Trust so
Proxies, and Trust Brokers

With reference now to FIG. 4, a block diagram depicts an
example of a manner in which some components within a
federated architecture may be used to establish trust relation-
ships to support an implementation ofthe present invention. A ss
federated environment includes federated enterprises or simi-
lar entities that provide a variety ofservices for users. A user,
through an application on a client device, may attempt to
access resources at various entities, such as enterprise 410. A
point-of-contact server at each federated enterprise, such as 60

point-of-contact (POC) server 412 at enterprise 410, is the
entry point into the federated environment for requests from
a client to access resources that are supported and made
available by enterprise 410. The point-of-contact servermini-
mizes the impact on existing components within an existing, 65

non-federated architecture, e.g., legacy systems, because the
point-of-contact server handles many of the federation

16
requirements. The point-of-contact server provides session
management, protocol conversion, and possibly initiates
authentication and/or attribute assertion conversion. For
example, the point-of-contact server may translate HTTP or
HTTPS messages to SOAP and vice versa. As explained in
more detail further below, the point-of-contact server may
also be used to invoke a trust proxy to translate assertions,
e.g., a SAML token received from an issuing party can be
translated into a Kerberos token understood by a receiving
party.

A trust service (also termed a trust proxy, a trust proxy
server, or a trust service), such as trust proxy (TP) 414 at
enterprise 410, establishes and maintains a trust relationship
between two entities in a federation. A trust service generally
has the ability to handle authentication token format transla-
tion (through the security token service, which is described in
more detail further below) from a format used by the issuing
party to one understood by the receiving party.

Together, the use of a point-of-contact server and a trust
service minimize the impact of implementing a federated
architecture on an existing, non-federated set of systems.
Hence, the exemplary federated architecture requires the
implementation of at least one point-of-contact server and at
least one trust service per federated entity, whether the entity
is an enterprise, a domain, or other logical or physical entity.
The exemplary federated architecture, though, does not nec-
essarily require any changes to the existing, non-federated set
of systems. Preferably, there is a single trust service for a
given federated entity, although there may be multiple
instances of a trust service component for availability pur-
poses, or there may be multiple trust services for a variety of
smaller entities within a federated entity, e.g., separate sub-
sidiaries within an enterprise. It is possible that a given entity
could belong to more than one federation, although this 5cc-
nano would not necessarily require multiple trust services as
a single trust service may be able to manage trust relation-
ships within multiple federations.

One role of a trust service may be to determine or to be
responsible for determining the required token type by
another domain and/or the trust service in that domain. A trust
service has the ability or the responsibility to handle authen-
tication token format translation from a format used by the
issuing party to one understood by the receiving party. Trust
service 414 may also be responsible for any user identity
translation or attribute translation that occurs for enterprise
410, or this responsibility may be supported by a distinct
identity-and-attribute service, e.g., such as identity-and-at-
tribute service 356 as shown in FIG. 3. In addition, a trust
service can support the implementation of aliases as repre-
sentatives of a user identity that uniquely identiFy a user
without providing any addition information about the user' s
real world identity. Furthermore, a trust proxy can issue
authorization and/or session credentials for use by the point-
of-contact server. However, a trust service may invoke a trust
broker for assistance, as described further below. Identity
translation may be required to map a user's identity and
attributes as known to an issuing party to one that is mean-
ingful to a receiving party. This translationmay be invoked by
either a trust service at an issuing entity, a trust service at a
receiving entity, or both.

Trust service 414, or a distinct identity-and-attribute ser-
vice as mentioned above, may include (or interact with) an
internalized component, shown as security token service
(STS) component 416, which will provide token translation
and will invoke authentication service runtime (ASR) 418 to
validate and generate tokens. The security token service pro-
vides the token issuance and validation services required by

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 130 of 147 PageID #: 147

US 7,631,346 B2

17
the trust service, which may include identity translation. The
security token service therefore includes an interface to exist-
ing authentication service runtimes, or it incorporates authen-
tication service runtimes into the service itself Rather than
being internalized within the trust service, the security token
service component may also be implemented as a stand-alone
component, e.g., to be invoked by the trust service, or it may
be internalized within a transaction server, e.g., as part of an
application server.

For example, an security token service component may
receive a request to issue a Kerberos token. As part of the
authentication information ofthe user for whom the token is
to be created, the request may contain a binary token contain-
ing a username and password. The security token service
component will validate the username and password against,
e.g., an LDAP runtime (typical authentication) and will
invoke a Kerberos KDC (Key Distribution Center) to generate
a Kerberos ticket for this user. This token is returned to the
trust service for use within the enterprise; however, this use
may include externalizing the token for transfer to another
domain in the federation.

In a manner similar to that described with respect to FIG.
1D, a user may desire to access resources at multiple enter-
prises within a federated environment, such as both enterprise
410 and enterprise 420. In a manner similar to that described
above for enterprise 410, enterprise 420 comprises point-of-
contact server 422, trust service 424, security token service
(STS) 426, and authentication service runtime 428. Although
the user may directly initiate separate transactions with each
enterprise, the user may initiate a transaction with enterprise
410 which cascades throughout the federated environment.
Enterprise 410 may require collaboration with multiple other
enterprises within the federated environment, such as enter-
prise 420, to complete a particular transaction, even though
the user may not have been aware of this necessity when the
user initiated a transaction. Enterprise 420 becomes involved
as a downstream entity, and enterprise 410 may present a
assertion to enterprise 420 ifnecessary in order to further the
user' s federated transaction.

It may be the case that a trust service does not know how to
interpret the authentication token that is received by an asso-
ciated point-of-contact server and/or how to translate a given
user identity and attributes. In this case, the trust service may
choose to invoke functionality at a trust broker component,
such as trust broker 430. A trust broker maintains relation-
ships with individual trust proxies/services, thereby provid-
ing transitive trust between trust services . Using a trust broker
allows each entity within a federated environment, such
enterprises 410 and 420, to establish a trust relationship with
the trust broker rather than establishing multiple individual
trust relationships with each entity in the federated environ-
ment. For example, when enterprise 420 becomes involved as
a downstream entity for a transaction initiated by a user at
enterprise 410, trust service 414 at enterprise 410 can be
assured that trust service 424 at enterprise 420 can understand
an assertion from trust service 414 by invoking assistance at
trust broker 430 if necessary. Although FIG. 4 depicts the
federated environment with a single trust broker, a federated
environment may have multiple trust brokers.

It should be noted that although FIG. 4 depicts point-of-
contact server 412, trust service 414, security token service
component 416, and authentication service runtime 418 as
distinct entities, it is not necessary for these components to be
implemented on separate components. For example, it is pos-
sible for the functionality ofthese separate components to be
implemented as a single application, as applications on a
single physical device, or as distributed applications on mul-

18
tiple physical devices. In addition, FIG. 4 depicts a single
point-of-contact server, a single trust service, and a single
security token server for an enterprise, but an alternative
configuration may include multiple point-of-contact servers,

5 multiple trust services, and multiple security token servers for
each enterprise. The point-of-contact server, the trust service,
the security token service, and other federated entities may be
implemented in various forms, such as software applications,
objects, modules, software libraries, etc.

lo A trust service/STS may be capable ofaccepting and vali-
dating many different authentication credentials, including
traditional credentials such as a username and password com-
binations and Kerberos tickets, and federated authentication
token formats, including authenticationtokens producedby a

15 third party. A trust service/STS may allow the acceptance of
an authentication token as proofofauthentication elsewhere.
The authentication token is produced by an issuing party and
is used to indicate that a user has already authenticated to that
issuing party. The issuing party produces the authentication

20 token as a means of asserting the authenticated identity of a
user. A trust service/STS is also able to process attribute
tokens or tokens that are used to secure communication ses-
sions or conversations, e.g., those that are used to manage
session information in a manner similar to an SSL session

25 identifier.
A security token service invokes an authentication service

runtime as necessary. The authentication service runtime sup-
ports an authentication service capable of authenticating a
user. The authentication service acts as an authentication

30 authority that provides indications of successful or failed
authentication attempts via authentication responses. The
trust service/STS may internalize an authentication service,
e.g., a scenario in which there is a brand-new installation of a
web service that does not need to interact with an existing

35 legacy infrastructure. Otherwise, the security token service
component will invoke external authentication services for
validation ofauthentication tokens. For example, the security
token service component could "unpack" a binary token con-
taming a username/password and then use an LDAP service

40 to access a user registry to validate the presented credentials.
When used by another component such as an application

server, the security token service component can be used to
produce tokens required for single-sign-on to legacy authen-
tication systems; this functionality may be combined with or

45 replaced by functionality within a single-sign-on protocol
service, such as SPS 354 that is shown in FIG. 3. Hence, the
security token service component can be used for token trans-
lation for internal purposes, i.e. within an enterprise, and for
external purposes, i.e. across enterprises in a federation. As an

50 example ofan internal purpose, a Web application server may
interface to a mainframe via an IBM CICS (Customer Infor-
mation Control System) transaction gateway; CICS is a fam-
ily of application servers and connectors that provides enter-
prise-level online transaction management and connectivity

55 for mission-critical applications. The Web application server
may invoke the security token service component to translate
a Kerberos ticket (as used internally by the Web application
server) to an IBM RACF® passticket required by the CICS
transaction gateway.

60 The entities that are shown in FIG. 4 can be explained using
the terminology that was introduced above, e.g., "identity
provider" and "service provider". As part ofestablishing and
maintaining trust relationships, an identity provider's trust
service can determine what token types are required/accepted

65 by a service provider's trust service. Thus, trust services use
this information when invoking token services from a secu-
rity token service. When an identity provider's trust service is

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 131 of 147 PageID #: 148

US 7,631,346 B2

19
required to produce an authentication assertion for a service
provider, the trust service determines the required token type
and requests the appropriate token from the security token
service.

When a service provider' s trust service receives an authen-
tication assertion from an identity provider, the trust service
knows what type ofassertion that it expected and what type of
assertion that it needs for internal use within the service
provider. The service provider's trust service therefore
requests that the security token service generate the required
internal-use token based on the token in the received authen-
tication assertion.

Both trust services and trust brokers have the ability to
translate an assertion received from an identity provider into
a format that is understood by a service provider. The trust
broker has the ability to interpret the assertion format (or
formats) for each of the trust services with whom there is a
direct trust relationship, thereby allowing the trust broker to
provide assertion translation between an identity provider
and a service provider. This translation can be requested by
either party through its local trust service. Thus, the identity
provider' s trust service can request translation ofan assertion
before it is sent to the service provider. Likewise, the service
provider' s trust service can request translation ofan assertion
received from an identity provider.

Assertion translation comprises user identity translation,
authentication assertion translation, attribute assertion trans-
lation, or other forms ofassertion translation. Reiterating the
point above, assertion translation is handled by the trust com-
ponents within a federation, e.g., trust services and trust bro-
kers. A trust service may perform the translation locally,
either at the identity provider or at the service provider, or a
trust service may invoke assistance from a trust broker.

Assuming that an identity provider and a service provider
already have individual trust relationships with a trust broker,
the trust broker can dynamically create, i.e. broker, new trust
relationships between issuing parties and relying parties if
necessary. After the initial trust relationship brokering opera-
tion that is provided by the trust broker, the identity provider
and the service provider may directly maintain the relation-
ship so that the trust broker need not be invoked for future
translation requirements . It should be noted that translation of
authentication tokens can happen at three possible places: the
identity provider's trust service, the service provider's trust
service, and the trust broker. Preferably, the identity provid-
er's trust service generates an authentication assertion that is
understood by the trust broker to send to the service provider.
The service provider then requests a translation ofthis token
from the trust broker into a format recognizable by the service
provider. Token translation may occur before transmission,
after transmission, or both before and after transmission of
the authentication assertion.

