

Investigating PowerShell Attacks
Ryan Kazanciyan, Matt Hastings

Black Hat USA 2014

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 1

TABLE OF CONTENTS
Introduction and Prior Research ... 2	

Assumptions ... 3	

Testing Methodology .. 4	

Findings and Sources of Evidence ... 4	

Registry .. 4	

Prefetch .. 5	

Network Traffic .. 6	

Memory .. 6	

Event Logs .. 10	

Persistent PowerShell .. 16	

Acknowledgements .. 20	

Appendix: PowerShell Version Table ... 21	

Page 2 © 2014 Mandiant, A FireEye Company. All rights reserved.

INTRODUCTION AND PRIOR RESEARCH
Microsoft Windows PowerShell has finally hit the mainstream for system administrators, defenders,
and attackers. Though nearly ten years old as of 2014, PowerShell has only recently become
ubiquitous across both user endpoints and servers in most enterprise environments. Microsoft
Windows 7 SP1 and Windows Server 2008 R2 were the first versions of the operating system to
include PowerShell (version 2.0) installed by default. Since then, updated versions of PowerShell have
been included in every subsequent release of Windows, through PowerShell 4.0 on Windows Server
2012 R2 and on Windows 8.11.

As is often the case, the increased availability of PowerShell has paralleled the development of
research on ways attackers can take advantage of it. David Kennedy and Josh Kelley were among the
first to present on this topic at Black Hat 20102, demonstrating code execution, password dumping,
and creation of reverse shells via PowerShell. Chris Gates and Rob Fuller cited WinRM as a means of
remote command execution during penetration tests at DerbyCon 20123 and in subsequent blog
posts; this technique quickly gained traction among other offensive security practitioners.

Beginning in late 2011, researchers began to craft even more sophisticated PowerShell attack
methodologies and toolkits. In November 2011, Matt Graeber released PowerSyringe4, a code injection
utility and precursor to the rewritten PowerSploit Framework5 first released in May 2012. Throughout
2013, Joseph Bialek began publishing a variety of in-memory attacks leveraging reflective DLL loading
through PowerShell6, including the ability to remotely execute the Mimikatz7 credential harvesting tool
without ever writing malicious binaries to disk. At ShmooCon 2013, Chris Campbell presented and
released code for a PowerShell botnet8 with complete command-and-control capabilities; his blog9 is
frequently updated with additional PowerShell attack techniques.

Throughout 2013 and 2014, Graeber, Bialek, Campbell, and other contributors developed
PowerSploit10 from proof-of-concept code to a robust framework of scripts for the post-exploitation
phase of an attack, facilitating code execution, persistence, reconnaissance, anti-virus bypass, and
more. Other PowerShell attack toolkits, such as Nihkil Mittal’s Nishang11, also emerged during this
period. Finally, some of the most popular penetration testing tools, including TrustedSec Social
Engineering Toolkit12 and Rapid7 Metasploit13, now include PowerShell payloads.

During the course of their incident response work at Mandiant, the authors also have observed
adversaries increasingly use PowerShell during targeted intrusions. Many attackers, just like system
administrators and security professionals, are only beginning to learn how to most effectively leverage
PowerShell during the post-compromise phase of an incident. As a result, the authors often witness

