Standardizing Bad Cryptographic Practice

A teardown of the IEEE P1735 standard for protecting electronic-design intellectual property

Animesh Chhotaray
University of Florida

Domenic Forte
University of Florida

ABSTRACT

We provide an analysis of IEEE standard P1735, which de-
scribes methods for encrypting electronic-design intellectual
property (IP), as well as the management of access rights
for such IP. We find a surprising number of cryptographic
mistakes in the standard. In the most egregious cases, these
mistakes enable attack vectors that allow us to recover the
entire underlying plaintext IP. Some of these attack vectors
are well-known, e.g. padding-oracle attacks. Others are new,
and are made possible by the need to support the typical uses
of the underlying IP; in particular, the need for commercial
system-on-chip (SoC) tools to synthesize multiple pieces of IP
into a fully specified chip design and to provide syntax errors.
We exploit these mistakes in a variety of ways, leveraging a
commercial SoC tool as a black-box oracle.

In addition to being able to recover entire plaintext IP,
we show how to produce standard-compliant ciphertexts of
IP that have been modified to include targeted hardware
Trojans. For example, IP that correctly implements the AES
block cipher on all but one (arbitrary) plaintext that induces
the block cipher to return the secret key.

We outline a number of other attacks that the standard
allows, including on the cryptographic mechanism for IP li-
censing. Unfortunately, we show that obvious “quick fixes” to
the standard (and the tools that support it) do not stop all of
our attacks. This suggests that the standard requires a signif-
icant overhaul, and that IP-authors using P1735 encryption
should consider themselves at risk.

CCS CONCEPTS

e Security and privacy — Digital rights management;
Hardware security implementation; « Hardware — Best
practices for EDA,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions
from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. .. $15.00
https://doi.org/10.1145/3133956.3134040

Adib Nahiyan
University of Florida

Thomas Shrimpton
University of Florida

Mark Tehranipoor
University of Florida

KEYWORDS

syntax oracle attack, padding oracle attack, IP encryption,
IP piracy, hardware Trojan, P1735

1 INTRODUCTION

A System on Chip (SoC) is a single integrated circuit that
incorporates all of the digital and analog components nec-
essary to implement a target system architecture, e.g., a
radio-frequency receiver, an analog-to-digital converter, net-
work interfaces, a digital signal processing unit, a graphics
processing unit, one or more central processing units, a cryp-
tographic engine, memory, and so on. The vast majority of
mobile and handheld devices contain a SoC, as do many
embedded devices. The complexity and cost of modern SoC
processors, amplified by time-to-market pressure, makes it
infeasible for a single design house to complete an entire SoC
without outside support. Instead, they procure electronic
design intellectual property (IP) for various SoC components
and integrate them with their own in-house IP. An IP is a
collection of reusable design specifications that may include
— a chip layout, a netlist, a set of fabrication instructions, etc
[13]. These IP cores are intellectual property of one party,
and could be licensed to other parties as well. A modern SoC
can include tens of IPs from different vendors distributed
across the globe. This approach to SoC design has become
the norm for a large portion of the global IP market.

The current semiconductor IP market is valued at $3.306
billion, and is estimated to reach $6.45 billion by 2022 [30]
with the emergence of IoT devices. Thus, IP developers have
a clear economic incentive to protect their products and their
reputations. Profit is lost if the IP is used by parties who
have not paid for it, if it divulges trade secrets, or if it is
used to produce so-called “clone” chips. Company reputations
are damaged if the IP does not perform as advertised. And
if security critical design features are leaked, or backdoors
uncovered by users, the damage can be long-lasting.

In order to protect confidentiality of IP and provide a
common mark-up syntax for IP design that is interoperable
across different electronic design and automation (EDA) tools
and hardware flows, the IEEE SA-Standards Board developed
the P1735 standard [13]. This standard has been adopted by
Synopsys, Xilinx, and other leaders of the semiconductor 1P
industry.

IEEE P1735 is broken (and potentially dangerous).
We expose a number of cryptographic mistakes in the P1735

https://doi.org/10.1145/3133956.3134040

Rights start ...
Key Rights
RSA-encrypt_, (K
scope of || Block e Block
HMAC tag Rights end
=4
Plaintext IP ... Unprotected
Pragmas ... Data Block
Data
AES—CBCK(IP) Block

Figure 1: A P1735 ver. 2 Digital Envelope. The Rights Block
contains the RSA-encryption of an AES key, which is used
to encrypt the sensitive portions of the IP with AES-CBC
mode. Note that only the Rights Block is covered by the
authentication mechanism.

standard, be they explicit mistakes, mistakes of omission,
or failure to address important attack vectors. We show
that commercial EDA tools that comply with this standard
can actually enable attacks that allow full recovery of the
plaintext IP without the key. We also demonstrate that, given
the encryption of an IP, we can forge a standard-compliant
encryption of that IP modified to contain targeted hardware
trojans of our choosing. For example, we turn encrypted IP for
an AES implementation into one that can be induced to leak
its secret key. This ability to insert HW trojans results from
the fact that, despite surface appearance to the contrary, the
cryptographic methods standardized in IEEE P1735 provide
no integrity protections whatsoever to the encrypted IP.

We use the Synopsys Synplify Premier EDA tool (Version
L-2016.09) to make our attacks concrete and to analyze their
performance. Synopsys is one of the main EDA tool vendors,
with a market share of 37% [1]. To be clear, we are not finding
fault with the tool: it is the standard that bears the blame.

Let us give a very brief summary of what P1735 gets wrong,
from a cryptographic perspective, and how we exploit these
mistakes.

No confidentiality protection. Figure 1 gives a slightly
simplified view of the P1735 “digital envelope.” It implements
a kind of hybrid public-key encryption scheme: it transports
an AES key K that is encrypted under the RSA public-key
of the EDA tool, and then the sensitive portion of the IP is
encrypted using AES (under key K) in CBC-mode. While the
Data Block contains the AES encrypted IP, the Key Block
holds the encryption of the AES key. We stress that CBC-
mode is the only symmetric-key encryption scheme discussed
in the standard.’

First of all, the P1735 standard provides no guidance as
to how plaintexts should be padded prior to CBC-mode

! The standard allows for DES- and 3DES-based CBC-mode (although
these are deprecated), and requires that AES128- and AES256-based
CBC-mode be supported.

encryption. Thus, tools wishing to support P1735 are left
to make a choice that is known to be security critical [29,
35, 37]. As an example, the Synopsys Synplify Premier tool
implements the commonly used PKCS#7 scheme; it also
reports a distinguishable padding error upon decryption. The
combination of these leads to well-known padding-oracle
attacks (POA), which we exploit to recover full plaintexts
without knowledge of the key.

An informed “quick fix” to stop the padding-oracle attack
might be to employ a different padding scheme, e.g. OZ or
AByte padding [9, 28]. Or to switch from CBC-mode to a
block-cipher mode that requires no padding, e.g., counter-
mode (CTR). But none of these would stop our new syntaz-
oracle attack (SOA) from recovering plaintext. In this attack,
we exploit the fact that EDA tools may provide a wealth of
observable syntax-error messages, once the encrypted IP has
been decrypted and the tool begins to process the plaintext.
Indeed, the standard recommends this:

“all tools do error checking and report errors and
warnings to the user. The quality of those error
messages reflects on the usability of those tools,
and by extension, the quality of protected IP.
[13, Section 10]

Moreover, the standard suggests that such error messages
are not useful to attackers:

.. for IP of more than trivial complexity, it is
highly unlikely that information in error mes-
sages will fundamentally compromise the IP and
allow essential information to be stolen. There-
fore, there is a good argument that protected
IP is more usable with error messages that are
transparent and the risk of loss of value will be
little to none.” [13, Section 10]

Our SOA attack shows this thinking is entirely wrong-headed.

No integrity protection. In addition to providing no ac-
tual confidentiality guarantees to the underlying IP, a P1735
digital envelope provides no integrity protection. To be fair,
the standard does not call out integrity protection of the
digital envelope (or even the IP) as an explicit goal. One
might even argue that there is no need for integrity protection.
After all, the standard states that the EDA tool is assumed
to be trusted, and there is no incentive for an honest IP user
to maul the digital envelope it receives from the IP author.
Our position is that this viewpoint is too narrow. Rogue
entities do exist in the modern SoC design-flow, and the ex-
istence of P1735 is evidence that the semiconductor industry
acknowledges the real (and costly) threat they represent.
To highlight the danger of not addressing integrity pro-
tection, we give an attack that succeeds to embed targeted
hardware-Trojans into an IP that is encrypted via a P1735
digital envelope. In fact, the standard admits such an attack
trivially, because the creator of the digital envelope selects
the AES key K, and the standard provides no mechanism
for authenticating the party who selected it. But our attack

works even if the key K is unknown and bound to the IP
author.

Broken licensing-proxy mechanism. The standard also
includes a mechanism for EDA tools to communicate with an
IP-author-provided licensing proxy. Loosely, the tool sends
an AES-CBC encrypted “license request” message on be-
half of the user, and the proxy responds with an AES-CBC
encrypted “license granted” or “license denied” message. Al-
though we did not have available a commercial tool that
implements this protocol, P1735 appears to admit multiple
attacks on it. Here, the culprits are the use of the same ini-
tialization vector (IV) for all messages sent within a single
connection (and there may be multiple license requests and
responses within a connection), and the fact that the “license
granted” and “license denied” messages both echo the “license
request” message.