Trust Relationships within Federated Architecture
Within an exemplary federated environment that is able to

support the present invention, there are two types of "trust
domains" that must be managed: enterprise trust domains and
federation trust domains. The differences between these two
types oftrust domain are based in part on the business agree-
ments governing the trust relationships with the trust domain
and the technology used to establish trust. An enterprise trust
domain contains those components that are managed by the
enterprise; all components within that trust domain may
implicitly trust each other. In general, there are no business
agreements required to establish trust within an enterprise
because the deployed technology creates inherent trust within
an enterprise, e.g., by requiring mutually authenticated SSL
sessions between components or by placing components

20
within a single, tightly controlled data center such that physi-
cal control and proximity demonstrate implicit trust. Refer-
ring to FIG. 2B, the legacy applications and back-end pro-
cessing systems may represent an enterprise trust domain,

5 wherein the components communicate on a secure internal
network.

Federation trust domains are those that cross enterprise
boundaries; from one perspective, a federation trust domain
may represent trust relationships between distinct enterprise

lo trust domains. Federation trust domains are established
through trust proxies across enterprise boundaries between
federation partners. Trust relationships involve some sort of a
bootstrapping process by which initial trust is established
between trust proxies. Part of this bootstrap process may

15 include the establishment ofshared secret keys and rules that
define the expected and/or allowed token types and identifier
translations. In general, this bootstrapping process can be
implemented out-of-band as this process may also include the
establishment of business agreements that govern an enter-

20 prise's participation in a federation and the liabilities associ-
ated with this participation.

There are a number ofpossible mechanisms for establish-
ing trust in a federated business model. In a federation model,
a fundamental notion oftrust between the federation partici-

25 pants is required for business reasons in order to provide a
level of assurance that the assertions (including tokens and
attribute information) that are transferred betweenthe partici-
pants are valid. If there is no trust relationship, then the
service provider cannot depend upon the assertions received

30 from the identity provider; they cannot be used by the service
provider to determine how to interpret any information
received from the identity provider.

For example, a large corporation may want to link several
thousand global customers, and the corporation could use

35 non-federated solutions. As a first example, the corporation
could require global customers to use a digital certificate from
a commercial certificate authority to establish mutual trust.
The commercial certificate authority enables the servers at
the corporation to trust servers located at each of the global

40 customers. As a second example, the corporation could
implement third-party trust using Kerberos; the corporation
and its global customers could implement a trusted third-
party Kerberos domain service that implements shared-se-
cret-based trust. As a third example, the corporation could

45 establish a private scheme with a proprietary security mes-
sage token that is mutually trusted by the servers of its global
customers.

Any one of these approaches may be acceptable if the
corporation needed to manage trust relationships with a small

50 number ofglobal customers, but this may become unmanage-
able ifthere are hundreds orthousands ofpotential federation
partners. For example, while it may be possible for the cor-
poration to force its smaller partners to implement a private
scheme, it is unlikely that the corporation will be able to

55 impose many requirements on its larger partners.
An enterprise may employ trust relationships established

and maintained through trust proxies and possibly trust bro-
kers . An advantage of the exemplary federated architecture
that is shown inthe figures is that it does not impose additional

60 requirements above and beyond the current infrastructures of
an enterprise and its potential federation partners.

However, this exemplary federation architecture does not
relieve an enterprise and its potential federation partners from
the preliminary workrequired to establish business and liabil-

65 ity agreements that are required for participation in the fed-
eration. In addition, the participants cannot ignore the tech-
nological bootstrapping of a trust relationship. The

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 132 of 147 PageID #: 149

US 7,631,346 B2

21
exemplary federation architecture allows this bootstrapping
to be flexible, e.g., a first federation partner can issue a Ker-
beros ticket with certain information, while a second federa-
tion partner can issue a SAML authentication assertion with
certain information.

In the exemplary federation architecture, the trust relation-
ships are managed by the trust proxies, which may include (or
may interact with) a security token service that validates and
translates a token that is received from an identity provider
based on the pre-established relationship between two trust
proxies. In situations where it is not feasible for a federated
enterprise to establish trust relationships (and token transla-
tion) with another federated enterprise, a trust broker may be
invoked; however, the federated enterprise would need to
establish a relationship with a trust broker.

With reference now to FIG. 5, a block diagram depicts an
exemplary set of trust relationships between federated
domains using trust proxies and a trust broker in accordance
with an exemplary federated architecture that is able to sup-
port the present invention. Although FIG. 4 introduced the
trust broker, FIG. S illustrates the importance of transitive
trust relationships within the exemplary federated architec-
turc.

Federated domains 502-506 incorporate trust proxies 508-
512, respectively. Trust proxy 508 has direct trust relationship
514 with trust proxy 510. Trust broker 520 has direct trust
relationship 516 with trust proxy 510, and trust broker 520
has direct trust relationship 518 with trust proxy 512. Trust
broker 520 is used to establish, on behalf of a federation
participant, a trust relationship based on transitive trust with
other federation partners. The principle of transitive trust
allows trust proxy 510 and trust proxy 512 to have brokered
trust relationship 522 via trust broker 520. Neither trust proxy
510 nor 512 need to know how to translate or validate the
other' s assertions; the trust broker may be invoked to translate
an assertion into one that is valid, trusted, and understood at
the other trust proxy.

Business agreements that specify contractual obligations
and liabilities with respect to the trust relationships between
federated enterprises can be expressed in XML through the
use of the ebXML (Electronic Business using XML) stan-
dards. For example, a direct trust relationship could be rep-
resented in an ebXML document; each federated domain that
shares a direct trust relationship would have a copy of a
contract that is expressed as an ebXML document. Opera-
tional characteristics for various entities within a federation
may be specified within ebXML choreographies and pub-
lished within ebXML registries; any enterprise that wishes to
participate in a particular federation, e.g., to operate a trust
proxy or trust broker, would need to conform to the published
requirements that were specified by that particular federation
for all trust proxies or trust brokers within the federation. A
security token service could parse these ebXML documents
for operational details on the manner in which tokens from
other domains are to be translated. It should be noted, though,
that other standards and mechanisms could be employed to
support the present invention for specifying the details about
the manner in which the trust relationships within a federation
are implemented.

Single-Sign-on within Federated Architecture
During a given user's session, the user may visit many

federated domains to use the web services that are offered by
those domains. Domains can publish descriptions of services
that they provide using standard specifications such as UDDI
and WSDL, both of which use XML as a common data
format. The user finds the available services and service pro-
viders through applications that also adhere to these standard

specifications. SOAP provides a paradigm for communicat-
ing requests and responses that are expressed in XML. Enti-
ties within a federated environment may employ these stan-
dards among others.

5 Within a federation, a user expects to have a single-sign-on
experience in which the user completes a single authentica-
tion operation, and this authentication operation suffices for
the duration ofthe user's session, regardless ofthe federation
partners visited during that session. A session can be defined

lo as the set oftransactions from (and including) the initial user
authentication, i.e. logon, to logout. Within a session, a user's
actions will be governed in part by the privileges granted to
the user for that session.

The federated architecture that is described hereinabove
15 supports single-sign-on operations. To facilitate a single-

sign-on experience, web services that support the federated
environment will also support using an authentication asser-
tion or security token generated by a third-party to provide
proof of authentication of a user. This assertion will contain

20 some sort ofevidence ofthe user's successful authentication
to the issuing party together with an identifier for that user.
For example, a user may complete traditional authentication
operation with one federation partner, e.g., by providing a
username and password that the federation partners uses to

25 build authentication credentials for the user, and then the
federation partner is able to provide a SAML authentication
assertion that is generated by the authenticating/issuing party
to a different federation partner.

The federated environment also allows web services or
30 other applications to request web services, and these web

services would also be authenticated. Authentication in a web
services environment is the act ofveriFying the claimed iden-
tity of the web services request so that the enterprise can
restrict access to authorized clients. A user who requests or

35 invokes a web service would almost always authenticated, so
the need for authentication within a federated environment
that supports the present invention is not any different from
current requirements ofweb services for user authentication.

Authentication of users that are accessing the computa-
40 tional resources of an enterprise without participating in a

federated session are not impacted by the presence of a fed-
crated infrastructure. For example, an existing user who
authenticates with a forms-based authentication mechanism
over HTTP/S to access non-federated resources at a particular

45 domain is not affected by the introduction of support at the
domain for the federated environment. Authentication is
handled in part by a point-of-contact server, which in turn
may invoke a separate trust proxy or trust service component;
the use of a point-of-contact server minimizes the impact on

50 the infrastructure of an existing domain. For example, the
point-of-contact server can be configured to pass through all
non-federated requests to be handled by the back-end or
legacy applications and systems at the domain.

The point-of-contact server may choose to invoke an
55 HTTP-based authentication method, such as basic authenti-

cation, forms-based authentication, or some other authenti-
cation method. The point-of-contact server also supports a
federation domain by recognizing an assertion that has been
presented by the user as proof of authentication, such as an

60 SAML authentication assertion, wherein the assertion has
crossed between enterprise domains. The point-of-contact
server may invoke the trust service, which in turn may invoke
its security token service for validation ofauthentication cre-
dentials/security tokens.

65 Authentication ofweb services or other applications com-
prises the same process as authentication of users. Requests
from web services carry a security token containing an

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 133 of 147 PageID #: 150

US 7,631,346 B2

23
authentication assertion, and this security token would be
validated by the trust service in the same manner as a token
presented by a user. A request from a web service should be
accompanied by this token because the web service would
have discovered what authentication assertions/security
tokens were required by the requested service as advertised in
UDDI.

With reference now to FIG. 6, a block diagram depicts a
federated environment that supports federated single-sign-on
operations. User 600, through a client device and an appro-
priate client application, such as a browser, desires to access
a web service that is provided by enterprise/domain 610,
which supports data processing systems that act as a federated
domain within a federated environment. Domain 610 sup-
ports point-of-contact server 612 and trust proxy or trust
service 614; similarly, domain 620 supports point-of-contact
server 622 and trust proxy or trust service 624, while domain
630 supports point-of-contact server 632 and trust proxy or
trust service 634. The trust proxies/services rely upon trust
broker 650 for assistance, as described above. Additional
domains and trust proxies/services may participate in the
federated environment. FIG. 6 is used to describe a federated
single-sign-on operation between domain 610 and domain
620; a similar operation may occur between domain 610 and
domain 630.

The user completes an authentication operation with
respect to domain 610; this authentication operation is
handled by point-of-contact server 612. The authentication
operation is triggered when the user requests access to some
resource that requires an authenticated identity, e.g., for
access control purposes or for personalization purposes.
Point-of-contact server 612 may invoke a legacy authentica-
tion service, or it may invoke trust proxy 614 to validate the
user's presented authentication credentials. Domain 610
becomes the user's identity provider or home domain for the
duration ofthe user's federated session.