1 A PowerShell version table is provided in the Appendix to this white paper.
2 Kennedy, David and Josh Kelley. "PowerShell: It’s Time To Own.” Black Hat. Black Hat. Jul. 2010. 29 Jun. 2014
<http://media.blackhat.com/bh-us-10/presentations/Kennedy_Kelly/BlackHat-USA-2010-Kennedy-Kelly-
PowerShell-Its-Time-To-Own-slides.pdf>
3 Gates, Chris and Rob Fuller. "Dirty Little Secrets They Didn't Teach You In Pentest Class v2." SlideShare. n.p., 10
Oct. 2012. 29 Jun. 2014 <http://www.slideshare.net/mubix/dirty-little-secrets-they-didnt-teach-you-in-pentest-
class-v2>
4 Graeber, Matthew. "PowerShell-based Code/Dll Injection Utility." Exploit-Monday. n.p., 21 Nov. 2011. 29 Jun.
2014 <http://www.exploit-monday.com/2011/11/powersyringe-powershell-based-codedll.html>
5 Graeber, Matthew. "PowerSploit - A PowerShell Post-Exploitation Framework." Exploit-Monday. n.p., 26 May
2012. 29 Jun. 2014 <http://www.exploit-monday.com/2012/05/powersploit-powershell-post.html>
6 Bialek, Joseph. "Reflective DLL Injection with PowerShell." clymb3r. n.p., 6 Apr. 2013. 29 Jun. 2014
<http://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/>
7 Bialek, Joseph. "Modifying Mimikatz to be Loaded Using Invoke-ReflectiveDLLInjection.ps1." clymb3r. n.p., 9 Apr.
2013. 29 Jun. 2014 <http://clymb3r.wordpress.com/2013/04/09/modifying-mimikatz-to-be-loaded-using-invoke-
reflectivedllinjection-ps1/>
8 Campbell, Chris. "No Tools? No Problem! Building a PowerShell Bot." YouTube. n.p. 16 Feb. 2013. 29 Jun. 2014
<https://www.youtube.com/watch?v=2manBaoP7Bk>
9 http://obscuresecurity.blogspot.com/
10 https://github.com/mattifestation/PowerSploit
11 https://github.com/samratashok/nishang
12 http://tipstrickshack.blogspot.com/2014/01/deliver-powershell-payload-using-macro.html
13 http://www.metasploit.com/

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 3

extremely basic usage of PowerShell - such as simply replacing the use of remote command execution
tools such as “PsExec” with PowerShell’s “Invoke-Command” or “Enter-PSSession” - to achieve their
objectives and evade detection. However, even these simplistic techniques introduce another means
by which attackers can leverage built-in components of the operating system, instead of external tools
or malware, and thereby evade detection.

The widespread availability of PowerShell in an average corporate Windows environment, the
maturation of PowerShell attack toolkits, and the steady increase in PowerShell “know-how” among
intruders has created a perfect storm for those seeking to protect a network or investigate a
compromise. This motivated the authors to focus their efforts on the forensic “footprints” left behind
by the various ways that an attacker might use PowerShell - a topic for which publicized research is
scarce, as of this writing.

The goals of this research were to identify the sources of evidence on disk, in logs, and in memory,
resulting from malicious usage of PowerShell - particularly when used to target a remote host.
Understanding these artifacts can help reconstruct an attacker’s activity during forensic analysis of a
compromised system. In addition, they can help analysts recognize the sources of evidence that are
suitable for proactive monitoring - both on a single system and at scale - to detect PowerShell attacks.

ASSUMPTIONS
Although this white paper focuses on forensic analysis, it is worthwhile to briefly discuss the Windows
security controls intended to limit malicious usage of PowerShell, and the authors’ assumptions
regarding an attacker’s level of access. This research began with the premise that an attacker would
rely upon PowerShell during the post-compromise phase of an incident. In the authors’ experience,
intruders typically gain local administrator privileges on one or several Windows systems immediately,
or shortly after, their initial entry vector into an environment. Due to poorly secured Active Directory
environments (and the widespread know-how on how to move laterally and escalate privileges), these
first footholds frequently lead to compromise of elevated domain account privileges or Domain
Administrator altogether.

The authors therefore based their research on the following assumptions:

● The attacker can obtain administrator-equivalent rights on the target system - most typically,
the credentials for a privileged domain account.

● The attacker can laterally access the target system over common Windows ports and protocols
(e.g. SMB, NetBIOS, and / or WinRM)

● The attacker can remotely enable PowerShell remoting and the WinRM service on a remote
host by means of other native-Windows commands - such as through a scheduled task (“at”
command), the service control manager (“sc” command), or Windows Management
Instrumentation (WMI).