There are a number of other cryptographic errors that are
not as obviously damaging, and numerous places where the
standard is vague or silent on security critical matters. A
broader summary is found in Appendix A.

Summary of our contributions. At a high level, our
work makes contributions along multiple dimensions. First,
it analyzes an international standard that has been adopted
by major commercial EDA tools and is likely to impact the
development of future tools. Second, while our attacks are
not technically deep from a cryptographic perspective, they
demonstrate that complying with the standard provides no
real security. We optimize these attacks to make them quite
efficient, especially when one considers the amount of time
(and money) that IP developers expend to develop their
products. Third, we bring to the attention of the security
community a facet of the supply-chain attack surface that is
badly in need of principled protections. We hope our work will
encourage others to examine standards that aim to protect
other pieces of this surface.
Concretely, the main results of this paper are:

e Two attacks (POA and SOA) that extract the plaintext
from standard-compliant ciphertexts without knowl-
edge of the key. We also provide optimizations suitable
for both attacks that reduce their complexity from
a naive O(N?) to O(N), where N is the number of
ciphertext blocks.

e Application of the POA and SOA attacks on nine IP
benchmarks of various sizes and content. We quantita-
tively compare them according to their execution time
and accuracy.

e Two integrity-violating attacks that require only partial
knowledge of the IP plaintext; this can be gained using
POA, SOA or other attacks that may yet be discovered.
We show how to insert a targeted hardware Trojan into
any IP without knowledge of the key.

e Analysis of potential vulnerabilities in the licensing
scheme described by the standard, which can result in
unauthorized access and denial of service.

We also provide recommendations for addressing the mis-
takes we identify and exploit. From a cryptographic per-
spective, the solution is simple. Use a provably secure au-
thenticated encryption scheme that supports associated data
(AEAD) to encrypt the sensitive IP and produce the Data
Block, treating everything that is not the sensitive IP (but
still is to be transmitted) as the associated data (AD). For
example, the standard could mandate CTR-mode encryption
of the IP for the Data Block, with an attached HMAC whose
scope covers everything to be included in the digital enve-
lope. That is, use CTR-mode encryption and HMAC in an
“encrypt-then-MAC” style of generic composition [8],[27], ap-
propriately modified to admit AD. Using CTR-mode removes
concerns about padding (hence padding-oracle attacks), and
using encrypt-then-MAC style AEAD prevents (in theory)
any sort of syntax-oracle attack because digital envelopes
would be rejected as invalid before any plaintext from the
Data Block was released for further processing.

However, we note that this conceptually straightforward
change would require substantial changes in the standard,
and the EDA tools that support it. Minimally, the IEEE
would need to: deprecate previous versions of the P1735
standard immediately with no support for backward compat-
ibility, define standard specific variables (or “pragmas”) for
an AEAD scheme, define the revamped mark-up format of
the digital envelope, explicitly define the behavior of the tool
when decryption fails (due to any reason), and create a set
of standard error messages that the tool can output during
processing of the digital envelope (e.g., a version error to
identify digital envelopes complying with a previous version
of the P1735 standard.) Likewise, EDA tool providers would
need to: identify deprecated versions of the standard and
report version error, add new APIs that the IP authors could
use to create the digital envelope using the standardized
AEAD scheme, add error flags/messages in its compiler to
catch errors due to the AEAD scheme, and avoid conflat-
ing cryptographic error messages with Verilog/VHDL error
messages.

2 BACKGROUND

2.1 SoC Design Flow

Figure 2 shows a typical SoC design. In the first step, the SoC
integrator (design house) specifies the high-level requirements
and blocks of the SoC. It then identifies a list of IPs necessary
to implement the given specification. These “IP cores” are
either developed in-house or purchased from third party IP
(3PIP) developers. In the latter case, the cores may be of the
following forms:

e “Soft” IP cores are delivered as synthesizable register
transfer level (RTL) specifications written in a high-
level hardware description language (HDL) such as
Verilog or VHDL. These IP cores are human-readable
by virtue of being written in a high-level language.

e “Firm” IP cores are delivered as gate-level implemen-
tations of the IP, i.e., sets of registers and logic gates

SoC Integrator

il SoC . Gate Level Physical —
- ‘ Sonth ysical -_—
(In-house IP) (Design House)‘ e Netlist Layout e
4
|
== I
~
T DIT DAT Inserted Hard IP Fabrication =——> g
oy Insertion Netlist (3PIP) Product

Third Party Entities

Figure 2: System-on-chip (SoC) design flow.

connected by wires. They are often visualized as gate-
level schematics or human-readable netlists, but do not
expose the underlying IP. Reverse engineering the RTL
specification (even approximately) from the gate-level
implementation is considered a non-trivial problem,
akin to recovering source code from machine code.

e “Hard” IP cores are delivered as GDSII representations
of a design, i.e., a set of planar geometric shapes repre-
senting transistors and interconnects. These are human
readable (with some effort), and are easily converted
to gate-level implementations. Like firm IP, it is non-
trivial to recover the original RTL from which it was
generated (if any).

Soft IPs provide greater flexibility and enable easier integra-
tion with other IPs in the SoC. Therefore, soft IP is the most
common form of 3PIP by a large margin [38]. After devel-
oping/procuring all the necessary soft IPs, the SoC design
house integrates them to generate the RTL specification of
the whole SoC. The RTL design goes through extensive func-
tional/behavioral testing to verify the functional correctness
of the SoC and also to identify bugs. The SoC integrator then
synthesizes the RTL description into a gate-level netlist based
on a target technology library. (They may also integrate firm
IP cores from a vendor into this netlist.) The gate-level netlist
then goes through formal equivalence checking to verify that
the netlist is equivalent to the RTL representation.

Next, specific design-for-test (DFT) and design-for-debug
(DFD) structures are integrated into the netlist. As the names
suggest, these make it easier to test and debug a SoC design
later on in the fabrication process. (We note that DFT and
DFD structures may be integrated into the netlist in-house,
or by third parties, further complicating the security surface.)
The DFT inserted netlist then goes through static timing
analysis to analyze if the implemented design conforms to
the timing requirement.

After this, the gate-level netlist is translated into a physical-
layout design. At this stage, it is also possible to import
and integrate hard IP cores from vendors. After performing
static timing analysis and power closure, the SoC integrator
generates the final layout in GDSII format and sends it out
to the foundry for fabrication.

The flow discussed above is for application-specific integrated-
circuit (ASIC) designs. An SoC can also be implemented in

Symmetrickey, K Publickey, pk
(1P developer) (tool vendor)

Private key, sk
(tool vendor)

X) Asymmetric Data
e A decryption Block
encryption encryption l
l l symmetrickey
(IP developer)

Symmetric
decryption

Digital
envelope

IP Developer

EDA Tool (run by the IP user)

Figure 3: Work flow of the P1735 standard.

a field-programmable gate array (FPGA). The FPGA de-
sign flow is similar to ASIC flow until synthesis. After the
synthesis in FPGA flow, the design goes through “place-and-
route” process for the targeted FPGA chip and a bit-stream
is generated which implements the design on FPGA.

In the SoC design flow, for either ASIC or FPGA, the
P1735 standard is mainly used by developers of soft and firm
IP-cores, who wish to keep their technology confidential. This
standard is also used by SoC designers who want to ensure
that the design is not tampered by rogue employees (i.e.,
insider attack) or by third party entities present in the SoC
design flow.

2.2 IEEE P1735 Standard

The IEEE SA-Standards Board developed the P1735 stan-
dard to provide guidance on protection of electronic design
intellectual property (IP) [13]. It defines three stakeholders:
IP author, IP user, and tool vendor. The IP author is the
producer and legal owner of the IP. The IP user is the party
who will use the IP author(s) product(s) to develop its SoC.
The tool vendor provides an EDA tool to the IP user. The
tool should simultaneously enable the IP user to develop its
SoC, and protect the rights of the IP author. Note that the
EDA tool is run on a platform that the IP user controls.
From an economic perspective, the IP author and IP user
have competing interests. The former wants to maximize the
return on its (often signficant) research and developement
investment; the latter wants to use various pieces of IP at

minimal cost. The P1735 standard effectively adopts the
viewpoint that the IP user is the adversary. A malicious IP
user would like to recover the plaintext IP, and possibly find
and exploit holes in the access control mechanism. The EDA
tool is considered to be trusted, and is thus permitted by
the IP author to carry out decryption. Also, it is the EDA
tool that provides code for IP encryption to the IP author,
and this code is trusted. The working assumption is that the
EDA tool will not leak to the IP user anything beyond what
the IP author deems acceptable, this being specified in the
Rights Block of the protected IP.

The P1735 standard provides recommended practices for
using encryption in order to ensure confidentiality of IP. To
support interoperability and broad adoption, it also specifies
a common mark-up format to represent an encrypted IP. The
mark-up format uses standard-specific variables, or pragmas,
to identify and encapsulate different portions of the protected
IP. It also uses these pragmas to specify the encryption
algorithms, digest algorithms, etc.

The standard also provides mechanisms to support rights
management and licensing; together these enable IP authors
to assert fine-grained access control. With the rights man-
agement functionality, an IP author can assert which output
signals are accessible to the IP user when the EDA tool simu-
lates the IP for the latters benefit. The licensing functionality
allows access to authorized users only, e.g., companies that
have paid for the rights to use the IP.

The basic work flow of the standard is shown in Figure
3. The standard mandates AES-CBC (but allows for other
blockciphers) and RSA (> 2048) for symmetric and asymmet-
ric encryption, respectively. For AES it recommends a key
size of 128 or 256. We note that while the tool may perform
simulation, synthesis, and other processes on the IP, it never
reveals the IP in its plaintext format to the IP user [13].