At some later point in time, the user initiates a transaction
at a federation partner, such as enterprise 620 that also sup-
ports a federated domain, thereby triggering a federated
single-sign-on operation. For example, a user may initiate a
new transaction at domain 620, or the user's original trans-
action may cascade into one or more additional transactions
at other domains. As another example, the user may invoke a
federated single-sign-on operation to a resource in domain
620 via point-of-contact server 612, e.g., by selecting a spe-
cial link on a web page that is hosted within domain 610 or by
requesting a portal page that is hosted within domain 610 but
that displays resources hosted in domain 620. Point-of-con-
tact server 612 sends a request to trust proxy 614 to generated
a federation single-sign-on token for the user that is formatted
to be understood or trusted by domain 620. Trust proxy 614
returns this token to point-of-contact server 612, which sends
this token to point-of-contact server 622 in domain. Domain
610 acts as an issuing party for the user at domain 620, which
acts as a relying party. The user' s token would be transferred
with the user's request to domain 620; this token may be sent
using HTTP redirection via the user' s browser, or it may be
sent by invoking the request directly of point-of-contact
server 622 (over HTTP or SOAP-over-HTTP) on behalf ofthe
user identified in the token supplied by trust proxy 614.

Point-of-contact server 622 receives the request together
with the federation single-sign-on token and invokes trust
proxy 624. Trust proxy 624 receives the federation single-
sign-on token, validates the token, and assuming that the
token is valid and trusted, generates a locally valid token for
the user. Trust proxy 624 returns the locally valid token to
point-of-contact server 622, which establishes a session for

the user within domain 620. If necessary, point-of-contact
server 622 can initiate a federated single-sign-on at another
federated partner.

Validation of the token at domain 620 is handled by the
5 trust proxy 624, possibly with assistance from a security

token service. Depending on the type of token presented by
domain 610, the security token service may need to access a
user registry at domain 620. For example, domain 620 may
provide a binary security token containing the user's name

lo and password to be validated against the user registry at
domain 620. Hence, in this example, an enterprise simply
validates the security token from a federated partner. The trust
relationship between domains 610 and 620 ensures that
domain 620 can understand and trust the security token pre-

15 sented by domain 610 on behalfofthe user.
Federated single-sign-on requires not only the validation

ofthe security token that is presented to a relying domain on
behalfofthe user but the determination ofa locally valid user
identifier at the relying domain based on information con-

20 tamed in the security token. One result of a direct trust rda-
tionship and the business agreements required to establish
such a relationship is that at least one party, either the issuing
domain or the relying domain or both, will know how to
translate the information provided by the issuing domain into

25 an identifier valid at the relying domain. In the brief example
above, it was assumed that the issuing domain, i.e. domain
610, is able to provide the relying domain, i.e. domain 620,
with a user identifier that is valid in domain 620. In that
scenario, the relying domain did not need to invoke any iden-

30 tity mapping functionality. Trust proxy 624 at domain 620
will generate a security token for the user that will "vouch-
for" this user. The types of tokens that are accepted, the
signatures that are required on tokens, and other requirements
are all pre-established as part of the federation's business

35 agreements. The rules and algorithms that govern identifier
translation are also pre-established as part ofthe federation's
business agreements. In the case ofa direct trust relationship
betweentwo participants, the identifiertranslation algorithms
will have been established for those two parties and may not

40 be relevant for any other parties in the federation.
However, it is not always the case that the issuing domain

will know how to map the user from a local identifier for
domain 610 to a local identifier for domain 620. In some
cases, it may be the relying domain that knows how to do this

45 mapping, while in yet other cases, neither party will know
how to do this translation, in which case a third party trust
broker may need to be invoked. In other words, in the case of
a brokered trust relationship, the issuing and relying domains
do not have a direct trust relationship with each other. They

50 will, however, have a direct trust relationship with a trust
broker, such as trust broker 650. Identifier mapping rules and
algorithms will have been established as part ofthis relation-
ship, and the trust broker will use this information to assist in
the identifier translation that is required for a brokered trust

55 relationship.
Domain 620 receives the token that is issued by domain

610 at point-of-contract server 622, which invokes trust proxy
624 to validate the token and perform identity mapping. In
this case, since trust proxy 624 is not able to map the user from

60 a local identifier for domain 610 to a local identifier for
domain 620, trust proxy 624 invokes trust broker 650, which
validates the token and performs the identifier mapping. After
obtaining the local identifier for the user, trust proxy 624,
possibly through its security token service, can generate any

65 local tokens that are required by the back-end applications at
domain 620, e.g., a Kerberos token may be required to facili-
tate single-sign-on from the point-of-contact server to the

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 134 of 147 PageID #: 151

US 7,631,346 B2

application server. After obtaining a locally valid token, if
required, the point-of-contact server is able to build a local
session for the user. The point-of-contract server will also
handle coarse-grained authorization ofuser requests and for-
ward the authorized requests to the appropriate application
servers within domain 620.

Federated User Lifecycle Management
A portion ofthe above description ofFIGS. 2-6 explained

an organization of components that may be used in a feder-
ated environment while other portions explained the pro-
cesses for supporting single-sign-on operations across the
federated environment. Service providers or relying domains
within a federated environment do not necessarily have to
manage a user's authentication credentials, and those relying
domains can leverage a single single-sign-on token that is
provided by the user's identity provider or home domain. The
description of FIGS. 2-6 above, though, does not explain an
explicit process by which federated user lifecycle manage-
ment may be accomplished in an advantageous manner at the
federated domains of federation partners.

Federated user lifecycle management functionality/service
comprises functions for supporting or managing federated
operations with respect to the particular user accounts or user
profiles ofa given user at multiple federated domains; in some
cases, the functions or operations are limited to a given fed-
crated session for the user. In other words, federated user
lifecycle management functionality refers to the functions
that allow management of federated operations across a plu-
rality offederated partners, possibly only during the lifecycle
of a single user session within a federated computing envi-
ronment.

Each federated domain might manage a user account, a
user profile, or a user session ofsome kind with respect to the
functions at each respective federated domain. For example,
a particular federated domain might not manage a local user
account or user profile within the particular federated domain,
but the federated domain might manage a local user session
for a federated transaction after the successful completion of
a single-sign-on operation at the federated domain. As part of
the federated user lifecycle management functionality that is
supported by that particular federated domain, the federated
domain can participate in a single-sign-off operation that
allows the federated domain to terminate the local user ses-
sion after the federated transaction is complete, thereby
improving security and promoting efficient use of resources.

In another example of the use of federated user lifecycle
management functionality, a user may engage in an online
transaction that requires the participation of multiple feder-
ated domains. A federated domain might locally manage a
user profile in order to tailor the user's experience with
respect to the federated domain during each of the user' s
federated sessions that involve the federated domain. As part
ofthe federated user lifecycle management functionality that
is supported by that particular federated domain, the infor-
mation in the federated domain' s local user profile can be
used in a seamless manner during a given federated transac-
tion with information from other profiles at other federated
domains that are participating in the given federated transac-
tion. For example, the information from the user' s multiple
local user profiles might be combined in some type of merg-
ing operation such that the user's information is visually
presented to the user, e.g., within a web page, in a manner
such that the user is not aware of the different origins or
sources ofthe user's information.

Federated user lifecycle management functionality may
also comprise functions for account linkingldelinking. A user
is provided with a common unique user identifier across

federation partners, which enables single-sign-on and the
retrieval ofattributes (ifnecessary) about a user as part of the
fulfillment of a request at one federation partner. Further-
more, the federation partner can request additional attributes

5 from an identity provider using the common unique user
identifier to refer to the user in an anonymous manner.

With reference now to FIG. 7, a block diagram depicts
some of the components in a federated domain for imple-
menting federated user lifecycle management functionality in

lo order to support the present invention. FIG. 7 depicts ele-
ments at a single federated domain, such as the federated
domain that is shown in FIG. 3 . Some ofthe elements in FIG.
7 are similar or identical to elements that have been discussed
hereinabove with respect to other figures, such as FIG. 3:

15 point-of-contact server/service 702 is equivalent to point-of-
contact server 342; application servers 704, which run ser-
vices that control access to protected resources, are equivalent
to application servers 334; protected or controlled resources
706 are equivalent to protected resources 335; and federated

20 user lifecycle management (FULM) application 708 is
equivalent to federated user lifecycle management applica-
tion 352. Although firewalls were not illustrated within FIG.
3, firewalls are illustrated within FIG. 7. Firewall 710 and
firewall 712 create an external DMZ (electronic DeMilita-

25 rized Zone) that protects the enterprise' s computing environ-
ment from computing threats outside of the enterprise' s
domain, e.g., via the Internet.

The different perspectives that are shown in FIG. 3 and
FIG. 7 are not incompatible or at cross-purposes. In contrast

30 with the example that is shown in FIG. 7, FIG. 3 does not
illustrate the firewalls, yet point-of-contact server 342 resides
within federation front-end 340; in addition, federated user
lifecycle management application 352 is contained within
federation front-end 340. In FIG. 7, point-of-contact server

35 702 is illustrated as residing within the DMZ between fire-
walls 710 and 712, which form an electronic or physical
front-end to the enterprise domain; in addition, federated user
lifecycle management applicationlservice 708 resides dcc-
tronically behind firewall 712. Trust service 714, single-sign-

40 on protocol service 716, and identity-and-attribute service
718 employ enterprise user registry 720 and federation user
registry 722 as necessary. The differentperspectives ofFIG. 3
and FIG. 7 can be reconciled by regarding federation front-
end 340 and back-end 330 in FIG. 3 as a logical organization

45 of components while regarding the DMZ and the other com-
ponents in FIG. 7 as forming a physical or electronic front-
end and a physical or electronic back-end, either of which
may contain federated components.

Reiterating the roles of a point-of-contact entity/service,
50 the point-of-contact entity provides session management, at

least with respect to a user's interaction with the federation
functionality with an enterprise's computing environment;
applications within a legacy back-end of the enterprise' s
computing environment may also implement its own session

55 management functionality. Assuming that an enterprise
implements policy functionality with respect to the federated
computing environment, the point-of-contact entity may act
as a policy enforcement point to some other federation part-
ncr's policy decision point. In addition, assuming that it is

60 permissible given the implementation ofthe federation func-
tionality, the point-of-contact entity is responsible for initiat-
ing a direction authentication operation against a user in those
scenarios in which a single-sign-on operation is not
employed. As such, the point-of-contact entity may be imple-

65 mented in a variety offorms, e.g., as a reverse proxy server, as
a web server plug-in, or in some other manner. The point-of-
contact functionality may also be implemented within an

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 135 of 147 PageID #: 152

US 7,631,346 B2

application server itself, in which case the federated user
lifecycle management services may be logically located
within the DMZ.

More importantly, referring again to FIG. 7, federated user
lifecycle management application 708 also comprises sup-
port for interfacing to, interacting with, or otherwise interop-
crating with federated user lifecycle management plug-ins
724, which are not shown in FIG. 3. In the exemplary archi-
tecture that is shown in FIG. 7, federated protocol runtime
plug-ins provide the functionality for various types of mdc-
pendently published or developed federated user lifecycle
management standards or profiles, such as: WS-Federation
Passive Client; and Liberty Alliance ID-FF Single Sign On
(B/A, B/P and LECP), Register Name Identifier, Federation
Termination Notification, and Single Logout. Different sets
of federated protocols may be accessed at different URI's.
This approach allows the federated user lifecycle manage-
ment application to concurrently support multiple standards
or specifications of federated user lifecycle management,
e.g., the WS-Federation web services specification versus the
LibertyAlliance's specifications, within a single application,
thereby minimizing the configuration impact on the overall
environment for supporting different federation protocols.