● The attacker can bypass the default “Restricted” policy under which PowerShell will execute
scripts.14

● The attacker, given administrator privileges, could bypass or disable a constrained remoting
endpoint configured to limit the scope of PowerShell commands available to a user. (A lower-
privileged attacker might also bypass such controls - Joseph Bialek and Lee Holmes have also
recently blogged on techniques to break out of constrained runspace, if implemented with
vulnerable code, and run unauthorized commands.15)

14 http://technet.microsoft.com/en-us/library/hh849812.aspx
15 Bialek, Joseph. "Cracking Open PowerShell's Constrained Runspacer." Clymb3r. n.p. 25 Jun. 2014. 29 Jun. 2014
<http://clymb3r.wordpress.com/2014/06/25/cracking-open-powershells-constrained-runspace/>

Page 4 © 2014 Mandiant, A FireEye Company. All rights reserved.

Finally, the authors chose to focus their research on sources of evidence that were specific to usage of
PowerShell. Analysis of the forensic artifacts common to any user interaction with a Windows system
(such as logon events generated during authentication, artifacts of interactive usage of Explorer, etc.)
are well-covered by prior research and beyond the scope of this study.

TESTING METHODOLOGY
The authors conducted the majority of testing using a client (e.g. attacker) and remote (e.g. victim)
system running Windows 7 SP1. All test sequences were performed using PowerShell 2.0, the most
common pre-installed version in the wild. The authors performed additional testing with PowerShell
3.0 on both the client and server. This white paper denotes any instances where available evidence
may differ between versions of PowerShell.

The authors executed the following sequence of commands during testing. These commands were
chosen as representative examples of how an attacker might interact with a targeted system through
PowerShell. They also make use of basic cmdlets that are likely to be used even in more complex
attacks.

● Single remote cmdlet execution through Invoke-Command, such as:
Invoke-Command 192.168.17.150 {Get-ChildItem c:\}

● Single remote binary execution through Invoke-Command, such as:

Invoke-Command 192.168.17.150 {c:\malware.exe}

● Remote in-memory download and execution of PowerSploit framework script Invoke-

Mimikatz.ps1, such as:
Invoke-Command 192.168.17.150 {iex((New-Object
Net.WebClient).DownloadString('https://raw.githubusercontent.com/mattifestation
/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1')); Invoke-Mimikatz -
DumpCreds}

● Remote interactive PowerShell command session initiated with the syntax:

Enter-PSSession 192.168.17.150

The authors also utilized evidence gathered during their work conducting incident response and
forensic analysis for Mandiant. Wherever possible, test scenarios were constructed to replicate these
findings in a controlled environment to ensure their accuracy.

FINDINGS AND SOURCES OF EVIDENCE
The following sections summarize each of the sources of evidence that may provide evidence of
malicious PowerShell usage on a compromised system. These sources include the registry, prefetch
files, memory, event logs, and network traffic. In addition, the authors provide an analysis of forensic
artifacts that may result when an attacker configures a PowerShell script to persist on a system.

REGISTRY
The authors did not identify any registry keys or values that recorded the execution of PowerShell
scripts, commands, or remoting activity. However, an attacker may tamper with PowerShell
configuration settings that are resident in the registry to facilitate their activity.

One such example is the PowerShell execution policy, which controls the profiles and scripts that a
user is permitted to load and execute on a system. The registry stores this setting in the value
ExecutionPolicy within key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell\. By
default, the policy is set to Restricted on all versions of Windows except Windows Server 2012 R2,

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 5

on which it is set to RemoteSigned16. The execution policy can be configured through Group Policy; as
a result, this setting should be consistent across most or all systems in a typical Active Directory
environment.

An attacker may change the setting to Bypass before attempting to execute malicious PowerShell
script. This would result in an update to the Last Modified timestamp of the registry key. Based on the
authors’ observations, this key does not frequently change during normal system operations. Of
course, an attacker could avoid modifying this setting and simply include the command-line option -
ExecutionPolicy Bypass each time they invoked PowerShell. However, the authors have
investigated at least one case where the attacker consistently modified the execution policy when
interacting with targeted systems during lateral movement.