2.3 Hardware Trojans

Due to the globalization of the semiconductor design and
fabrication process, SoCs are increasingly becoming vulnera-
ble to malicious modifications often referred to as hardware
Trojans [16] [25]. These hardware Trojans can create back-
doors in the design, through which sensitive information can
be leaked, and other possible attacks (e.g., denial of service,
reduction in reliability, etc.) can be performed.

The basic structure of a hardware Trojan consists of two
main parts: trigger and payload. A Trojan trigger is an op-
tional part that monitors various signals and/or a series of
events in the SoC. Once the trigger detects an expected event
or condition, the payload is activated to perform a malicious
behavior. Typically, the trigger is expected to be activated
under extremely rare conditions, so the payload remains in-
active for most of the time. When the payload is inactive,
the SoC acts like a Trojan-free circuit, making it difficult
to detect the Trojan [26]. A Trojan can have a variety of
possible payloads. In this paper, we will focus on payloads
which leak secret information [34].

3 CONFIDENTIALITY ATTACKS

In general, IP authors price in a risk premium to compensate
for the risk of revenue loss should their IP be used in an unau-
thorized manner. The P1735 standard aims to mitigate this
risk, and to establish trust in the semiconductor IP market,
by mandating cryptographic mechanisms meant to provide
confidentiality (at least) for IP. Reducing the risk should
reduce the cost of the IPs; increasing trust should enable IP
authors to engage in transactions with more prospective IP
users. To this end, the standard states [13, Section 4.3]

“in its encrypted form, and in the absence of
the decryption key, the data is secure both in
transmission and at rest in a file ... There are no
independent means to decrypt and access it at
the IP user premises”

but we show that this claim is completely false.

We present two different attacks to break the confidentiality
of an encrypted IP. The first is a standard padding-oracle
attack (POA), and the other is a new, related, syntax-oracle
attack (SOA). These attacks extract the plaintext of an
encrypted IP without the knowledge of the key. (Readers
who are very familiar with padding-oracle attacks may wish
to skip directly to the syntax-oracle attack in Section 3.2.)
Moreover, in Section 4 we show that once the confidentiality
of the IP is broken, the adversary can insert any targeted
hardware Trojan into the original IP ciphertext.

3.1 Padding-Oracle Attack

The P1735 standard mandates CBC-mode for symmetric
encryption. CBC-mode operates on strings whose length is a
multiple of the blocksizse of blockcipher being used, e.g. 128-
bits when using AES-CBC as recommended by the standard.
Therefore, one must attend to padding of plaintexts to make
them block-aligned. The standard makes no recommendation
for any specific padding scheme, leaving the tool vendors to
decide what to do. (Recall that the EDA tool provides code
for encryption of IP intended for use with that tool.)

The Synplify Premier tool supports PKCS#7 padding. In
this scheme, if the last block of plaintext is block-aligned, a
new block is added and filled with the padding byte (PB)
which is equal to the block-size in bytes. Otherwise, the last
block is padded with PB till the block gets full. In this case,
PB is equal to the difference of block size in bytes and the
number of bytes in the last block. For example, if the last
block is short by 2 bytes, it is padded with 0x02 0x02. During
decryption, if the last plaintext block has incorrect padding,
a padding error is reported.

In the classic padding-oracle attack [35], Vaudenay used
this error as an oracle (PAD) to recover the plaintext (P)
without knowing the key. In this attack, when the oracle
is given a ciphertext (C) as input, it returns 1 if there is a
padding error, and 0 otherwise. Suppose the target ciphertext
is C =1V || C1||C2 || Cs, where IV is the initialization vector,
and all blocks are 16 bytes long. Letting C;[i] and P;[i]
denote the ™ byte in the ;" block of the ciphertext and
plaintext, respectively, the attack proceeds as follows. The

adversary starts guessing bytes in the last block (Cs) in the
reverse order, i.e., she first guesses the 16" byte. Let the
guess byte be g. She xors C>[16] with the guess byte and
padding byte, PB (= 0x01), i.e C5[16] = C2[16] & g & 0x01,
where C4 is modified Cs. She concatenates the ciphertext
blocks and IV as shown earlier, and queries the padding
oracle. If the oracle returns 0 (no padding error), she repeats
the process with a new guess byte. When 1 is returned, she
stops, initializes P»[16] with the value of g, and xors C3[16]
with 0x01 to remove the padding. The adversary then repeats
the process for the 15*® byte, with pad as 0x02. Note that
she has to xor C[16] with 0x02, so that the last two bytes
in P3 become 0x020x02 (valid padding) when the adversary
correctly guesses P»[15]. She repeats this process to guess all
the bytes in Cs. Then, she truncates the last block to make
(5 as the current target block, and repeats the attack to
recover plaintext from Cs.

In the case of AES and a plaintext alphabet of ASCII bytes,
the attack takes a maximum of 256 x 16 x N attempts to
find all of the plaintext, where N is the number of ciphertext
blocks. In each attempt, the tool performs N decryptions.
Therefore, the algorithmic complexity of the attack is O(N?).

Defense. The current versions of the standard have no
means to protect against the POA. Simple ways to fix this
include

e Changing the padding scheme to AByte or OZ padding.
Since these schemes have no invalid padding, decryp-
tion never fails due to incorrect padding [9, 28].

e Changing to AES-CTR mode, which requires no padding
of the plaintext.

The above two modifications require minimal changes to the
mark-up format mandated by the current version of the stan-
dard, although both would require tool-specific modifications.
Anyway, neither of these simple defenses actually prevent
recovery of the plaintext, as we will see in the next section.

Using a proper authenticated encryption (AE) scheme
would prevent the POA and the new attack that we are
about to give. From a cryptographic perspective, we recom-
mend mandating an AE scheme with support for associated
data (AEAD) [31]. The associated data (AD) should be all
of the digital envelope that is not the Data Block, so that
there is a proper binding between AD and Data Block. Our
recommendation would be achieved with the least number
of changes by demanding (1) that the HMAC computation
always is carried out, (2) that the scope of the HMAC com-
putation is the entirety of the digital envelope, specifically
including the encrypted Data Block, and (3) that every de-
cryption failure results in a single error signal. For the last,
this means that the padding must be checked even if the
HMAC check fails, to avoid enabling the POA via a timing-
channel [11] Moreover, no processing of the digital envelope
beyond these checks should occur if decryption fails.

That said, supporting any AEAD scheme would require
significant changes to the standard and the EDA tools. So it is
worth evaluating other provably secure AEAD schemes with
respect to their efficiency and operational considerations.

3.2 Syntax-Oracle Attack

EDA tools need to provide an extensive debugging environ-
ment so that any SoC design issues can be swiftly identified.
This applies to encrypted IPs as well, since IP users need the
ability to detect potential design errors and systhesis issues
in the purchased IPs. The P1735 standard highlights these
needs, as we noted in the Introduction with quotes from [13,
Section 10].

Our SOA exploits the syntax errors reported by EDA tools
in a manner similar (but not identical) to the POA. The
main strategy is to inject into the decrypted plaintext, via
manipulations of the ciphertext, a particular character that
will elicit a unique syntax-error message when the plaintext
is processed by the tool.? In Verilog grammar, we have found
that the * (backquote) character has these unique properties.
The * symbol is a Verilog keyword that indicates prepro-
cessor directives such as “define”; “include”, and “ifdef”. For
example, “* define SO 1” defines a macro SO that is replaced
by 1 during preprocessing of the plaintext IP. If the backquote
character is followed by any token other than the supported
directives, the EDA tool reports one or more syntax errors.
(This is a property of Verilog parsers.) These errors can be
used akin to the padding oracle to recover the plaintext IP.

For example, when Synplify encounters a misplaced back-
quote symbol, it throws one of the following two errors:
“expecting identifier immediately following back-quote” or
“Unknown macro”. In our attack, we use these two error mes-
sages to affect a syntax oracle (SO). When the oracle is given
a ciphertext (C) as input, it returns 1 if either of these two
errors occurs, and 0 otherwise.

We use the same example as the POA to explain our
SOA. Let the ciphertext message be C = IV || Cy || C2 || Cs.
In SOA, the attacker can target any ciphertext block. (In
padding oracle attack, the target block should be the last
block of ciphertext; the ciphertext can be truncated to make
the target block, the last block.) Let the target ciphertext
block be C2. The attacker can guess the plaintext characters
of the target block in any order.

Let’s suppose the attacker is interested in learning the 5%
byte of the 2° block, i.e., Ps[5]. The SOA attack for this case
is illustrated in Figure 4. We first replace C1[5] with the guess
byte, g, i.e., Ci[5] = g, where C{[5] is the modified value of
C1[5]. We then query the SO. If the oracle returns 0, the
same process is repeated with a new guess byte. When SO
returns 1, we stop because it indicates that the * character is
present at P;[5], the modified value of P2[5]. We extract the
P»[5] value by C1[5] & 0x60 & g. (0x60 is the ASCII value
of *). The same process is repeated to find the rest of the
plaintext.

To see that the attack works, consider the following. Before
the attack, P2[5] = C1[5] @ y[5], where y = Ex'(C2). When
the SO returns 1,

o P3[5] = C1[5] & y[5],
e P;[5] = 0x60, and

2We define a unique syntax error as an error that is caused only by
presence of a particular character in the IP.