More specifically, the appropriate federated user lifecycle
management functionality is invoked by the point-of-contact
server by redirecting and/or forwarding user requests to the
federated user lifecycle management application as appropri-
ate. Referring again to FIG. 7, point-of-contact server 702
receives user requests 730, which are then analyzed to deter-
mine the type ofrequest that has been received, which might
be indicated by the type of request message that has been
received or, as noted above, by determining the destination
URI within the request message. While requests 732 for pro-
tected resources continue to be forwarded to application seri-
ers 704, requests 734 for federated user lifecycle management
functions, e.g., requests to invoke a single-sign-off operation,
are forwarded to federated user lifecycle management appli-
cation 708, which invokes the appropriate federated user life-
cycle management plug-in as necessary to fulfill the received
request. When a new federation protocol or a new federated
function is defined, or when an existing one is somehow
modified or refined, support can be added simply by plugging
a new support module or can be refined by modifying a
previously installed plug-in.

The exemplary implementation of a federated user life-
cycle management application in FIG. 7 illustrates that the
federated user lifecycle management application is able to
support multiple, simultaneous, federated user lifecycle man-
agement functions while providing a pluggability feature,
thereby allowing new functionality to be added to the feder-
ated user lifecycle management application in the form of a
plug-in when needed without requiring any changes to the
existing infrastructure. For example, assuming that the
present invention is implemented using a JavaTMbased fed-
crated user lifecycle management application, support for a
new federation protocol, such as a newly published single-
sign-on protocol, can be added by configuring newly devel-
oped JavaTM classes to the JavaTM CLASSPATH ofthe feder-
ated user lifecycle management application, wherein these
new classes support the new standard along with the protocol
interface for supporting the present invention.

The exemplary federated architecture leverages the exist-
ing environment in which a federated user lifecycle manage-
ment solution is to be integrated. The federated user lifecycle
management application can be easily modified to support
new protocols/standards as they evolve with minimal changes
to the overall infrastructure. Any changes that might be

28
required to support new federated user lifecycle management
functionality are located almost exclusively within the feder-
ated user lifecycle management application, which would
require configuring the federated user lifecycle management

5 application to understand the added functionality.
There may be minimal configuration changes in other fed-

crated components, e.g., at a point-of-contact server, in order
to allow the overall infrastructure to be able to invoke new
federated user lifecycle management functionality while con-

lo tinuing to support existing federated user lifecycle manage-
ment functionality. However, the federated user lifecycle
management applications are functionally independent from
the remainder of the federated components in that the feder-
ated user lifecycle management applications may require

15 only minimal interaction with other federated components of
the federated environment. For example, in an exemplary
embodiment, the federated user lifecycle management func-
tionality may integrate with an enterprise-based datastore,
e.g., an LDAP datastore, if federated user lifecycle manage-

20 ment information, such as Nameldentifier values in accor-
dance with the LibertyAlliance profiles, are to be stored in an
externally-accessible federated user lifecycle management
datastore as opposed to a private, internal, federated user
lifecycle management datastore that is not apparent or acces-

25 sible to external entities.
Hence, an existing environment needs minimal modifica-

tions to support federated user lifecycle management func-
tionality. Moreover, changes to federated user lifecycle man-
agement functionality, including the addition of new

30 functionality, have minimal impact on an existing federated
environment. Thus, when a new single-sign-on standard is
published, support for this standard is easily added.

Traditional user authentication involves interaction
between an enterprise's computing environment and the end-

35 user only; the manner in which the enterprise chooses to
implement this authentication interchange is the choice of the
enterprise, which has no impact on any other enterprise.
When federation or cross-domain single-sign-on functional-
ity is desired to be supported, however, it becomes a require-

40 ment that enterprise partners interact with each other. This
requirement cannot be done scalably using proprietary pro-
tocols. Although adding support for standards-based federa-
tion protocols directly to a point-of-contact entity seems like
a robust solution, the point-of-contact entity, which is already

45 an existing component within the enterprise's computing
environment, must be modified; moreover, it must be modi-
fled every time that one ofthese public federation protocols
changes. Moving this functionality out ofthe point-of-contact
entity provides a more modular approach, wherein this plug-

50 gable functionality makes it easy to maintain migrations or
updates to these protocols.

Runtime Linked-User-Account Creation During a Single-
Sign-On Operation

With reference now to FIG. 8, a dataflow diagram depicts a
55 typical prior art HTTP-redirection-based single-sign-on

operation that is initiated by a federated identity provider to
obtain access to a protected resource at a federated service
provider. Although the processes that are illustrated within
FIG. 8 and the subsequent figures employ HTTP-based com-

60 munications, the present invention is not limited to HTTP-
based communications, and other communication protocols
may be employed; in particular, the present invention is not
limited to front-channel communications as represented by
HTTP redirection-based techniques but may be equally

65 applied to back-channel techniques, such as SOAP/HTTP or
SOAP/MQ. In the dataflow in FIG. 8, the user ofa client, also
known as a user agent, such as a web browser application, has

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 136 of 147 PageID #: 153

US 7,631,346 B2

already established a user account not only at the identity
providerbut also at the service provider (step 802) and that the
user has already authenticated to the identity provider (step
804).

One ofthe prerequisites for the exemplary dataflow in FIG.
8 is that, at a minimum, that the user already has a federated
account with the service provider; in other words, the service
provider is required to recognize user identity information for
the user when it receives this information from an identity
provider in order to perform a single-sign-on operation for the
user when initiated by an identity provider. With step 804, the
prerequisite is simply that the user has authenticated to the
identity provider at some previous point in time and currently
has a valid session with the identity provider; there are no
requirements on the reasons for which a session was estab-
lished at step 804. It should be noted that other scenarios are
possible, e.g., in which the identity provider determines at
some later point in time after some interaction with the user
that the identity provider only performs certain operations for
authenticated users. It should also be noted that other 5cc-
narios for initiating a single-sign-on process are possible; for
example, a user could initiate a single-sign-on operation by
requesting a protected resource at the service provider, e.g.,
by using a bookmarked URL within a browser application.

The single-sign-on process commences at the identity pro-
vider by sending to the client from the identity provider an
offer to provide access to federated resources (step 806); the
offer may be in the form of hyperlinks to resources at feder-
ated web sites or, more generally, at federated domains, and
the offer may be made in the form of an HTTP response
message in response to a previous HTTP request message
from the client (not shown) to view a particular web page on
the identity provider's web site. The user then selects one of
the offered federated resources at service providers that are
known to the identity provider (step 808); the selection may
be facilitated by an HTTP request message from the client to
the identity provider.

The identity provider builds a message for requesting
access to the selected federated resource on behalfofthe user
such that the message also includes a single-sign-on request
(step 810), and the identity provider sends the resource
request with the single-sign-on request to the client (step
812), e.g., in the form of an HTTP redirect message (HTTP
Response message with status/reason code "302"). The redi-
rect message redirects the client to the appropriate location,
e.g., as identified by a URI within the "Location" header of
the redirect message, that identifies the appropriate service at
the service provider that controls access to the requested
federated resource.

It should be noted that, in the prior art, a preferred manner
ofinitiating a push-type single-sign-on operation is to include
the single sign-on assertion information in a request initiated
by the identity provider and sent to the service provider in
response to a request triggered directly at the service provider.
For example, in a computing environment that implements a
single-sign-on operation as specified in the Liberty Alliance
ID-FF i .2 specifications, anAuthnResponse is built. In some
scenarios, it is required that the identity provider redirect the
client to a trigger URL at the service provider, whereafter the
trigger URL will cause the service provider to build a mes-
sage, e.g., an AuthnRequest message within the Liberty Alli-
ance specifications, that is redirected to the identity provider,
which in turn causes the identity provider to build response,
e.g., an AuthnResponse; this is the means by which a push-
based SSO is implemented with Liberty ID-FF i . i.

The outgoing request message may comprise two distinct
requests: one requested operation for a single-sign-on opera-

30
tion on behalfofthe user ofthe client, and another requested
operation for accessing the protected resource that has been
selected by the user ofthe client. Alternatively, the request to
access the federated resource may include an implicit request

5 to perform a single-sign-on operation for the user such that
the single-sign-on process is merely part of a larger process
for accessing the selected resource. The manner in which
information is provided for the requested single-sign-on
operation may vary. For example, the "Location" HTTP

lo header of the redirect message may also include a query
component, e.g., appended to a URI and demarcated within
the URI with a "?" character, that contains various informa-
tion, including security tokens for accomplishing the single-
sign-on operation.

15 In response to receiving the redirect message from the
identity provider, the client sends an HTTP Get message to
the appropriate service at the service provider as indicated by
the URI in the HTTP redirect message from the identity
provider (step 814). In this manner, the client accesses the

20 appropriate service at the service provider because the URI in
the HTTP Get message still contains the attached information
that is required by the service at the service provider.

The service provider receives the request message from the
client, and assuming that the single-sign-on aspect of the

25 request is successfully completed (step 816) suchthat the user
has an active session at the service provider, the service pro-
vider then processes the resource access aspect ofthe request
message (step 818). After processing the request message, the
service provider responds by sending an HTTP response mes-

30 sage to the client (step 820), thereby concluding the process.
With reference now to FIGS. 9A-9B, dataflow diagrams

depict an HTTP-redirection-based single-sign-on operation
that is initiated by a federated identity provider to obtain
access to a protected resource at a federated service provider

35 while performing a runtime linked-user-account creation
operation at the federated service provider in accordance with
an embodiment of the present invention. In a manner similar
to that shown in FIG. 8, both FIGS. 9A-9B depict a process by
which an identity provider may request a single-sign-on

40 operation at a selected service provider. However, whereas
FIG. 8 depicts only a generalized single-sign-on operation at
step 816, the processes that are shown in FIGS. 9A-9B differs
from the process that is shown in FIG. 8 with respect to the
single-sign-on operation. Unlike the process that is shown in

45 FIG. 8, there is no prerequisite to the processes that are shown
in FIGS. 9A-9B that the user of a client has already estab-
lished a user account at the service provider.

More specifically, prior art solutions for single-sign-on
operations have certain prerequisites, namely that the service

50 provider and the identity provider must both recognize the
user, and they must have an agreed-upon means ofreferring to
this user, i.e. an alias identifier, or more simply, an alias; both
prerequisites must be true before the initiation of a single-
sign-on operation in order for the single-sign-on operation to

55 be successful, otherwise it would fail. In these prior art solu-
tions, the alias is included in the single-sign-on response that
is sent from the identity provider to the service provider and
used by the service provider to identify the user and build a
session for the user. These prerequisites exist within prior art

60 solutions whether: (a) the single-sign-on operation is trig-
gered by the service provider, e.g., when a user accesses a
protected resource that is hosted at the service provider and
the service provider needs a session for the user, thereby
initiating a single-sign-on operation by sending a request to

65 an identity provider; or (b) the single-sign-on operation is
triggered by the identity provider, e.g., when an identity pro-
vider has a list of linked resources that are hosted by related

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 137 of 147 PageID #: 154

US 7,631,346 B2

31
service providers, and after a user selects one ofthese links, a
single-sign-on operation is initiated by the identity provider.
In contrast, the present invention eliminates these prerequi-
sites, as shown by multiple exemplary embodiments of the
present invention that are described hereinbelow.