PREFETCH
Windows Prefetch is a performance enhancement feature, first introduced in Windows XP, designed to
shorten load times during boot and application startup. The operating system stores prefetch files,
denoted with extension .PF, in the directory %systemroot%\prefetch. Forensic investigators often use
the prefetch as a source of evidence of executable files that previously ran on a system. Parsing the
contents of these files17 can yield:

● Date and time of first execution (corresponding to the prefetch file creation date)
● Last run time (stored within the prefetch file)
● # of times executed (stored within the prefetch file)
● List of files accessed during the first ten seconds of execution (stored within the prefetch file)
● Full path to executable file (derived from accessed file list)

During testing and in real-world incident investigations, the authors observed that the prefetch file for
powershell.exe can contain references to recently executed PowerShell scripts. In order to be
present within the prefetch file’s accessed file list, a given script must be loaded within the first ten
seconds of powershell.exe execution. This reliably occurs when running powershell.exe at a
command line with a script argument, but not when using an interactive PowerShell session.

As an example, the authors executed a test script from the command shell using the syntax:
powershell.exe -File "C:\temp\persistence.ps1"

This resulted in an update to the Last Run time and an increment to the run count stored within the
corresponding prefetch file POWERSHELL.EXE-59FC8F3D.pf. The accessed file list contained a reference
to the script as shown below:

Figure 1: Portion of accessed file list within prefetch file for PowerShell.exe

16 “about_Execution_Policies.” Microsoft TechNet. n.p., 8 May 2014. 30 Jun 2014.
<http://technet.microsoft.com/en-us/library/hh847748.aspx>
17 Numerous free tools and scripts can parse prefetch files. Several used by the authors include: NirSoft
WinPrefetch View (http://www.nirsoft.net/utils/win_prefetch_view.html), TZWorks Prefetch Parser
(https://tzworks.net/prototype_page.php?proto_id=1), and Mandiant Redline
(https://www.mandiant.com/resources/download/redline). The Accessed File list is also plainly visible in Unicode
strings within a prefetch file.

Page 6 © 2014 Mandiant, A FireEye Company. All rights reserved.

The accessed file list does retain entries from previous instances of a given program executing - so
even if powershell.exe runs again subsequent to attacker activity, its prefetch file may still retain
the accessed file information for a previously loaded script.

As part of an investigative process, the authors recommend the following basic steps:

● Examine the PowerShell prefetch file creation timestamp and last run timestamp to determine
if they correlate with other periods of suspected attacker activity.

● Parse or string-search the accessed file list and examine the names and paths of any
referenced .PS1 files.

The authors have also conducted this analysis at-scale across large Windows environments. Given the
forensic tools to do so, one could collect and search all PowerShell prefetch files across all systems -
each file is only several hundred kilobytes. If an analyst has already identified attacker staging
directories or file naming conventions from previous investigative findings, this information could be
used for initial searches against the accessed file lists. It also may be possible to conduct frequency
analysis of script names and paths referenced across all of the gathered prefetch files, in order to
identify uncommon or suspicious entries.

NETWORK TRAFFIC
The authors did not extensively analyze network-based evidence resulting from PowerShell remoting
activity. As of PowerShell version 2.0, all remoting traffic occurs over ports 5985 (HTTP) and 5986
(HTTPS) by default. In both cases, the request payloads are encrypted - use of HTTPS only adds
header encryption since all content is sent over SSL. Clear-text HTTP headers may only provide the
username conducting the remoting (in the case of NTLMSSP authentication, present in the
Authorization header), and the version of the PowerShell client in use.

Investigators may have more success conducting network flow analysis to identify anomalous usage of
PowerShell remoting. If remoting is legitimately used for system administration activities in an
environment, it should originate from a predictable set of source systems. Organizations with the
capability to monitor flows across internal-to-internal, DMZ-to-internal, or VPN-to-internal network
segments should attempt to baseline traffic over ports 5985 and 5986. This may help identify
unauthorized usage of remoting by an attacker.