Key

CZ C3

S I S e A N S
r

Key Dec.:::tion \ Key Dec.:::tion \
y r
FanY Fan)
?J ./
A

IEES O O 5 O P
P’z P3

P',[5] = ASCII(") = 0x60

Figure 4: Syntax-oracle attack to extract the plaintext, P»[5]. Before the attack, P2[5] = C1[5] & y[5]. When C1[5] = g,
suppose SO returns 1, i.e., P;[5] = 0x60. Since, P3[5] = C1[5] @ y[5], so P[5] = C1[5] & 0x60 & g. (P; and C represent the

modified plaintext and ciphertext block.)

. Cil5] = g.

So, P2[5] = C1[5] @ 0x60 @ g.

In case of AES and a plaintext alphabet of ASCII bytes,
it would require at most (256 x 16 x N) attempts to extract
the entire IP, where IV is the number of ciphertext blocks.
Each attempt requires N AES decryption. So, the algorithmic
complexity of this attack is O(N?).

Defense. Our SOA relies on modifying the ciphertext to
inject specific syntax errors in the decrypted plaintext. Our
attack works because the P1735 standard does not provide
any integrity protection for the Data Block, and encourages
the return of descriptive syntax errors. As the latter seems
crucial for facilitating SoC design, we recommend a crypto-
graphic solution. As noted in the discussion of POA defenses,
we recommend using a proper, provably secure AEAD scheme,
and treating all of the digital envelope that is not the Data
Block as associated data.

3.3 Optimizing the syntax-oracle attack

In the worst case, the SOA requires 256 x 16 x N attempts
to extract the plaintext IP consisting of N ciphertext blocks.
For N = 10,000, the SOA would require roughly 40 million
attempts to recover the plaintext. For each attempt, the
EDA tool must decrypt the IP and run a syntax check. Our
experimental results show that a single attempt takes around
0.25 seconds, on average. Therefore, for a 10,000 block IP,
the SOA would take nearly 40 months to extract the entire
plaintext. In short, the basic SOA may not be practical
for large scale industrial IPs. In this section, we provide
optimizations for the SOA that significantly reduce the run
time of the attack.

Reduce sample space of guess byte (RSSGB). Con-
sider the example introduced in the previous section. In the
first step of the attack, Ci[5] = g. Instead, the adversary

could set C1[5] = g1, where g1 = C1[5] @ 0x60 & g. This
optimization improves the attack efficiency by reducing the
number of attempts to extract the plaintext. To see why,
observe that

P[5

C1[5] @ 0x60 & g1
C1[5] @ 0x60 @ (C1[5] @ 0x60 @ g)
= g

Note that the ciphertext is an encryption of valid Verilog
code. Since the guess byte is now equal to P»[5], it would
be a valid Verilog character, and hence its range would be
between 1 and 128. The maximum number of attempts to
find all of the plaintext therefore reduces from 256 x 16 x N
to 128 x 16 x N. This optimization also works for the POA.

Reducing AES decryptions (RAD). In AES-CBC, a
plaintext block is a function of two ciphertext blocks, namely
Py = Di(Cn) @ Cn-_1, where D = E~'. The Synplify
tool reports errors after it decrypts the entire ciphertext,
and performs a syntax check on the resulting plaintext. This
adds a lot of latency as the tool has to decrypt extra N — 2
blocks of ciphertext to recover each targeted plaintext block.
It is possible to parse and modify the ciphertext so that it
only contains the target block and the block before the target
block. However, any target block other than the last block will
not have proper padding, and the tool does not report syntax
errors if it finds a padding error. We counter this problem by
using the following preprocessing — discard all ciphertext
blocks except the last two blocks, the target block, and the
block before it. The last two blocks prevent concealing of
syntax errors due to padding errors. For example, consider
a 100-block ciphertext, C' = IV |[|Cy || --- || Cog || C100. To
recover C3, we could give C' = C2 || Cs || Cog || Cio0 as input
to the tool, instead of C'. Now, in each attempt, the tool has
to decrypt just 4 blocks of ciphertext to get the plaintext
instead of N. Owing to this optimization, the algorithmic

complexity reduces from O(N?) to O(N). To be precise, the
tool can save up 128 x 16 x N x (N —4) AES decryption
operations in each attack. For a 1,000-block Verilog code IP,
the attack can be 250x faster than the RSSGB optimization.
This optimization also works for POA.

All-blocks-at-once attack (ABAO) . The syntax-oracle
attack can be independently applied to extract a character
from any particular position. Also, instead of aiming to inject
the backquote character/symbol at one position, we can aim
to inject it at multiple position at the same time. The EDA
tool will report the respective locations (in the decrypted
IP) where it encounters errors due to the backquote symbol.
These properties make the SOA inherently parallelizable and
we can exploit it to gain a massive speedup.

The optimized attack needs some pre-processing similar
to the previous optimization. This is shown in Figure 5. We
first break the Data Block of the encrypted Verilog code
into groups, where each group consists of a target block, its
preceding block, and the last two blocks in the Data Block.
A module is the basic unit of hierarchy in Verilog. So, each
group is given a unique module name and is written on to
a separate file. For example, for target block Ci, we write
IV || Cy||Cn=1 || Cn in the Data Block of modulel; for target
block Cs, we write Cy || C2 || Cn—1 || Cn in the Data Block of
module2, and so on. It can be easily seen that the number
of files that needs to be created is equal to the number of
encrypted blocks in the Data Block of the original Verilog
module. We then write a main module (“top” in Figure 5)
in a separate file that can invoke the modules that we just
constructed. Next, we modify (xor with 0x60 and the guess
byte) all characters of the target block in each module and
pass all files (modulel, module2, ..., modulel00 and top)
to the EDA tool. The tool checks for syntax errors in all
the files. Notice that, in this case all instances of the guess
byte (if present in the target block of a module) and their
relative position to the start of the file will be known in a
single attempt. So, after 128 attempts, which is the sample
space of valid Verilog characters, we find all the characters
in the original encrypted Data Block.

For this optimization, the algorithmic complexity of the
attack is O(INV) where N is the number of ciphertext blocks. To
be more precise, the attack takes a maximum of 128 attempts
to find all of the plaintext. The maximum number of AES
operations that the tool performs is equal to 128 x N, as
compared to 256 X 16 x N X N, in case of no optimization. For
a Data Block that contains 1,000 AES-128 encrypted blocks,
this optimization reduces the worst case by more than 4
billion AES operations. Note that, the previous optimization
was sequential in nature, while the current one is highly
parallelized, as not only can we target all blocks at once, we
can also find all instances of a single guess byte in a single
run.

This gigantic stride in efficiency comes at a loss of accu-
racy. The ABAO optimization can introduce characters like
EOF, double-quote and comment symbols in the decrypted
plaintext. These characters also cause syntax errors which

Encrypted IP

Key Block top
modaule top (a, b);
m1 modulel(a, b);
Data Block .

el el
m1 module100(a, b);

modulel module100
Key Block Key Block
Data Block Data Block
‘ IV’ C1 | Cos|Ci00 ‘Cgs C100| Cog [C100

Figure 5: Modules creation in SOA - ABAO optimization.
The blue ciphertext block is the target block in each module.

can mask the target (the backquote symbol). Therefore, the
SOA with this optimization will fail to extract some plaintext
characters. Our experimental results show that the SOA with
ABAO optimization can extract around 85% of the total
plaintext. For an adversary with subject matter expertise,
it is feasible to infer the rest of the plaintext of the overall
encrypted IP.

There is a clear trade-off between the accuracy and run-
time of this attack. An adversary could use this optimization
to recover a substantial portion of the plaintext in a short
time. If there is spare bandwidth, they could run the basic
SOA/POA to find the missing characters. A tweaked version
of this optimization can be applied to the POA. We discuss
this in Section 6.

Exploit frequency distribution. The attacker can also
exploit the frequency distribution of characters in Verilog
grammar to select guess bytes instead of making randomized
guesses. For more efficiency, they could use a Markov model to
make adaptive guesses based on partially decrypted plaintext.

Run parallel instances of the tool. Another trivial op-
timization involves the IP user running multiple instances of
the Synplify tool in parallel to recover separate portions of
the plaintext. The number of instances that could be run in
parallel are controlled by the EDA tool. One could argue that
the adversary could procure multiple licenses of the Synplify
tool and recover the plaintext IP in a short time. But, these
licenses are very expensive and cost upwards of $100,000.

3.4 POA vs. SOA

Table 1 shows the trade-off of each optimization with respect
to the accuracy of the attack, for a 1,000 block ciphertext.
Since run time of an attack is directly proportional to the
number of AES operations, we use the maximum number
of AES operations as an approximation of the run-time.
The POA and the basic SOA can extract ~ 100% of the
encrypted plaintext. While POA is restricted to AES-CBC

Table 1: Trade-off of approximate accuracy v/s number
of AES operations (in worst case) in all the confidentiality
attacks. The analysis is over an encrypted IP whose Data
Block consists of 1,000 ciphertext blocks.

SN | Attack #AES-decryptions | Approximate
accuracy

1 Basic POA 4.096 x 10° 100%

2 Basic SOA 4.096 x 10° 98%

3 (2) + RSSGB 2.048 x 10° 98%

4 (3) + RAD 8.192 x 108 98%

5 (2) + ABAO 1.28 x 10° 85%

with a padding scheme that reports padding errors, the SOA
relies on a unique syntax error due to a specific plaintext
character in the underlying HDL (there could be more than
one such character in the HDL). Both of these attacks have
high run time owing to a large number of AES decryption
operation. The optimizations on the SOA improve the run-
time of the attack but also cause a loss in accuracy.