Referring to FIG. 9A, the user has already authenticated to
the identity provider (step 902). With step 902, the user has
authenticated to the identity provider at some previous point
in time and currently has a valid session with the identity
provider; there are no requirements on the reasons for which
a session was established at step 902. It should be noted that
other scenarios for initiating a single-sign-on operation may
have a different sequence of steps. For example, a user might
browse information that is provided by an identity provider
without an authenticated session; at some later point in time
after some interaction with the user, the user requests a
resource such that the identity provider determines that the
identity provider only performs certain operations for authen-
ticated users, thereafter initiating an authentication operation
with the user.

The single-sign-on process commences at the identity pro-
vider by sending to the client from the identity provider an
offer to provide access to federated resources (step 904); the
offer may be in the form of hyperlinks to resources at feder-
ated web sites or, more generally, at federated domains, and
the offer may be made in the form of an HTTP response
message in response to a previous HTTP request message
from the client (not shown) to view a particular web page on
the identity provider's web site. The user then selects one of
the offered federated resources at service providers that are
known to the identity provider (step 906); the selection may
be accomplishedby an HTTP request message from the client
to the identity provider.

If the user does yet have a federated identity that may be
used for a federated single-sign-on operation, then the iden-
tity provider creates an alias for the user (step 908). The
identity provider builds a message for requesting access to the
selected federated resource on behalf ofthe user such that the
message also includes a single-sign-onrequest (step 910), i.e.
a push-type single-sign-on request. A push-type single-sign-
on request originates with an identity provider and is pushed
to a service provider in an unsolicited manner in order to
provide the service provider with information that authenti-
cates a user identity; in contrast, a pull-type single-sign-on
request originates with a service provider that is attempting to
pull authentication information for a user in a solicited man-
ncr. Alternatively, a push-type single-sign-on operation can
be emulated, particularly when a push-type single-sign-on
operation is not supported explicitly. An emulated push-type
single-sign-on operation occurs when an identity provider
issues a request to a service provider, e.g., via a specialized
service at the service provider such as an intersite transfer
service, whereupon the service provider issues a single-sign-
on request to the identity provider; after the identity provider
responds to the request from the service provider, the pro-
cessing steps are the same as if an explicit push-type single-
sign-on operation has occurred.

The identity provider sends the resource request with the
single-sign-on request to the client (step 912), e.g., inthe form
ofan HTTP redirect message (HTTP Response message with
status/reason code "302"). The redirect message redirects the
client to the appropriate location, e.g., as identified by a URI
within the "Location" header of the redirect message, that
identifies the appropriate service at the service provider that
controls access to the requested federated resource. In
response to receiving the redirect message from the identity
provider, the client sends an HTTP Get message to the appro-

priate service at the service provider as indicated by the URI
in the HTTP redirect message from the identity provider (step
914).

The service provider receives and processes the received
5 request message from the client (step 916). At step 916, the

service provider retrieves from the received message an alias
identifier or alias information that has been associated with
the user by the identity provider but which is not recognized
by the service provider as being associated with a previously

lo existing user account at the service provider. Hence, at step
916, the service provider determines that the user does not
have a user account that links the user with the identity pro-
vider, i.e. a linked user account that informs the service pro-
vider that the service provider should accept information for

15 a single-sign-on operation from the identity provider in order
to authenticate the user. In other words, at step 916, the
service provider determines that the service provider does not
have a user account that links a user account at the service
provider with a user account at the identity provider.

20 This recognition is significant for the following reasons. It
should be noted that the user may already have one or more
accounts at the service provider. These accounts may be used
independently because a unique user account is based on a
unique user identifier; given a user identifier, the service

25 provider determines the privileges that are associated with the
user identifier, i.e. a particular user account. Given that a
linked user account is independent of any other user account
that the user may have at the service provider, and given that
a linked user account requires a unique user identifier to be

30 associated with the linked user account, a linked user account
is based on a user identifier that is independent and unique in
comparison with any other user identifier that is known to the
service provider; this particular user identifier is known as an
alias identifier, although some form of alias information

35 within multiple data variables may be used in place ofa single
alias data variable in some embodiments.

Therefore, after the service provider recognizes that a pro-
vided alias identifier is not associated with a previously cxi st-
ing user account at the service provider, the service provider

40 begins to perform operations in order to ensure that the single-
sign-on operation is performed successfully. Since the user
had not yet been federated with the service provider, the
service provider creates a new account for the user with the
alias information that has been provided by the identity pro-

45 vider within the request message (step 918) such that the user
has an active session at the service provider.

It should be noted that the minimum information required
to create this account will be any local information that is
required to identiFy the account (which is generated internally

50 by the service provider) and any alias information that is
provided by the identity provider; thereafter, the newly cre-
ated user account is linked to the identity provider based on
the provided alias for the user such that the service provider is
able to perform a single-sign-on operation on behalf of the

55 user in cooperation withthe identity provider. Ifthe request to
the service provider includes user attributes as well as an alias
identifier for the user, then these attributes may be added to
the local account; however, it should be noted that, in some
embodiments, the service provider may create a linked user

60 account using only the alias identifier without any additional
user attribute information from the identity provider, possibly
by assigning a local set of default user attributes that are
determined by the service provider and that are independent
ofany information that is received from the identity provider.

65 Whether any additional attributes are provided or not, what
should be noted is that this account would preferably not be
enabled for direct authentication; hence, the only manner for

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 138 of 147 PageID #: 155

US 7,631,346 B2

33
the user to gain access to resources at the service provider
would be as the result of a session established from a single-
sign-on operation triggered by the identity provider.

After the linked user account has been created, the service
provider then performs the requested resource access (step
920). After performing the resource access, the service pro-
vider responds by sending an HTTP response message to the
client (step 922), thereby concluding the process.

The single-sign-on operation ofthe present invention, e.g.,
the embodiment that is shown in FIG. 9A, differs from the
single-sign-on solutions of the prior art, e.g., the operation
that is shown in FIG. 8, because the service provider recog-
nizes during the single-sign-on operation of the present
invention that the service provider does not have a user
account for the user that links the user to an account at an
identity provider in order to support single-sign-on opera-
tions, yet with the present invention the service provider is
able to dynamically perform operations to allow the single-
sign-on operation to proceed. More specifically, the service
provider does not have, e.g., within its user registries or data-
bases, enough information that allows the service provider to
determine the user' s local identity, and therefore the user' s
privileges, for the single-sign-on operation; without this
information, the service provider cannot determine the appro-
priate set of privileges to be given to the user and, therefore,
the type ofsessionlaccess control rights to give the user, if the
service provider were to allow the single-sign-on operation to
proceed. In the prior art, the service provider cannot automati-
cally create an active session for the user and allow access to
protected resources; with the present invention, the service
provider dynamically performs a runtime linked-user-ac-
count creation operation at the service provider by creating a
linked user account based on the user identity, and possibly
attribute information, that has been provided by the identity
provider to the service provider, e.g., as provided in a request
that has been redirected fromthe identity provider through the
client. The service provider is willing and able to perform
such operations based on its trust relationship with the iden-
tity provider with their federated computing environment. In
this manner, the single-sign-on request can be fulfilled by the
service provider, which results in the creation of an active
session forthe user, and the request for access to the protected
resource can proceed.

In a manner similar to that shown in FIG. 9A, FIG. 9B
depicts a process by which an identity provider may request a
single-sign-on operation at a selected service provider; simi-
lar elements in the figures are identified by similar reference
numerals. However, whereas FIG. 9A depicts only a gener-
alized runtime user account creation operation at step 918, the
process that is shown in FIG. 9B differs from the process that
is shown in FIG. 9A with respect to the runtime linked-user-
account creation operation, which stretches over steps 930-
942 in FIG. 9B. Unlike the process that is shown in FIG. 9A,
in the process that is shown in FIG. 9B, the service provider is
not able to immediately create, or to complete immediately
the creation of, a user account at the service provider based on
the information that has been provided by the identity pro-
vider to the service provider.

Referring now to FIG. 9B, the single-sign-on processing in
FIG. 9B (step 930) differs because the service provider rec-
ognizes during the single-sign-on operation that the service
provider does not have a pre-existing user account for the
identity that is claimed or asserted in the single-sign-on
request from the identity provider, i.e. a pre-existing user
account that links the service provider to the identity provider
on behalf of the user, and further that the information con-
tamed in the single-sign-on request is not sufficient to create

a valid account at the service provider. Thus, the service
provider recognizes that it requires additional information
about the user from the identity provider. More specifically,
the service provider does not have sufficient user attribute

5 information to create an active account for the user; for
example, there may be attributes that are required by the
service provider but were not included in the received single-
sign-on request. Because of these additional requirements,
the service provider is not yet able to create, or to completely

lo create, whatever user account registry/database entries that it
requires based on the information it has received.

In the embodiment that is shown in FIG. 9B, the service
provider responds by sending an HTTP redirect message
(HTTP Response message with status/reason code "302") to

15 the client (step 932); the message from the service provider
contains a request for additional user attribute information.
The redirect message redirects the client to the identity pro-
vider using a return URI that was previously provided by the
identity provider to the service provider. In response to

20 receiving the redirect message from the service provider, the
client sends an HTTP Get message to the identity provider as
indicated by the URI in the HTTP redirect message from the
service provider (step 934).

The identity provider then processes the received message
25 (step 936) to build a response that contains user attribute

information that is stored by the identity provider about the
user ofthe client. The manner in which specific user attributes
are identified may vary. For example, the user attribute infor-
mation that is provided by the identity provider may include

30 user attribute information that was explicitly requested by the
service provider. Additionally or alternatively, the user
attribute information that is provided by the identity provider
may include user attribute information that was implicitly
requested by the service provider, i.e. user attribute informa-

35 tion that has been determined by the identity provider to be
sufficient for performing a user account creation operation at
the service provider. In addition, the identity provider may
perform an operation to reconcile the received request for
additional user attribute information with the identity provid-

40 er's previous single-sign-on request to ensure that a service
provider is not attempting to obtain user attributes without
sufficient reason to do so.

After the identity provider builds the message at step 936,
the identity provider sends the message with the additional

45 user attributes to the client (step 938), e.g., in the form of an
HTTP redirect message (HTTP Response message with sta-
tus/reason code "302"). The redirect message redirects the
client to the appropriate location, e.g., as identified by a URI
within the "Location" header of the redirect message, that

50 identifies the appropriate service at the service provider; the
appropriate location may have been provided by the service
provider in its request for the additional user attributes. In
response to receiving the redirect message from the identity
provider, the client sends an HTTP Get message to the appro-

55 priate service at the service provider as indicated by the URI
in the HTTP redirect message from the identity provider (step
940).

Given the additional user attribute information in the
received message, the service provider performs a runtime

60 linked-user-account creation operation at the service provider
(step 942) by creating a linked user account based on the
received user attribute information; in this manner, the single-
sign-on request (and any subsequent single-sign-on requests)
can be fulfilled by the service provider, which also creates an

65 active session for the user, and the request for access to the
protected resource can proceed at steps 920 and 924. In some
embodiments, the service provider may preliminarily create

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 139 of 147 PageID #: 156

US 7,631,346 B2

the user account yet postpone the completion ofthe creation
of the user account; in these embodiments, the service pro-
vider completes the creation ofthe user account at step 942. It
should be noted that the processes are described in the context
of an HTTP redirection-based attribute retrieval, but these
processes could be implemented with a back-channel
approach, such as a SOAP/HTTP-based SAML attribute
query from the service provider to the identity provider.