MEMORY
The authors focused their memory analysis research on the forensic impact of PowerShell remote code
execution through the WinRM service. Although local execution of PowerShell scripts and code
certainly yields its own set of memory-resident artifacts, other sources of evidence documented in this
white paper can provide better coverage of these scenarios. The authors were most interested in
determining how memory analysis could address the “worst-case” scenario of an attacker using
PowerShell remoting, in combination with in-memory attacks like reflective DLL injection, to
compromise a remote system without ever touching its disk.

To conduct this research, the authors took memory snapshots of a victim system before, during, and
after the execution of the commands listed in the methodology section of this white paper. Analysis of
the memory images was conducted using Volatility Framework and Mandiant Redline.

The first step of analysis was to identify the processes on a targeted system whose memory space
might contain remnants of PowerShell remoting activity. Upon receiving a remote command, the
instance of the service host process svchost.exe running the DCOM Server Process Launcher service
(short name “DCOMLaunch”) spawns an instance of c:\windows\system32\wsmprovhost.exe. This
binary is the host process for WinRM plugins. What occurs next depends on the type of PowerShell
command executed through remoting:

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 7

● If the command invokes a native cmdlet, it executes directly within the context of
wsmprovhost.exe - it does not spawn a separate child instance of powershell.exe. Once the
cmdlet completes, wsmprovhost.exe terminates.

● If the command executes a separate binary (such as an executable file already on the victim’s
disk), the binary is loaded as a child process of “wsmprovhost.exe”. Once the binary exits,
wsmprovhost.exe terminates.

● If the command initiates an interactive PowerShell session (e.g. through Enter-PSSession), it
runs directly within the context of wsmprovhost.exe. This process continues to execute until
the PSSession terminates.

In all three cases, the authors observed that PowerShell objects and Remoting Protocol XML remained
readily visible in the process memory space of wsmprovhost.exe.18

In the example depicted below, the authors executed the command echo “helloworld” >
c:\test.txt during an interactive remote PSSession, executed the dir command to confirm the
presence of the output file, then captured memory from the target system before ending the session.
Note that the objects visible in process memory contained both the submitted commands as well as
the output.

Figure 2: Remnants of "echo" command during PSSession retained in wsmprovhost.exe memory

Figure 3: Remnants of "dir" output in wsmprovhost.exe memory

However, in practice wsmprovhost.exe is not a useful source of evidence because it terminates
immediately upon the conclusion of a remoting session. In most investigative scenarios, an analyst
would not be able to identify a potentially compromised system and capture memory from this process
before it had exited.

18 Microsoft documents the PowerShell Remoting Protocol at http://msdn.microsoft.com/en-
us/library/dd357801.aspx

Page 8 © 2014 Mandiant, A FireEye Company. All rights reserved.

Another instance of svchost.exe - that which loads the WinRM service - is a more promising target
for post-compromise analysis. Depending on the host configuration, Windows may automatically start
the WinRM service upon boot, or an attacker may remotely start it when enabling remoting. The
memory space of the WinRM service can contain portions of Web Services Management (WSMAN)
SOAP messages exchanged during remoting. A subset of these messages may include clear-text
commands and cmdlets executed one-at-a-time or during interactive sessions. Most importantly and
in contrast to wsmprovhost.exe, the service continues to run after the completion of a PowerShell
session.

The figure below provides a fragment of SOAP containing the command:
echo teststring_pssession > c:\testoutput_pssession.txt

The evidence was recovered from WinRM svchost.exe memory on an accessed system, after a
remote interactive PSSession had completed and wsmprovhost.exe had terminated.