4 INTEGRITY ATTACKS

The modern SoC design flow involves third parties and even
in-house teams that are located across the globe. For such
a distributed design process, the trustworthiness of entities,
their IP, and their actions are difficult to verify. For example,
an SoC integrator may have different design teams located
in different parts of the world. The design team that is
responsible for designing security critical IPs for the SoC (e.g.,
Trusted Platform Modules) may not trust other design teams
as they could tamper with the IP surreptitiously and avoid
detection during functional verification and testing of it. In
these scenarios, these IPs are encrypted using the P1735
standard to protect against malicious tampering.®

The standard does not consider any authenticity check on
the identity of IP authors. However, it purports to provide
integrity protection for the digital envelope by providing an
HMAC computation over the Key Block (or the entire Rights
block, if this includes more than just the Key Block). In
this section, we demonstrate that the P1735 standard cannot
ensure integrity protection of an encrypted IP based on two
different attacks.

In the first attack (see Section 4.1), we present a way to
maul the ciphertext so that our desired modification appears
in the resultant plaintext without causing any syntax errors.
The second attack (see Section 4.2) allows an adversary to
insert ciphertext blocks in the encrypted IP such that no
syntax errors are raised and exploit the lack of authentication
of the IP author. Both of these attacks are performed without
the knowledge of the decryption key, and can be applied to
various security critical IPs with disastrous consequences.
Moreover, these attacks work with any IP and any set of

3Anecdotally, representatives of the semiconductor industry have stated
that the community is adopting the recommendations of the P1735
standard to ensure the integrity of IPs, too.

RTL instructions that the adversary wants to insert in the
IP.

In these attacks, we insert a hardware Trojan in an en-
crypted crypto-accelerator IP that implements the AES algo-
rithm in hardware [2]. To the best of our knowledge, this is
the first demonstration of hardware Trojan implementation
in an encrypted IP. When it observes one specific plaintext,
our Trojan leaks the on-chip secret key used by the AES IP.
The schematic of the Trojan (7°) is shown in Figure 7(a). To
implement it, an adversary needs to insert the code shown in
Figure 7(b) into the encrypted RTL. Here, PT and CT are
the plaintext and ciphertext ports of the AES module and
Tj is the triggering condition. When PT is equal to T}, the
key is leaked. Note that detecting this Trojan is extremely
difficult because it delivers its payload only when it observes
a specific 128-bit plaintext. In addition, it is worth noting
that traditional Trojan detection techniques [32], [12], [36]
cannot be applied on encrypted IPs. We reiterate the fact
that the P1735 standard does not facilitate any authenticity
check on the encrypted IP and therefore, any modification
in the encrypted IP is not detected.

4.1 Trojan Insertion in Crypto-accelerator
-1

In this attack, we first recover the plaintext IP using one of
our prior confidentiality attacks. Then, we manipulate the
initialization vector (V') to insert a start-comment directive
in the first block of the plaintext (since P{ = Dk (C1) @ IV").
Next, we insert two additional blocks —the attack block A,
and the victim block Vi— after the first cipher text block.
Each attack block is modified in an adaptive manner; all
the victim blocks are same as C7. Our aim is to modify the
attack block so that the desired changes are reflected in the
plaintext-block (Py;) corresponding to Vi. This is explained
with the following equation,

Py, = Dr(V1) ® Ax

Note that, we know Dg (Vi) from the confidentiality attack.
Therefore, we can change A; to make any specific changes
in Py,. However, the plaintext block, P4, corresponding to

PT[127:0] key[127:0]
| l

l 1 always @ (%)
begin
if (PT==T7)
AES begin
encryption CT<=key;
end
state[127:0]l else
begin
PT==Tj? I—\ / CTc<1=state;
en
end
CT[127:0]

(a) (b)

Figure 7: (a) Schematic of a Trojan which leaks the on-chip
private key used by the AES IP. (b) The Verilog code which
implements this Trojan.

Figure 6: Integrity attack-I on the P1735 standard. The IV is modified to insert the start-comment directive in P;. A random
block (A1) is inserted after Ci. The resulting plaintext text (P4,) is not checked by the tool for syntax errors as it is treated
as commented characters. The attack block (A1) is appended to the victim block (Vi = C1). A; is tampered to insert the
end-comment directive in the first two bytes of Py,, and the desired Trojan’s first twelve characters in the next twelve bytes.
The process is repeated by tampering A; to insert the start-comment directive in the last two bytes of Py, . Precondition: the

attacker knows at least one block of the plaintext.

A1 would consist of random characters, which in turn would
cause syntax errors with very high probability. We counter
this by commenting out the P4, block. As mentioned in
the previous paragraph, we have modified IV’ to insert a
start-comment directive in P{. We now modify A; in such a
manner that it introduces a end-comment directive in Py, .
Therefore, the Pa, block is encapsulated inside a comment
section, and the EDA tool does not check for syntax errors
in commented sections of the IP.

Figure 6 illustrates our proposed integrity attack. The /x
is the Verilog directive for start of comment and */ is the
directive for end of comment. Notice that, the P4, block
is encapsulated inside a comment section. Also, we modify
the last two bytes in A; to insert a start-comment directive
in the last two bytes of Py,. This allows us to insert the
subsequent attack blocks, A;, and victim blocks, V;, where
i > 1. All the victim blocks are identical in our attack.
Since each of the victim blocks has a end-comment direc-
tive in the first two bytes and start-comment directives in
the last two bytes, it allows us to insert any Verilog code
in the rest of the twelve bytes. We insert the Verilog code
for the Trojan in these twelve bytes in an incremental man-
ner until the entire code is inserted. After that, we append
the original ciphertext blocks. Note that, we use the same
C1 block for all victim blocks. Instead, we could use any
ciphertext block, provided we know its corresponding plain-
text. The Trojan-inserted ciphertext is given as follows. C' =
IV'|Cy || AL || VA || A2 || Va.oo || A || Vin || C2 || -..Crn. Here, V4
=...=V,, = C1, and m, n represent the number of attack-
/victim blocks and original ciphertext blocks, respectively.

Defense. The defenses recommended for the SOA provide
integrity checks on the Data Block in particular, and the
entire IP in general. Hence, these defenses would stop the
integrity attacks.

4.2 Trojan Insertion in Crypto-accelerator
-1II

In a global design process, authentication of participating IP
authors is of paramount importance. The P1735 standard
does not address this issue. Thus, it is trivial for an adversarial
IP author (a rogue employee of the SoC integrator) to insert
a Trojan in its own IP. However, it can also target security-
critical IP’s belonging to non-adversarial IP authors.

In this attack, we first extract the plaintext IP, P using
one of our confidentiality attacks. Then we insert the Trojan,
T in the plaintext IP at any desired position. We then chose
a random session key, K’, and encrypt P’ (trojan-inserted
IP) under the session key to get the encrypted Data Block.
After that, we encrypt the session key under the public key
of the tool to get the Key Block. The Data Block and the
Key Block are bundled together as per the standard to get
the digital envelope.

To defend against this, it would be sufficient to prevent
the recovery of the plaintext IP, i.e., apply the suggestions
from Section 3.

5 LICENSING ATTACKS

The standard specifies a rights management mechanism that
can control the amount of information the tool outputs during
processing of the encrypted IP, such as names and location
of protected variables during error reporting, output signals
during simulation, etc. It also describes a licensing mechanism
that controls such rights based on whether the IP user has
the corresponding license or not. The standard describes a
protocol to implement the licensing scheme. The protocol
consists of 4 sub-protocols. Some of these sub-protocols are
vague, and give way to trivial attacks due to use of AES-CBC

LHi |LLo | 'S" Lid [E(K,"X" || license-abc)

-

(@ Y

L

Lid LHi |LLo | 'S" Lid | E(K,'N']|| license-abc)

b C
) (1) YI_

Lid LHi | LLo | 'S’ Lid

E(K,'G"' || license-abc)

b <
®) \(L

Lid LHi | LLo| 'S’ Lid

E(K,'D" || license-abc)

®)() - v
L

LHi | Llo| 'S’ Lid

©0 ~ Yo

LHi | LLo | 'S" | Lid

E(K,'N'|| license-abc)

E(K,'G"' || license-abc)

©a) Y,

LHi |LLo | 'S’ Lid | E(K,'D" || license-abc)

.
(©@m) YL

Figure 8: Format of different messages in the licensing
protocol. (a) Format of a symmetric key encrypted message.
‘X’ represents the command byte, and can have values like ‘N’,
‘G’, or ‘D’. L represents the symbolic encryption of license-abc.
(b) and (c) show possible formats for (I) new license-request,
(II) license-grant, and (II) license-deny messages. While in
(b), the license id is prepended to the encrypted message, in
(¢), it is prepended to the symbolic encrypted message.

with fixed IVs, and a poor authentication mechanism of the
license-request and license-response messages.

Threat model. The principals in this threat model are the
IP user, a proxy server controlled by the IP author, and the
tool that parses the IP for licenses to make license requests
on behalf of the IP user. The IP author and the tool are
trustworthy entities; the IP user is an adversary who does not
have the valid license(s) and tries to get access to protected
sections of the IP cores.