With reference now to FIGS. 9C-9E, dataflow diagrams
depict an HTTP-redirection-based single-sign-on operation
that is initiated by a federated identity provider to obtain
access to a protected resource at a federated service provider
with alternative methods for obtaining user attributes by the
federated service provider in accordance with an embodiment
of the present invention. The processes that are shown in
FIGs. FIGS. 9C-9E differ from the processes that are shown
in FIGS. 9A-9B primarily in the manner in which the service
provider obtains user attributes during a single-sign-on
operation; the processes that are shown in FIGS. 9A-9B and
in FIGS. 9C-9E are both initiated by an identity provider. In
addition, in the dataflow that is shown in FIG. 9B, a service
provider performs the runtime linked-user-account creation
operation at step 942; in contrast, in the dataflow that is shown
in FIGS. 9C-9E, the service provider may perform the runt-
ime linked-user-account creation operation over multiple
steps by partially creating a linked user account and then later
completing the runtime linked-user-account creation opera-
tion, as described in more detail hereinbelow.

Referring now to FIG. 9C, the process commences with a
user browsing public resources that are hosted by an identity
provider (step 952), i.e. resources that are not protected
resources that require an authentication operation with
respect to the user prior to accessing the resources. At some
subsequent point intime, the user' s client sends to the identity
provider a request for access to a protected resource that
requires an authentication operation (step 954); for example,
the user might attempt to browse information that the identity
provider maintains about resources at service providers
within a federated computing environment in which the iden-
tity provider participates with service providers, i.e. the iden-
tity provider's federated partners. In response to the user
request, the identity provider performs an authentication
operation with the user (step 956). In this example, the iden-
tity provider thereafter offers links to resources at federated
service providers (step 958), and the user then selects or
initiates an operation to access a resource at a service provider
(step 960).

Ifthe user does yet have an alias identifier that may be used
for a federated single-sign-on operation, then the identity
provider creates an alias for the user (step 962), which may
include performing other operations to associate the alias
identifier with the user, particular to associate the alias iden-
tifier with other information that is associated with the user,
e.g., user attribute information. The identity provider builds a
message for requesting access to the selected federated
resource on behalf of the user such that the message also
includes a single-sign-on request (step 964), i.e. a push-type
single-sign-on request. The identity provider sends the
resource request with the single-sign-on request to the client
(step 966), e.g., in the form of an HTTP redirect message
(HTTP Response message with status/reason code "302").
The redirect message redirects the client to the appropriate
location, e.g., as identified by a URI within the "Location"
header ofthe redirect message, that identifies the appropriate
service at the service provider that controls access to the
requested federated resource. In response to receiving the
redirect message from the identity provider, the client sends

an HTTP Get message to the appropriate service at the service
provider as indicated by the URI in the HTTP redirect mes-
sage from the identity provider (step 968).

The service provider then processes the single-sign-on
5 response (step 970), which may include, e.g., extracting the

newly created alias identifier for the user and extracting any
user attribute information about the user that has been pre-
liminarily provided by the identity provider to the service
provider. The service provider attempts to create a new user

lo account (step 972) but either is not able to immediately create
or is not able to create a fully appropriate user account at the
service provider based on the federated user identity infor-
mation that has been provided by the identity provider to the
service provider in the single-sign-on response. In other

15 words, depending on the implementation, the service pro-
vider either fails to create or determines that it cannot create
a user account at this point in time, or the service provider
creates a user account with limited-time or limited-access
privileges. More specifically, the service provider does not

20 have, e.g., within the combination of its user registries or
databases and the information that is initially provided by the
identity provider, the information required to allow the ser-
vice provider to determine the user's appropriate set of privi-
leges; without this information, the service provider cannot

25 determine the type ofsessionlaccess control rights to give the
user. Hence, the service provider recognizes during the
single-sign-on operation that the service provider does not yet
have a linked user account for the user while also recognizing
that the service provider requires additional information

30 about the user from the identity provider (step 974).
The manner in which the service provider pulls additional

user attribute information from the identity provider to com-
plete the user account creation operation may vary; two
examples ofvariations are shown in FIG. 9D and in FIG. 9E.

35 FIG. 9D illustrates a front-channel attribute retrieval opera-
tion, whereas FIG. 9E illustrates a back-channel attribute
retrieval operation. Hence, the data flow diagram that is
shown in FIG. 9C continues into either FIG. 9D or FIG. 9E; in
both cases, the dataflow diagrams in FIG. 9D and FIG. 9E

40 conclude with similar steps that are denoted with similar
reference numerals.

Referring now to FIG. 9D, the service provider responds to
its determination of its lack of user attribute information by
sending an HTTP redirect message (HTTP Response mes-

45 sage with status/reason code "302") to the client (step 976);
the message from the service provider contains a request for
additional user attribute information. The redirect message
redirects the client to the identity provider using a return URI
that was previously provided by the identity provider to the

50 service provider. In response to receiving the redirect mes-
sage from the service provider, the client sends an HTTP Get
message to the identity provider as indicated by the URI in the
HTTP redirect message from the service provider (step 978).
The identity provider then processes the received message

55 (step 980) to build a response that contains user attribute
information that is stored by the identity provider about the
user ofthe client. The manner in which specific user attributes
are identified may vary. For example, the user attribute infor-
mation that is provided by the identity provider may include

60 user attribute information that was explicitly requested by the
service provider. Additionally or alternatively, the user
attribute information that is provided by the identity provider
may include user attribute information that was implicitly
requested by the service provider, i.e. user attribute informa-

65 tion that has been determined by the identity provider to be
sufficient for performing a user account creation operation at
the service provider. In addition, the identity provider may

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 140 of 147 PageID #: 157

US 7,631,346 B2

perform an operation to reconcile the received request for
additional user attribute information with the service provid-
er's previous single-sign-on request to ensure that a service
provider is not attempting to obtain user attributes without
sufficient reason to do so.

After the identity provider builds the message at step 980,
the identity provider sends the message with the user
attributes to the client (step 982), e.g., inthe form ofan HTTP
redirect message (HTTP Response message with status/rca-
son code "302"). In response to receiving the redirect mes-
sage from the identity provider, the client sends an HTTP Get
message to the appropriate service at the service provider as
indicated by the URI in the HTTP redirect message from the
identity provider (step 984).

Given the user attribute information in the received mes-
sage, the service provider performs or completes a user
account creation operation at the service provider (step 986)
based on the received user attribute information; in this man-
ncr, the single-sign-on request can be fulfilled by the service
provider, which also creates an active session for the user, and
the request for access to the protected resource can proceed.
In both FIG. 9D and FIG. 9E, the service provider provides
access to the originally requested protected resource (step
988), and the service provider sends an HTTP Response
message to the client that contains information that is derived
from accessing the protected resource (step 990), thereby
concluding the process.

Referring now to FIG. 9E, the service provider responds to
its determination of its lack of user attribute information by
sending a SOAP message directly from the service provider
to the identity provider (step 992); the message from the
service provider contains a request for required user attribute
information. The identity provider then processes the
received message (step 994) to build a response that contains
user attribute information that is stored by the identity pro-
vider about the user ofthe client; again, the manner in which
specific user attributes are identified may vary as described
above. The identity provider sends a SOAP response message
with the required user attributes to the client (step 996). Given
the user attribute information in the received message, the
service provider performs or completes a runtime user
account creation operation at the service provider (step 998)
based on the received user attribute information; in this man-
ncr, the single-sign-on request can be fulfilled by the service
provider, which also creates an active session for the user, and
the request for access to the protected resource can proceed at
steps 988 and 990.

With reference now to FIG. 10, a flowchart depicts a more
detailed process for performing a runtime linked-user-ac-
count creation operation at a service provider during a single-
sign-on operation that has been initiated by an identity pro-
vider. The flowchart that is shown in FIG. 10 depicts a
service-provider-centered perspective for some of the pro-
cessing that occurs at a service provider within the dataflow
diagram that is shown in FIG. 9B.

The process commences when the service provider
receives a request from an identity provider to access a pro-
tected resource at the service provider on behalfofa user of a
client based on a single-sign-on operation (step 1002). It
should be noted that the protected resource may be an end-
point that corresponds to the service provider's functionality
for fulfilling a single-sign-on request; in other words, it is
possible that the request from the identity provider is redi-
rected directly to the known functionality to accomplish the
single-sign-on operation because the user has not requested a
particular back-end resource but simply overall access to the
service provider. The service provider extracts a user identi-

38
fier from the received request message (step i 004) and makes
a determination as to whether or not the user identifier is
recognized (step 1006).

If the user identifier is not recognized by the service pro-
5 vider, then the service provider cannot create an active session

with the appropriate security considerations for protected
access to its hosted computational resources. The service
provider extracts any user attribute information that might be
embedded in the received message (step 1008), and a deter-

i o mination is made as to whether or not the service provider has
sufficient information about the user to create a user account
for the user at that time (step 1010), e.g., as would be required
to generate an entry into a user registry or whatever operations
are typically performed by the service provider to create a

15 local user account for the user at the service provider.
Ifthe service provider does not have sufficient information

about the user to create a user account for the user, the service
provider may send a request to the identity provider to obtain
additional user attribute information (step 1012); this may be

20 performed in a synchronous or asynchronous manner. The
service provider subsequently receives additional user
attributes from the identity provider (step 1014).

It should be noted that an embodiment ofthe present inven-
tion may be implemented such that a user attribute retrieval

25 operation by a service provider may be performed with
respect to an attribute information provider. For example, a
service provider may send a request for user attributes to an
attribute information provider rather than an identity pro-
vider. Alternatively, a service provider may send a request for

30 user attributes to an identity provider, which subsequently
enlists assistance by sending a request to an attribute infor-
mation provider, thereby acting as an intermediate trusted
agent on behalf of the service provider. Additional informa-
tion about the usage of an attribute information provider

35 within the context ofa federated computing environment may
be found in Blakley et al., "Method and system for user-
determined attribute storage in a federated environment",
U.S. Patent Application Publication US 2004/0128378 Al,
published Jul. 1, 2004, based on U.S. patent application Ser.

40 No. 10/334,605, filed Dec. 31, 2002, which has a common
assignee with the present patent application and is hereby
incorporated by reference.

After receiving the additional user attributes at step 1014,
or based on any user attribute information that may have been

45 within the original request as extracted at step 1008, the
service provider performs a linked user account creation
operation (step 1016); as noted above, the operations that are
performed to create a linked user account for the user at the
service provider may vary. After the linked user account has

50 been created at the service provider, the service provider may
be able to proceed with the processing ofthe original request.

The service provider then determines whether there is suf-
ficient information for activating the newly created account
for the user (step 1018). Ifthe service provider does not yet

55 have sufficient information for activating the user's account,
then a determination is made as to whether the service pro-
vider has already made too many attempts to obtain user
attributes for activating the user account (step 1020); if not,
then the process branches back to step 1012 to make an

60 attempt to obtain the necessary user attributes. Otherwise, the
service provider performs some type of error handling (step
1022), which may entail sending an errorresponse back to the
identity provider.

If the service provider has sufficient information for acti-
65 vating the user's account at step 1018, then the service pro-

vider creates an active session for the user (step 1024), either
based on a successful authentication of a recognized user

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 141 of 147 PageID #: 158

US 7,631,346 B2

identity at step 1006 or based on the newly created user
identity at step 1016. The service provider then generates a
response for the original request to access the protected
resource (step 1026), and the response is sent by the service
provider to the identity provider (step 1028), thereby con-
cluding the process.