Figure 4: Remnants of PowerShell remoting commands in WinRM svchost.exe memory

In another test scenario, the authors used a variation of a technique19 that downloads and executes
the “Invoke-Mimikatz” PowerSploit script on a remote host. The PowerShell command executed on the
client / attack system was as follows:

Invoke-Command -Computername 192.168.114.133 {iex((New-Object
Net.WebClient).DownloadString('https://raw.githubusercontent.com/mattifestation/PowerS
ploit/master/Exfiltration/Invoke-Mimikatz.ps1')); Invoke-Mimikatz -DumpCreds}

This command downloads Invoke-Mimikatz.ps1, stores it in memory, and executes it with the option
-DumpCreds. In turn, Invoke-Mimikatz.ps1 uses reflective DLL injection to load Mimikatz in memory
and harvest credentials. The result is remote execution of Mimikatz without ever touching disk – an
ideal challenge for memory forensics.

The authors acquired memory from the victim system twice: once immediately following the
completion of the remote Invoke-Mimikatz PowerShell, and once after five hours had transpired. In
both cases, the WinRM svchost.exe contained a nearly-complete copy of the attack system’s
command-line. Figure 5 depicts a memory dump at the offset where this string was located, as
produced by Volatility.

19 Gates, Chris. “Dumping a domain’s worth of passwords with mimikatz.” Carnal0wnage Blog. n.p., 4 Oct 2013. 30
Jun 2014. <http://carnal0wnage.attackresearch.com/2013/10/dumping-domains-worth-of-passwords-with.html>

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 9

Figure 5: Remnants of remote Invoke-Mimikatz attack in WinRM svchost.exe memory

There are several important caveats to this approach. First, analysts should expect to deal with a
significant amount of noise and irrelevant data when searching memory for remnants of command.
PowerShell objects and SOAP carry enormous overhead: a single cmdlet and response may result in
dozens of messages. The authors encountered the same challenges when examining PowerShell
analytic logs, as noted in the Event Logs portion of this white paper. A manual review process, without
knowing exactly what to search for, may be tedious.

Testing identified several strings, present within the PowerShell Remoting Protocol or the WSMan
protocol used in WinRM, that are effective starting points for searches:

● N="Cmd"
● wsman.xsd
● rsp:Command
● rsp:CommandLine
● rsp:Arguments

Analysts should review the contents of memory offsets adjacent to each search hit for additional
context and remnants of command activity.

How long is such evidence retained in WinRM service memory? Test results suggested that the most
significant variable was the volume of WinRM activity that occurs following the commands of interest.
Virtual machines configured with only 512MB of RAM, fully utilized, still contained recoverable
remnants of commands within the WinRM svchost.exe process memory space after one week had
elapsed. However, the authors also found that the number of recoverable commands was difficult to
predict, and any subsequent WinRM activity quickly eradicated remnants of older sessions.

Memory and disk snapshots acquired during testing also contained remnants of PowerShell remoting
commands in kernel pool and in the pagefile. The authors found that the presence of this evidence

Page 10 © 2014 Mandiant, A FireEye Company. All rights reserved.

was largely the result of paging activity that can be difficult to predict or control. Kernel memory and
the pagefile should be included in the scope of string searches for PowerShell command artifacts, but
may yield a low rate of returns.

As is always the case with memory forensics, time is of the essence. The authors’ research concluded
that it is possible to reconstruct at least fragments of PowerShell remoting activity in memory - even
at the completion of a session. These techniques may be practical when conducting analysis of a single
system of interest; however, they do not readily lend themselves to at-scale, proactive monitoring of
systems in an enterprise environment.

EVENT LOGS
Windows event logs are instrumental when examining a potentially compromised system for evidence
of attacker activity. Earlier versions of Windows PowerShell (version 2.0 and prior) provide few useful
audit settings, thereby limiting the availability of evidence (such as a command history) useful for
forensic analysts. PowerShell 3.0 and later has largely addressed this shortcoming with the
introduction of a more robust module logging feature. However, in the authors’ experience, Windows 7
and Server 2008 remain the most prevalent operating systems in most corporate environments.
Without being explicitly upgraded to PowerShell 3.0, these systems will unfortunately not have access
to its enhanced auditing capabilities.