The licensing protocol. The licensing protocol can be
divided into four sub-protocols: key exchange, license request,
license response, and heartbeat. The protocol as whole pro-
ceeds as follows. The tool creates a socket connection with the
proxy server and runs a key exchange protocol to establish a
shared key (K). For each new license, it creates a new license
id (LId), encrypts the license request under the shared secret
key (K) and license id as the initialization vector, prepends
the encrypted message with the license id, and sends the
message to the proxy server. The proxy performs license
validation and sends back a license grant/deny response. The

license id, which is unique for each license request, is used by
the proxy, as well as the tool, to distinguish between multiple
licenses.

The license-request, license-grant and license-deny mes-
sages are prepended with the command byte ‘N’; ‘G’ and ‘D’
respectively, before carrying out the encryption. In plaintext,
these messages are identical, except the optional application-
specific string or denial message that is appended to the
grant/deny message. The resultant encrypted text is referred
to as “symbolic encrypted message” (denoted by L in Figure
8). The tag (‘N’, ‘G’ and ‘D’) in the first byte of the plaintext
makes the symbolic encrypted messages different, despite be-
ing identical in the rest of the plaintext bytes. The standard
cites authentication of the request message in the grant or
deny response as the reason behind this design choice [13,
Section 8].

A potential attack. In all protocols for license manage-
ment, the (symmetric-key encrypted) messages that are ex-
changed between the proxy server and the tool have a specific
format. See Figure 8(a). As per the standard, the license id
should be prepended to the “encrypted message” in each
license-request, license-deny or license-grant message. For ex-
ample, the license-request message (LR) for license-abc can be
syntactically represented as LR « LId || E£" (N || license-abc),
which can either be the symbolic encrypted message (L) or
the entire encrypted message (L.Hi || L.Lo || ‘S’ || Lid || L).
This is shown in Figure 8(b), and 8(c). A similar situation
holds for license-grant and license-deny messages, too. Keep
in mind tha £ is CBC-mode over a particular blockcipher
(likely AES).

In Figure 8(b), the license id is prepended to the entire
encrypted message. As mentioned earlier, the license id is used
to distinguish between multiple licenses. So, while processing
the license-request message, the tool could parse the first
two bytes to get the license id, check if it is a replay, and
close the socket in that case. This prevents further processing
of the “symbolic encrypted message” (L). Otherwise, if it
is a new request, the proxy would call its decryption API
for symmetric messages. The API decrypts L, and returns
the plaintext (N || license-abc) to the caller function. Next,
the proxy checks whether license-abc is valid, and sends an
LG/LD message back to the tool. Note that this decryption
API for symmetric messages can be used in other protocols
as well.

Since, the symmetric message format ensures that the IV
(= license id) is always prepended to the “symbolic encrypted
message”, one could avoid prepending the IV to the entire
encrypted message. See Figure 8(c). However, the license id
is used for detecting replays and validating license requests.
In this case, the decryption API for symmetric messages has
to be overloaded to return the decrypted text and the IV.
The IV, which is same as the license id, would be used by
the calling function to check for replays and validation.

While the two formats might seem alike in terms of securing
the socket communication, it is not the case. The format in
Figure 8(b) is susceptible to a simple man-in-the-middle

attack, where the IP author could intercept an LD message
from the proxy, and convert (xor first byte of license id in
the IV field of the LD message with D @ G) it into an LG
message, and hence get through the license check without
actually having the particular license. Note that this is a
simple exploitation of CBC with fixed IV. On the contrary,
the format in Figure 8(c), inadvertently enforces an integrity
check on the IV (by checking the license-id for replays or
modifications).

More attacks. The standard is also vague in the processing
of license grant/deny response sent by the proxy. It allows
the proxy server to send optional application-specific strings
concatenated with the license grant/deny response. But, it
does not specify security checks that need to be performed
on these strings. Since there is no integrity check on the CBC
encrypted messages, an adversary (say, a competing IP user)
can append any number of random cipher text blocks with
the LG /LD responses. If the tool does not check the length
of the LG/LD messages, the tool could crash due to memory
overflow.

The standard requires that the proxy and the tool send
periodic heartbeats to each other to know whether the receiver
is alive or not. But, it does not specify how the heartbeat
protocol behaves after the tool sends a license request. If
the proxy and the tool send periodic heartbeats till the
tool receives an LG /LD response from the proxy, and the
proxy gets back a license release or a new license request,
an adversary can cause a denial-of-service by just dropping
these response messages.

Defense. The standard could recommend the use of TLS
1.2 (or higher version numbers) to exchange license requests
and responses. Also, it must explicitly define protocols for all
stages - handshake, license request, license response (grant
and denial), and heartbeat.

6 EVALUATIONS

In this section, we evaluate the efficiency and accuracy of
the padding-oracle attack and the syntax-oracle attack on
the P1735 standard. We used open source semiconductor IPs
from OpenCores [2], which is the largest site/community for
the development of open source semiconductor IPs. We chose
the following IPs for our benchmark — flipflop (FF), square-
root arithmetic core (SQRT), SHA-256 digest core (SHA),
Fast Fourier Transform DSP core (FFT), AES-128 crypto
core (AES), Reed Solomon ECC core (RS), memory controller
core (MC), and CISC processor (CISC). These IPs have
different functionalities and range from small to industrial
scale in size. Some of these IPs are generally procured/licensed
from third party IP developers. We also selected the c7552
ISCAS benchmark which represents a firm IP. Note that the
POA and SOA work on any semiconductor IP encrypted
using the P1735 standard.

In the first step, we encrypted these IPs using the P1735
standard with an encryption script provided by Synopsys
[3]. We then execute our padding-oracle and syntax-oracle

attacks. We ran our experiments with Synopsys’ Synplify
Premier EDA tool (Version L-2016.09) installed on a CentOS
virtual machine with 4 Intel core processors (each with a
clock speed of 2.2GHz), and 8GB RAM.

Padding-oracle attack. We ran the padding-oracle attack
with the optimizations that are inspired by the syntax-oracle
attack (see Section 3.3). The aim of this attack was to de-
crypt the Data Block of the encrypted IP, which acts as
the ciphertext in this case. The ciphertext was broken down
into modules similar to the ABAO optimization process in
the SOA, except each module consisted of two encrypted
blocks instead of four. Since decryption precedes syntax-
check, padding errors are never concealed due to any syntax
errors. So, the target ciphertext block and its previous block
are sufficient to generate appropriate padding in the targeted
plaintext blocks.

In our experiment, the Synplify tool did not report any
padding error when the ciphertext blocks were tampered
as per the padding-oracle attack. But, it gives the warning
“encrypted data mangled”. We use this warning message to
design our padding oracle. For each guess, the ciphertext
is modified and fed to the Synplify tool for a syntax check.
The tool writes all errors and warnings in the “syntax.log”
file. The presence/absence of the warning “encrypted data
mangled” in the log file is used as the padding oracle.

Table 2 shows the summary of the optimized POA on the
9 benchmark IPs. Figure 9(a) (red plot) shows the evaluation
of time as a function of the number of ciphertext blocks
in a loglog plot, whereas, Figure 9(b) (red plot) shows the
accuracy of the POA. With the ABAO optimization, the
algorithmic complexity of the attack is O(NV), where N is the
number of ciphertext blocks in the encrypted IP. When the
number of ciphertext blocks increases beyond 1,000 the tool
seems to slow down, and this can be seen as a change in slope
of the plot after 1,000 blocks. We can overcome this partially
by breaking down a large IP into chunks of say, < 2,000
blocks and running the attack multiple times with these
chunks. We did this for the CISC and ¢7522 benchmark (last
two points in the plot). The accuracy, on the other hand, is
nearly 100% for all the IPs.

Syntax-oracle attack. We ran our SOA with the ABAO
optimization on the nine benchmark IPs. Table 2 summarizes
the result. Figure 9(a) (blue plot) shows the evaluation of
time as a function of the number of ciphertext blocks. The
plot has similar attributes as the POA, except it is around
13 times faster. This can be observed as the nearly constant
width between the two plots in Figure 9.

Figure 9(b) shows the accuracy as a function of lines of
code (LOC) for SOA with ABAO optimization. In this case,
the average accuracy is 85.3% with a standard deviation
of 4.4%. We note that if we do not apply the ABAO opti-
mization, then the average accuracy increases to 98%, while
execution time increases by 16x. For example, the accuracy
for FF, SQRT, FFT, AES, and RS increases to 100%, 95.9%,

Table 2: Results for SOA and POA attacks.

of Blocks 4 53 467 653 958 1268 2225 5071 9183
of Lines 7 51 614 440 712 1374 1854 2083 3858
SOA Time (sec) 54.7 | 60.0 130.3 165.9 | 2284 | 287.3 | 439.2 1065 2524
Accuracy (%) | 76.6 | 87.9 85.1 87.3 91.5 84.6 82.3 83.1 89.9

POA Time (sec) 706.7 | 798.8 | 1677.4 | 1888.6 | 2484.3 | 3203.1 | 5575.0 | 12990.163 | 25454.234
Accuracy (%) | 100 100 100 100 100 100 100 100 100

Time(s)

.-
e

-——

1000 1500 2000 2500 3000 3500 4000
Loc

Figure 9: Top: Time vs number of ciphertext blocks for
SOA (blue) and POA (red). Bottom: Accuracy vs LOC for
SOA (blue) and POA (red) .

99.5%, 98%, and 97.2%, respectively without the ABAO
optimization.