The exemplary dataflow that is described with respect to
FIG. 9B or the exemplary process that is described with
respect to FIG. 10 can be described in the context of the
exemplary data processing systems that are shown in FIG. 7
orinFlG. 3.

In order to perform a single-sign-on operation, the identity
and attribute service (I&AS) 356 or 718 needs to be able to
recognize a user identity from a single-sign-on request within
a userregistry in some manner. The userregistry canbe a local
registry, e.g., private to the installation ofthe federated func-
tionality, such as federation user registry 358 or 720, or it
could be an enterprise registry that is shared by other appli-
cations within an enterprise, such as enterprise user registry
338 or 722. The user account information or user registry
information needs to allow I&AS 356 or 718 to build the
appropriate information that identifies the user locally. This
information may be represented by a usemame, a set of
attributes, e.g., groups and/or roles and/or entitlements, or an
opaque identifier, e.g., a Nameldentifier as described within
the Liberty Alliance specifications. If the information
asserted by the identity provider about the user for which a
single-sign-on is being requested cannot be found within a
local registry, then I&AS 356 or 718 is not able to build
information about the user in a local manner, e.g., to create
valid credentials that are used by entities within the local
enterprise; in addition, the point-of-contact server 342 or 702
is not able establish a session for the user, and the user is not
able to access protected resources.

The present invention provides a mechanism to prevent the
generation of some form of error code for an unrecognized
user as would be performed in prior art approaches. In the
embodiment of the present invention that is shown in the
figures, I&AS 356 or 718 may attempt to create a user
account, record, or entry, as appropriate for the data storage
requirements ofthe enterprise when the received user identity
information is unrecognized. I&AS 356 or 718 performs
these operations based on the trust relationship between the
federated partners of the identity provider and the service
provider, e.g., as provided for within a configured policy that
allows for this type of action. The user identity information
that is received in the original request may be an actual
usemame value or an opaque data value such as a Liberty
Alliance Nameldentifier; this user identity information may
be used as a pointer into a user registry from which this user' s
information would be accessed at some subsequent point in
time, or it may be used in a temporary manner until permanent
data records are created, e.g., as a pointer into a cache that
contains temporary information.

Ifthe original single-sign-on request contains attribute data
about a user, then the attribute information may be added
directly to a user registry when creating a user account for the
user locally. However, the originally received request does
not necessarily contain all ofthe information that is required
locally to create a user account for the user. In this case, I&AS
356 or 718 working with single-sign-on protocol service
(SPS) 354 or 716 may issue an attribute query, such as a
SAML attribute query and/or a WS-AttributeService request,
to the user's identity provider to retrieve additional informa-
tion about the user. As a result, the service provider is able to
create a user account for the user in a runtime manner, i.e.

40
while the single-sign-on operation is suspended or, from
another temporal viewpoint, concurrently with or as part of
the single-sign-on operation.

The level of trust that is accorded to this type of runtime
5 linked-user-account creation operation by the service pro-

vider may vary; it is not necessarily the case that all service
providers would be willing to allow a completely automated,
dynamically determined, linked-user-account creation opera-

lo tion. Hence, in some cases, a service provider may require
that a local workfiow operation must be undertaken, e.g., a
type of local administrative approval process. Rather than
directly creating a user account for a user in a completely
automated process, the federated user lifecycle management

15
(FULM) applicationlservice 352 or 708 might store the user
information, including additional, out-of-band-retrieved user
attributes, into some form of local datastore, which may, in
turn, trigger a local workflow/approval process. This require-
ment allows a administrative user at the service provider to

20
approve the creation of the user account in accordance with
local policy requirements, etc. As a result, the runtime user
account creation operation may be asynchronous, in which
case the service provider may send a message to the user to
indicate that an account is being created for the user at the

25
service provider and to indicate that the user can attempt to
perform a login operation at the service provider at some
subsequent point in time. Ifthe user needs to be added to more
than an I&AS-accessible user registry, then FULM service
352 or 708 may send this information to a local datastore,

30
from which a local user account creation process is initiated;
in this case, accounts/records can be created for the user in
multiple destinations in addition to a local I&AS-accessible
datastore. It should be noted that the service provider may
choose to grant the user a limited-time, limited-access ses-

35
sion, thereby restricting the user to a subset of accessible
resources rather than a complete set ofresources until some
later event, e.g. , completion of some type ofworkflow process
for approving broader access, or until some later determina-
tion is made as to the privileges that should be given to the

40
user, thereafter, the user account would be created with an
appropriate level of access to resources.

With reference now to FIG. liA, a dataflow diagram
depicts an HTTP-redirection-based pull-type single-sign-on
operation that is initiated by a federated service provider to

45 allow access to a protected resource at the federated service
provider while performing a runtime linked-user-account
creation operation at the federated service provider in accor-
dance with an embodiment of the present invention. The
processes that are shown in FIGS. hA-liD differ from the

50 processes that are shown in FIGS. 9A-9B primarily in the
perspective ofthe origination ofthe single-sign-on operation;
the processes that are shown in FIGS. 9A-9B are initiated by
an identity provider, whereas the processes that are shown in
FIGS. hA-liD are initiated by a service provider.

55 Referring now to FIG. liA, the process commences with a
user browsing public resources that are hosted by a service
provider (step 1102), i.e. resources that are not protected
resources that require an authentication operation with
respect to the user prior to accessing the resources. At some

60 subsequent point in time, the user' s client sends to the service
provider a request for access to a protected resource that
requires an authentication operation (step 1104). The service
provider recognizes that it does not have an identifier for the
user' s preferred identity provider, and the service provider

65 prompts the user to provide the information in some manner
(step 1106), e.g., through user-selectable controls in a web
page. The client then sends to the service provider the appro-

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 142 of 147 PageID #: 159

US 7,631,346 B2

priate information about the preferred identity provider as
selected by the user (step 1108).

The service provider then builds a pull-type single-sign-on
request for the user (step 1110). In this example, the service
provider assumes that the user is a federated user, e.g., by
assuming that the identity provider maintains some type of
federated alias identifier for the user. The service provider
sends the single-sign-onrequestto the client (step 1112), e.g.,
in the form of an HTTP redirect message (HTTP Response
message with status/reason code "302"). In response to
receiving the redirect message from the service provider, the
client sends an HTTP Get message to the identity provider as
indicated by the URI in the HTTP redirect message from the
service provider (step 1114).

In response to receiving the pull-type single-sign-on
request, the identity provider performs an authentication
operation with the client with respect to the user ofthe client,
ifrequired (step 1116); for example, the authentication opera-
tion may not be required ifthe user is already logged on at the
identity provider, i.e. ifthe user already has an active session
at the identity provider. The identity provider evaluates the
received request (step 1118), and the identity provider deter-
mines that the service provider has not provided a user iden-
tity to the identity provider as part ofthe federation request. If
the identity provider further determines that the user does not
yet have a federated identity, thenthe identity provider creates
a federated identity for the user, e.g., an alias identifier for the
user (step 1120). The identity provider builds a pull-type
single-sign-on response (step 1122) that contains the newly
created, federated identity forthe user and optionally contains
additional user attribute information that is managed by the
identity provider about the user; this pull-type single-sign-on
response may or may not have the same data format charac-
teristics as a push-type single-sign-on response. The identity
provider sends the single-sign-on response to the client (step
1124), e.g., in the form ofan HTTP redirect message (HTTP
Response message with status/reason code "302"). In
response to receiving the redirect message from the identity
provider, the client sends an HTTP Get message to the service
provider as indicated by the URI in the HTTP redirect mes-
sage from the identity provider (step 1126).

The service provider then processes the single-sign-on
response (step 1128), which may include, e.g., extracting the
newly created federated identifier for the user and may also
include the extraction ofadditional user attribute information
about the user. The service provider then creates a new linked
user account for the user with the federated identifier that was
provided by the identity provider (step 1130), which may
possibly also entail using some user attribute information
about the user from the identity provider ifthe identity pro-
vider has sent such information and if the service provider
needs this information while creating the new user account.
After the user has an active session based on the newly created
user account, the service provider provides access to the
originally requested protected resource (step 1132), and the
service provider sends an HTTP Response message to the
client that contains information that is derived from accessing
the protected resource (step 1134), thereby concluding the
process.

With reference now to FIGS. liB-liD, a set of dataflow
diagrams depict an HTTP-redirection-based pull-type single-
sign-on operation that is initiated by a federated service pro-
vider to allow access to a protected resource at the federated
service provider with additional retrieval of user attribute
information from a federated identity provider while per-
forming a runtime linked-user-account creation operation at
the federated service provider in accordance with an embodi-

ment of the present invention. In a manner similar to that
shown in FIG. liA, FIG. liB depicts a process by which a
service provider may request a single-sign-on operation at a
selected identity provider; similar elements in the figures are

5 identified by similar reference numerals. However, whereas
FIG. liA depicts only a generalized runtime linked-user-
account creation operation at step 1130, the process that is
shown in FIG. liB differs from the process that is shown in
FIG. liA with respect to the runtime linked-user-account

lo creation operation, which stretches over steps 1150-1164 in
FIGS. hA-liB.

Referring now to FIG. 11B, unlike the process that is
shown in FIG. 11A, the service provider attempts to create a
new user account (step 1h50) but either is not able to imme-

15 diately create or is not able to create a fully appropriate user
account at the service provider based on the federated user
identity information that has been provided by the identity
provider to the service provider in the single-sign-on. In other
words, depending on the implementation, the service pro-

20 vider either fails to create or determines that it cannot create
a user account at this point in time, or the service provider
creates a user account with limited-time or limited-access
privileges. Hence, the single-sign-on processing in FIG. 11B
differs because the service provider recognizes during the

25 single-sign-on operation that the service provider does not yet
have a linked user account for the user while also recognizing
that the service provider requires additional information
about the user from the identity provider (step 1h52). More
specifically, the service provider does not have, e.g., within its

30 user registries or databases, enough information that allows
the service provider to determine the user's appropriate set of
privileges; without this information, the service provider can-
not determine the type ofsessionlaccess control rights to give
the user.

35 The manner in which the service provider pulls additional
user attribute information from the identity provider to com-
plete the linked-user-account creation operation may vary;
two examples ofvariations are shown over steps 1h54-1164
in FIG. 11C or over steps 1172-1178 in FIG. 11D. FIG. 11C

40 illustrates a front-channel attribute retrieval operation,
whereas FIG. 11D illustrates a back-channel attribute
retrieval operation. Hence, the data flow diagram that is
shown in FIG. 11B continues into either FIG. 11C or FIG.
11D; in both cases, the dataflow diagrams in FIG. 11C and

45 FIG. 11D conclude with similar steps. In both FIG. 11C and
FIG. 11D, the service provider provides access to the origi-
nally requested protected resource at step 1132, and the ser-
vice provider sends an HTTP Response message to the client
that contains information that is derived from accessing the

50 protected resource at step 1134, thereby concluding the pro-
cess.

Referring now to FIG. 1C, the service provider responds to
its determination of its lack of user attribute information by
sending an HTTP redirect message (HTTP Response mes-

55 sage with status/reason code "302") to the client (step 1154);
the message from the service provider contains a request for
additional user attribute information. The redirect message
redirects the client to the identity provider using a return URI
that was previously provided by the identity provider to the

60 service provider. In response to receiving the redirect mes-
sage from the service provider, the client sends an HTTP Get
message to the identity provider as indicated by the URI in the
HTTP redirect message from the service provider (step
1h56). The identity provider then processes the received mes-

65 sage (step 1h58) to build a response that contains user
attribute information that is stored by the identity provider
about the user ofthe client. The manner in which specific user

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 143 of 147 PageID #: 160

US 7,631,346 B2

attributes are identified may vary. For example, the user
attribute information that is provided by the identity provider
may include user attribute information that was explicitly
requested by the service provider. Additionally or alterna-
tively, the user attribute information that is provided by the
identity provider may include user attribute information that
was implicitly requested by the service provider, i.e. user
attribute information that has been determined by the identity
provider to be sufficient for performing a linked-user-account
creation operation at the service provider. In addition, the
identity provider may perform an operation to reconcile the
received request for additional user attribute information with
the service provider's previous single-sign-on request to
ensure that a service provider is not attempting to obtain user
attributes without sufficient reason to do so.

Afterthe identity providerbuilds the message at step 1158,
the identity provider sends the message with the additional
user attributes to the client (step 1160), e.g., in the form of an
HTTP redirect message (HTTP Response message with sta-
tus/reason code "302"). In response to receiving the redirect
message from the identity provider, the client sends an HTTP
Get message to the appropriate service at the service provider
as indicated by the URI in the HTTP redirect message from
the identity provider (step 1162).

Given the additional user attribute information in the
received message, the service provider performs or completes
a runtime linked-user-account creation operation at the ser-
vice provider (step 1164) based on the received user attribute
information; in this manner, the single-sign-on request can be
fulfilled by the service provider, which also creates an active
session forthe user, and the request for access to the protected
resource can proceed at steps 1132 and 1134.

Referring now to FIG. liD, the service provider responds
to its determination ofits lack ofuser attribute information by
sending a SOAP message directly from the service provider
to the identity provider (step 1172); the message from the
service provider contains a request for additional user
attribute information. The identity provider then processes
the received message (step 1174) to build a response that
contains user attribute information that is stored by the iden-
tity provider about the user ofthe client; again, the manner in
which specific user attributes are identified may vary as
described above. The identity provider sends a SOAP
response message with the additional user attributes to the
client (step 1176). Given the additional user attribute infor-
mation in the received message, the service provider performs
or completes a runtime linked-user-account creation opera-
tion at the service provider (step 1178) based on the received
user attribute information; in this manner, the single-sign-on
request can be fulfilled by the service provider, which also
creates an active session for the user, and the request for
access to the protected resource can proceed at steps 1132 and
1134.

CONCLUSION

The advantages ofthe present invention should be apparent
in view of the detailed description of the invention that is
provided above. When an identity provider attempts to ini-
tiate a single-sign-on operation on behalfofa user at a service
provider in order to obtain access to a controlled resource that
is hosted by the service provider, it is possible that the service
provider would not recognize the user identifier or other user
identity information in the received request. In the prior art,
this scenario would generate an error.

With the present invention, the service provider may
dynamically perform a linked-user-account creation opera-

44
tion as part ofthe single-sign-on operation. Ifnecessary, the
service provider can pull additional user attribute information
from the identity provider in order to obtain the required user
attributes for the user in a manner that is locally required by

5 the identity management functionality ofthe service provider.
"It is important to note that while the present invention has

been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes associated with the present

lo invention are capable of being distributed in the form of
instructions in a computer readable medium. Examples of
computer readable media include media such as EPROM,
ROM, tape, paper, floppy disc, hard disk drive, RAM, and
CD-ROMs."

15 A method is generally conceived to be a self-consistent
sequence of steps leading to a desired result. These steps
require physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
electrical or magnetic signals capable ofbeing stored, trans-

20 ferred, combined, compared, and otherwise manipulated. It is
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, parameters,
items, elements, objects, symbols, characters, terms, num-
bers, or the like. It should be noted, however, that all of these

25 terms and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities.

The description ofthe present invention has been presented
for purposes ofillustration but is not intended to be exhaustive

30 or limited to the disclosed embodiments. Many modifications
and variations will be apparent to those ofordinary skill in the
art. The embodiments were chosen to explain the principles of
the invention and its practical applications and to enable
others of ordinary skill in the art to understand the invention

35 in order to implement various embodiments with various
modifications as might be suited to other contemplated uses.

What is claimed is:
1 . A method for managing user authentication within a

40
distributed data processing system, wherein a first system and
a second system interact within a federated computing envi-
ronment and support single-sign-on operations in order to
provide access to protected resources, at least one ofthe first
system and the second system comprising a processor, the

45
method comprising;

triggering a single-sign-on operation on behalfofthe user
in order to obtain access to a protected resource that is
hosted by the second system, wherein the second system
requires a user account for the user to complete the

50 single-sign-on operation prior to providing access to the
protected resource;

receiving from the first system at the second system an
identifier associated with the user; and

creating a user account for the user at the second system
55 based at least in part on the received identifier associated

with the user after triggering the single-sign-on opera-
tion but before generating at the second system a
response for accessing the protected resource, wherein
the created user account supports single-sign-on opera-

60 tions between the first system and the second system on
behalfofthe user.

2. The method of claim 1 further comprising:
creating an alias identifier for the user at the first system

after triggering the single-sign-on operation.
65 3. The method ofclaim 1 further comprising:

sending a message from the second system to the first
system to pull authentication information for the user

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 144 of 147 PageID #: 161

US 7,631,346 B2

45
from the first system to the second system in order to
trigger the single-sign-on operation for the user at the
second system.

4. The method of claim i further comprising:
receiving a message from the first system at the second

system to push authentication information for the user
from the first system to the second system in order to
trigger the single-sign-on operation for the user at the
second system.

5. The method of claim i further comprising:
in response to a determination at the second system that the

second system does not have sufficient user attribute
information to complete creation of a user account for
the user at the second system, sending a request message
from the second system to the first system to retrieve
user attribute information; and

receiving at the second system from the first system a
response message that contains user attribute informa-
tion that is employed by the second system to complete
creation of a user account for the user at the second
system.

6. The method of claim S further comprising:
employing a front-channel information retrieval mecha-

nism to obtain user attribute information.
7. The method of claim 6 further comprising:
using HyperText Transport Protocol (HTTP) in the front-

channel information retrieval mechanism.
8. The method of claim S further comprising:
employing a back-channel information retrieval mecha-

nism to obtain user attribute information.
9. The method of claim 8 further comprising:
using Simple ObjectAccess Protocol (SOAP) in the back-

channel information retrieval mechanism.
lo. The method ofclaim S further comprising:
performing a preliminary user account creation operation

to commence creation of the user account for the user
prior to retrieving user attribute information for the user;
and

performing a concluding user account creation operation to
complete creation of the user account for the user after
retrieving user attribute information for the user.

11. The method ofclaim S further comprising:
retrieving user attribute information from a fourth system

by the first system.
12. The method of claim i wherein the first system sup-

ports an identity provider and the second system supports a
service provider.

13. The method ofclaim 12 further comprising:
prompting the user by the service provider to provide or to

select an identifier for the identity provider prior to
receiving an identifier associated with the user.

14. The method ofclaim i further comprising:
in response to a determination at the second system that the

second system does not have sufficient user attribute
information to complete creation of a user account for
the user at the second system, sending a request message
to a fourth system to retrieve user attribute information;
and

receiving at the second system from the fourth system a
response message that contains user attribute informa-
tion that is employed by the second system to complete
creation of a user account for the user at the second
system.

15. A computer program product on a computer-readable
medium for managing user authentication within a data pro-
cessing system, wherein a first system and a second system
interact within a federated computing environment and sup-

46
port single-sign-on operations in order to provide access to
protected resources, at least one of the first system and the
second system comprising a processor, the computer program
product holding computer program instructions which when

5 executed by the data processing system perform a method
comprising:

triggering a single-sign-on operation on behalfofthe user
in order to obtain access to a protected resource that is
hosted by the second system, wherein the second system

lo requires a user account for the user to complete the
single-sign-on operation prior to providing access to the
protected resource;

receiving from the first system at the second system an
identifier associated with the user; and

15 creating a user account for the user at the second system
based at least in part on the received identifier associated
with the user after triggering the single-sign-on opera-
tion but before generating at the second system a
response for accessing the protected resource, wherein

20 the created user account supports single-sign-on opera-
tions between the first system and the second system on
behalfofthe user.

16. The computer program product ofclaim 15 wherein the
method further comprises:

25 creating an alias identifier for the user at the first system
after triggering the single-sign-on operation.

17. The computer program product ofclaim 15 wherein the
method further comprises:

sending a request message from the second system to the
30 first system to retrieve user attribute information in

response to a determination at the second system that the
second system does not have sufficient user attribute
information to complete creation of a user account for
the user at the second system; and

35 receiving at the second system from the first system a
response message that contains user attribute informa-
tion that is employed by the second system to complete
creation of a user account for the user at the second
system.

40
18 . An apparatus for managing user authentication within a

data processing system, wherein a first system and a second
system interact within a federated computing environment
and support single-sign-on operations in order to provide

45
access to protected resources, at least one ofthe first system
and the second system comprising a processor, the apparatus
comprising:

a processor;
a computer memory holding computer program instruc-

50 tions which when executed by the processor perform a
method comprising:

triggering a single-sign-on operation on behalfofthe user
in order to obtain access to a protected resource that is
hosted by the second system, wherein the second system

55 requires a user account for the user to complete the
single-sign-on operation prior to providing access to the
protected resource;

receiving from the first system at the second system an
identifier associated with the user; and

60 creating a user account for the user at the second system
based at least in part on the received identifier associated
with the user after triggering the single-sign-on opera-
tion but before generating at the second system a
response for accessing the protected resource, wherein

65 the created user account supports single-sign-on opera-
tions between the first system and the second system on
behalfofthe user.

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 145 of 147 PageID #: 162

US 7,631,346 B2

47
19. The apparatus of claim 18 wherein the method further

comprises:

creating an alias identifier for the user at the first system
after triggering the single-sign-on operation.

20. The apparatus ofclaim 18 wherein the method further
comprises:

sending a request message from the second system to the
first system to retrieve user attribute information in
response to a determination at the second system that the

48
second system does not have sufficient user attribute
information to complete creation of a user account for
the user at the second system; and

receiving at the second system from the first system a
response message that contains user attribute informa-
tion that is employed by the second system to complete
creation of a user account for the user at the second
system.

* * * * *

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 146 of 147 PageID #: 163

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,631,346 B2 Page 1 of i
APPLICATION NO.: 11/097587
DATED : December 8, 2009
INVENTOR(S) : Hinton et al.

It ¡s certified that error appears ¡n the above-identified patent and that said Letters Patent is hereby corrected as shown below:

on the Title Page:

The first or sole Notice should read --

Subj ect to any disclaimer, the term ofthis patent is extended or adjusted under 3 5 U. S .C. i 54(b)
by 1217 days.

Signed and Sealed this

Twenty-first Day ofDecember, 2010

3T
David J. Kappos

Director ofthe United States Patent and Trademark Office

Case 1:16-cv-00122-LPS Document 1-1 Filed 03/02/16 Page 147 of 147 PageID #: 164

Case 1:16-cv-00122-LPS Document 1-2 Filed 03/02/16 Page 1 of 1 PageID #: 165