Comparison between the padding-oracle attack and
the syntax-oracle attack. From Figure 9, it is evident
that with the ABAO optimization, the POA is around 13
times (mean 12.6 with a standard deviation of 1.3) slower
than the SOA. This is because in the former attack, for
j < 16, the 7' plaintext character can be guessed only when
the (j + 1) character has already been found. There is no
such restriction on the latter attack. We find all instances
of the guessed character in the entire ciphertext in a single
guess.

Though the SOA is fast, it loses out (some) on accuracy
with the ABAO optimization. Its accuracy has an average of
85.3% with standard deviation of 4.4%, whereas the POA is
always 100% accurate. But, without the ABAQO optimization,
the accuracy of the syntax-oracle attack shoots to nearly
98%. We reiterate that the POA works only with AES-CBC
and padding schemes which distinguish between a valid and
invalid padding. On the other hand, the SOA has no such
restrictions.

7 RELATED WORK

To the best of our knowledge, Myrian and Chow [23] pro-
vide the only work that presents any attack on the IEEE

P1735 standard. The authors show how an encrypted IP from
FPGA technology can be mapped to an ASIC technology.
The proposed technique takes the encrypted RTL code and
synthesizes it to the plaintext netlist using FPGA primitive.
This FPGA implementation is then mapped to an ASIC im-
plementation. This technique does not reveal any weakness of
the P1735 standard as the authors did not consider the fact
that the IEEE P1735 standard has guidelines to encrypt the
synthesized netlist as well. Major FPGA vendors like Synplify
and Vivado support this feature. Also, this technique never
recovers the highi-level RTL code which is of main interest
for IP piracy.

There have been numerous attacks on various protocols
and standards that use CBC mode for encryption. In [35],
Vaudenay showed that padding errors in CBC mode can be
used as an oracle to get the decrypted text without knowing
the key. Canvel et al. extended this idea in [11] by exploiting
timing difference between errors due to bad MAC and those
due to improper padding, to intercept the password of an
email client that connects to an IMAP server over SSL/TLS.

While Vaudenay exploited the RC5-CBC-PAD algorithm [7]
Paterson and Yau demonstrated efficient attacks on the ISO
CBC Mode Encryption standard to recover plaintext [29].
These attacks required IVs to be public. The same group of
researchers came up with new padding-oracle attacks against
the revamped ISO CBC Mode Encryption standard that rec-
ommended private and random IVs instead of public IVs [37].
Joux et al. in [15] gave attacks on CBC mode of encryption by
adversaries that can adaptively choose chunks (one or more
blocks) of plaintext bytes to find the original message. They
termed these adversaries as block-wise-adaptive adversaries.
In [9], Black et al. studied Vaudenay’s attack with different
padding schemes - XY-pad, OZ-pad, AByte-pad, to name a
few. They found that padding methods that have no invalid
paddings are immune against padding-oracle attacks, which
was corroborated by Paterson and Watson in their provable
security analysis of CBC mode against padding-oracle at-
tacks [28]. One such padding scheme is AByte-pad. In [19],
Klima et al. used ASN.1 encoding errors in PKCS#7 with
AByte padding as an oracle to invert the ciphertext. Most of
these attacks can be thwarted by enforcing integrity checks
on the ciphertext.

Prior to Vaudenay’s attack on CBC mode, Bleichenbacher
presented an adaptive chosen-ciphertext attack that exploits
padding errors in PKCS#1 v1.5 [10]. This attack was ex-
tended by Klima et al. in [18]. They used errors due to
the version number check in PKCS#1 as a side-channel. A

plaintext-aware encryption scheme, RSAES-OAEP was pro-
posed to make it immune against such chosen ciphertext
attacks. But, Manger in [20] exploited side channels in imple-
mentations of RSAES-OAEP as specified in PKCS#1 v2.0,
to recover the plaintext message. This attack is based on
the fact that the adversary can distinguish between errors
during decoding and those due to incorrect integer to octet
conversion; this is possible as the standard is vague on error
conditions, such as unsupported MGF, handling of timing
difference between the two errors, etc.

Apart from the above attacks, there has been a plethora
of side channel attacks in the last 15 years - padding error
attacks on RSA [14, 17, 22|, timing attacks on AES-CBC
implementations (MAC-encode-encrypt) in SSL/TLS [4],
timing attacks on SSH [5, 6], and other side-channel at-
tacks [9, 21, 24, 33, 39].

8 CONCLUSION AND FUTURE WORK

The P1735 IP encryption standard is widely used in the EDA
community to protect confidentiality of high-value IPs. It also
enforces fine-grained access control via rights management
and licensing mechanisms. We have presented confidentiality
and integrity attacks on the P1735 standard as implemented
by the widely used Synplify Premier tool, a Synopsys EDA
tool that provides an advanced FPGA design and debug
environment. While the confidentiality attacks can reveal the
entire plaintext IP, the integrity attack enables an attacker to
insert hardware Trojans into the encrypted IP. This not only
destroys any protection that the standard was supposed to
provide, but also increases the risk premium of the IP. We also
proposed various optimizations of the basic confidentiality
attacks that reduce the complexity from O(N?) to O(N).

The design flaws in P1735 are troubling considering the
fact that it is susceptible to the classical POA that was re-
ported in 2002, and it is disappointing that an international
organization like the IEEE would mandate a brittle encryp-
tion mode (CBC) without any authentication, when there
has been more than a decade of published research on AEAD
schemes.

The standard also recommends PKCS#1 v1.5 as a padding
scheme for RSA. As discussed in the related work section,
there are many side-channel attacks on this padding scheme.
In future work, we plan to attack the Key Block of the
encrypted IP, which holds the encryption of the symmetric
key used to create the Data Block, using RSA PKCS#1 v1.5
encryption scheme. We will also extend our cryptanalysis
to other EDA tools (e.g. Xilinx), and evaluate license-proxy
implementations complying with the P1735 standard as they
become available.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. This research was supported in part by Cisco Systems,
Inc., in part by NSF grants CNS-1564444 and CNS-1564446,
and in part by the National Institute of Standards and Tech-
nology grant 60NANB16D248.

REFERENCES

[1] EDACafe. EDA Industry Update September 2008. http://www10.
edacafe.com/nbc/articles/. (EDACafe). Accessed: 2017-08-21.

[2] IP. OpenCores. http://opencores.org. (IP). Accessed: 2017-05-14.

[3] Synplify. Premier. https://www.synopsys.com/

implementation-and-signoff/fpga-based-design/synplify-premier.

html. (Synplify). Accessed: 2017-01-30.

Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky

Thirteen: Breaking the TLS and DTLS Record Protocols. In

Proceedings of the 2013 IEEE Symposium on Security and Pri-

vacy (SP ’138). IEEE Computer Society, Washington, DC, USA,

526-540. https://doi.org/10.1109/SP.2013.42

Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen,

and Kenneth G. Paterson. 2016. A Surfeit of SSH Cipher Suites. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’16). ACM, New York, NY,

USA, 1480-1491. https://doi.org/10.1145/2976749.2978364

Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson.

2009. Plaintext Recovery Attacks Against SSH. In Proceedings

of the 2009 30th IEEE Symposium on Security and Privacy

(SP ’09). IEEE Computer Society, Washington, DC, USA, 16-26.

https://doi.org/10.1109/SP.2009.5

Robert Baldwin and Ronald Rivest. 1996. The rc5, rc5-cbe,

rc5-cbe-pad, and rc5-cts algorithms. Technical Report.

Mihir Bellare and Chanathip Namprempre. 2008. Authenticated

Encryption: Relations Among Notions and Analysis of the Generic

Composition Paradigm. J. Cryptol. 21, 4 (sep 2008), 469-491.

https://doi.org/10.1007/s00145-008-9026-x

John Black and Hector Urtubia. 2002. Side-Channel Attacks

on Symmetric Encryption Schemes: The Case for Authenti-

cated Encryption. In Proceedings of the 11th USENIX Security

Symposium. USENIX Association, Berkeley, CA, USA, 327-338.

http://dl.acm.org/citation.cfm?id=647253.720297

[10] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS #1.
In Proceedings of the 18th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO ’98). Springer-
Verlag, London, UK, UK, 1-12. http://dl.acm.org/citation.cfm?
id=646763.706320

[11] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuag-
noux. 2003. Password Interception in a SSL/TLS Chan-
nel. Springer Berlin Heidelberg, Berlin, Heidelberg, 583-599.
https://doi.org/10.1007/978-3-540-45146-4_34

[12] Matthew Hicks, Murph Finnicum, Samuel T King, Milo MK
Martin, and Jonathan M Smith. 2010. Overcoming an untrusted
computing base: Detecting and removing malicious hardware auto-
matically. In Security and Privacy (SP), 2010 IEEE Symposium
on. IEEE, 159-172.

[13] IEEE. 2014. 1735-2014 - IEEE Recommended Practice for En-
cryption and Management of Electronic Design Intellectual Prop-
erty (IP). (2014). http://standards.ieee.org/findstds/standard/
1735-2014.html

[14] Tibor Jager, Jérg Schwenk, and Juraj Somorovsky. 2015. On the
Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1
V1.5 Encryption. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS
’15). ACM, New York, NY, USA, 1185-1196. https://doi.org/10.
1145/2810103.2813657

[15] Antoine Joux, Gwenaélle Martinet, and Frédéric Valette. 2002.
Blockwise-Adaptive Attackers: Revisiting the (In)Security of Some
Provably Secure Encryption Models: CBC, GEM, IACBC. In
Proceedings of the 22Nd Annual International Cryptology Con-
ference on Advances in Cryptology (CRYPTO ’02). Springer-
Verlag, London, UK, UK, 17-30. http://dl.acm.org/citation.cfm?
id=646767.704309

[16] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mo-
hammad Tehranipoor. 2010. Trustworthy hardware: Identifying
and classifying hardware trojans. Computer 43, 10 (2010), 39-46.

[17] Vlastimil Klima, Ondrej Pokorny, and Tom4as Rosa. 2003. At-
tacking RSA-Based Sessions in SSL/TLS. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 426—440. https://doi.org/10.1007/
978-3-540-45238-6_33

[18] Vlastimil Klima and Tomas$ Rosa. 2003. Further Results and
Considerations on Side Channel Attacks on RSA. Springer
Berlin Heidelberg, Berlin, Heidelberg, 244-259. https://doi.org/
10.1007/3-540-36400-5-19

[4

5

[6

[7

8

[9

http://www10.edacafe.com/nbc/articles/
http://www10.edacafe.com/nbc/articles/
http://opencores.org
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-premier.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-premier.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-premier.html
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/2976749.2978364
https://doi.org/10.1109/SP.2009.5
https://doi.org/10.1007/s00145-008-9026-x
http://dl.acm.org/citation.cfm?id=647253.720297
http://dl.acm.org/citation.cfm?id=646763.706320
http://dl.acm.org/citation.cfm?id=646763.706320
https://doi.org/10.1007/978-3-540-45146-4_34
http://standards.ieee.org/findstds/standard/1735-2014.html
http://standards.ieee.org/findstds/standard/1735-2014.html
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
http://dl.acm.org/citation.cfm?id=646767.704309
http://dl.acm.org/citation.cfm?id=646767.704309
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/3-540-36400-5_19
https://doi.org/10.1007/3-540-36400-5_19

[19] Vlastimil Klima and Tom&s Rosa. 2003. Side Channel Attacks on

(20]

[21

(22

(23

[24

25

26

[27

[28

(29

(30

[31

(32

(36

37

]

CBC Encrypted Messages in the PKCS# 7. (2003).

James Manger. 2001. A Chosen Ciphertext Attack on RSA Opti-
mal Asymmetric Encryption Padding (OAEP) As Standardized
in PKCS #1 V2.0. In Proceedings of the 21st Annual Inter-
national Cryptology Conference on Advances in Cryptology
(CRYPTO ’01). Springer-Verlag, London, UK, UK, 230-238.
http://dl.acm.org/citation.cfm?id=646766.704143

Christopher Meyer and Jérg Schwenk. 2013. SoK: Lessons learned
from SSL/TLS attacks. In International Workshop on Informa-
tion Security Applications. Springer, 189-209.

Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jorg Schwenk,
Sebastian Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS
Implementations: New Bleichenbacher Side Channels and Attacks.
In Proceedings of the 23rd USENIX Conference on Security
Symposium (SEC’14). USENIX Association, Berkeley, CA, USA,
733-748. http://dl.acm.org/citation.cfm?id=2671225.2671272
Vincent Mirian and Paul Chow. 2016. Extracting designs of secure
IPs using FPGA CAD tools. In Great Lakes Symposium on VLSI,
2016 International. IEEE, 293—-298.

Bodo Mbller, Thai Duong, and Krzysztof Kotowicz. 2014. This
POODLE bites: exploiting the SSL 3.0 fallback. Security Advisory
(2014).

Adib Nahiyan, Mehdi Sadi, Rahul Vittal, Gustavo Contreras,
Domenic Forte, and Mark Tehranipoor. 2017. Hardware Tro-
jan detection through information flow security verification. In
International Test Conference. IEEE.

Adib Nahiyan and Mark Tehranipoor. 2017. Code Coverage
Analysis for IP Trust Verification. In Hardware IP Security and
Trust. Springer, 53-72.

Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimp-
ton. 2014. Reconsidering generic composition. In Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 257-274.

Kenneth G. Paterson and Gaven J. Watson. 2008. Immunising
CBC Mode Against Padding Oracle Attacks: A Formal Security
Treatment. In Proceedings of the 6th International Conference
on Security and Cryptography for Networks (SCN ’08). Springer-
Verlag, Berlin, Heidelberg, 340-357. https://doi.org/10.1007/
978-3-540-85855-3_23

Kenneth G. Paterson and Arnold Yau. 2004. Padding Oracle
Attacks on the ISO CBC Mode Encryption Standard. Springer
Berlin Heidelberg, Berlin, Heidelberg, 305-323. https://doi.org/
10.1007/978-3-540-24660-2_24

Research and Markets. 2016. Global Semiconductor IP Market -
Global forecast to 2022. Technical Report.

Phillip Rogaway. 2002. Authenticated-encryption with Associated-
data. In Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS ’02). ACM, New York, NY,
USA, 98-107. https://doi.org/10.1145/586110.586125

Hassan Salmani and Mohammed Tehranipoor. 2013. Analyzing
circuit vulnerability to hardware Trojan insertion at the behavioral
level. In Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2013 IEEE International Symposium on. IEEE,
190-195.

Y Sheffer, R Holz, and P Saint-Andre. 2015. Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS
(DTLS). Technical Report.

Mohammad Tehranipoor and Cliff Wang. 2011. Introduction to
hardware security and trust. Springer Science & Business Media.
Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding
- Applications to SSL, IPSEC, WTLS In Proceedings of
the International Conference on the Theory and Applications
of Cryptographic Techniques: Advances in Cryptology (EU-
ROCRYPT ’02). Springer-Verlag, London, UK, UK, 534-546.
http://dl.acm.org/citation.cfm?id=647087.715705

Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan.
2013. FANCI: identification of stealthy malicious logic using
boolean functional analysis. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
ACM, 697-708.

Arnold K. L. Yau, Kenneth G. Paterson, and Chris J. Mitchell.
2005. Padding Oracle Attacks on CBC-Mode Encryption with
Secret and Random IVs. In Proceedings of the 12th International
Conference on Fast Software Encryption (FSE’05). Springer-
Verlag, Berlin, Heidelberg, 299-319. https://doi.org/10.1007/
11502760-20

[38] Lin Yuan, Gang Qu, Lahouari Ghout, and Ahmed Bouridane.

(39]

2006. VLSI design IP protection: solutions, new challenges, and
opportunities. In Adaptive Hardware and Systems, 2006. AHS
2006. First NASA/ESA Conference on. IEEE, 469-476.
YongBin Zhou and DengGuo Feng. 2005. Side-Channel Attacks:
Ten Years After Its Publication and the Impacts on Cryptographic
Module Security Testing. (2005). http://eprint.iacr.org/2005/388
zyb@is.iscas.ac.cn 13083 received 27 Oct 2005.

A CRITIQUE OF THE P1735

STANDARD

The P1735 standard recommends a lot of troubling crypto-
graphic design choices that make the encrypted IP vulnerable
to many attacks. Some of these attacks are described in this
paper, but there could be more. The standard is also vague
and erroneous in some of its security sensitive specifications
and claims. In this section, we enlist these shortcomings of
the standard.

The standard states, “the protected IP has 100% fidelity
to the original IP representation”. This is not true as one
could drop/add random ciphertext blocks owing to missing
authentication checks on the Data Block.

It makes no recommendations for AES-CBC padding, and
leaves this important security decision to the tool vendors.
In absence of a padding scheme, and any authentication
whatsoever, AES decryption never fails. However, the re-
sulting plaintext may get corrupt. The standard, on the
contrary, has some mechanism due to which decryption
could fail. This security sensitive design decision is again
left at the discretion of the tool vendors.

The standard mentions encrypting each IP with a one-time
session key [13, Section 1], but it does not define a session
explicitly.

It recommends PKCS#1 V1.5 padding scheme for RSA.
This scheme has been exploited as a side-channel to recover
the underlying plaintext which is the session key in the
digital envelope.

In the licensing mechanism, the length of the encrypted mes-
sages is sent in clear text in both public-key and secret-key
encryption. This makes the encrypted messages susceptible
to ciphertext extension/truncation attacks in absence of
any authentication.

The standard is vague in its specification of the license
response protocol. There are different security sensitive
parameters like the length field, the command byte, the
license id, etc, that are exchanged between the proxy server
and the tool in each of their messages. Hence, it is crucial to
clearly state how each of these parameters is checked/han-
dled by the tool. However, the standard (again) leaves
these security sensitive decisions at the discretion of the
tool vendors.

http://dl.acm.org/citation.cfm?id=646766.704143
http://dl.acm.org/citation.cfm?id=2671225.2671272
https://doi.org/10.1007/978-3-540-85855-3_23
https://doi.org/10.1007/978-3-540-85855-3_23
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.1145/586110.586125
http://dl.acm.org/citation.cfm?id=647087.715705
https://doi.org/10.1007/11502760_20
https://doi.org/10.1007/11502760_20
http://eprint.iacr.org/2005/388

	Abstract
	1 Introduction
	2 Background
	2.1 SoC Design Flow
	2.2 IEEE P1735 Standard
	2.3 Hardware Trojans

	3 Confidentiality attacks
	3.1 Padding-Oracle Attack
	3.2 Syntax-Oracle Attack
	3.3 Optimizing the syntax-oracle attack
	3.4 POA vs. SOA

	4 Integrity Attacks
	4.1 Trojan Insertion in Crypto-accelerator - I
	4.2 Trojan Insertion in Crypto-accelerator - II

	5 Licensing attacks
	6 Evaluations
	7 Related work
	8 Conclusion and future work
	9 Acknowledgements
	References
	A Critique of the P1735 standard