Nevertheless, even the default level of logging in older versions can provide sufficient evidence to
identify signs of PowerShell usage, distinguish remoting from local activity, and provide context such
as the duration of sessions and associated user account. This may help an analyst correlate other
forensic evidence on a single system of interest with PowerShell activity. At enterprise-scale, these
events may be used to establish a baseline of normal PowerShell usage and thereby identify
anomalies.

Upon executing any PowerShell command or script, regardless if locally or through remoting, Windows
may write events to the following three logs:

• Windows PowerShell.evtx

• Microsoft-Windows-PowerShell%4Operational.evtx20
• Microsoft-Windows-PowerShell%4Analytic.etl

Since PowerShell implements its remoting functionality through the Windows Remote Management
(WinRM) service, the following two event logs also capture remote PowerShell activity:

• Microsoft-Windows-WinRM%4Operational.evtx

• Microsoft-Windows-WinRM%4Analytic.etl

Logging in PowerShell 2.0
In general, PowerShell 2.0 event logs can provide the start & stop times of command activity or script
execution, the loaded providers (indicative of the types of functionality in use), and the user account
under which the activity occurred. They do not provide a detailed history of all executed commands or
their output.

The analytic logs (disabled by default) pose the opposite problem. If enabled, they capture an
enormous volume of data – essentially every PowerShell operation (or SOAP remoting message)
exchanged during activity. However, the quantity of these events and the need to assemble and
decode log messages can hinder practical analysis.

The following sections summarize the important evidence captured by each event log pertaining to
PowerShell 2.0 activity.

20 The Operational and Analytic logs actually contain a forward slash in their name, e.g. “Microsoft-Windows-
PowerShell/Operational.evtx”. The corresponding log filenames on disk use the encoded character %4 in place of
the slash.

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 11

Windows PowerShell.evtx
Each time that PowerShell executes – either upon the execution of a single command, the start of a
local session, or the start of a remoting session – this log records an Event ID (EID) 400 message:
“Engine state is changed from None to Available.” At the completion of the session, the log
records an EID 403 event: “Engine state is changed from Available to Stopped”.

The message details for both EID 400 and EID 403 events include a HostName field. If executed
locally, this field will be logged as HostName=ConsoleHost. If PowerShell remoting is in use, the
accessed system will record these events with HostName=ServerRemoteHost.

Neither message records the user account associated with the PowerShell activity. However, by using
these events an analyst may determine the duration of a PowerShell session, and whether it ran
locally or through remoting.

Microsoft-Windows-PowerShell%4Operational.evtx
The authors did not identify any forensically significant events written to the PowerShell Operational
event log when using PowerShell 2.0.

Microsoft-Windows-WinRM%4Operational.evtx
The WinRM Operational log records all use of the Windows Remote Management service, including that
which is conducted through PowerShell remoting. The authors found the following event IDs provide
useful forensic evidence:

• EID 6: Recorded at the onset of remoting activity on the client system. Includes the
destination address to which the system connected. Example:

Creating WSMan Session. The connection string is:
192.168.114.140/wsman?PSVersion=2.0

• EID 169: Recorded at the onset of remoting activity on an accessed system. Includes the
username and authentication mechanism used to access WinRM. Example:

User win-alicePC\alice authenticated successfully using NTLM authentication

• EID 81, 82, 134: Generated by the “under-the-hood” operations that occur during PowerShell

remoting on an accessed system. Rather than recording the specific commands submitted at
the command-line, these entries are rather vague and low-level. The “Username” field in these
messages does record the domain and username of the account conducting the remoting
activity. Aside from that, these events are mainly useful for defining the timeframe during
which remoting occurred.

The following examples illustrate the types of event messages captured in the WinRM
Operational event log during the execution of a PowerShell remoting command:

EID 82: Entering the plugin for operation CreateShell with a ResourceURI of
<http://schemas.microsoft.com/powershell/Microsoft.PowerShell>

EID 81: Processing client request for operation CreateShell

EID 134: Sending response for operation CreateShell

EID 81: Processing client request for operation DeleteShell

Microsoft also provides the ability to disable Windows Remote Shell – the component of WinRM that
supports the PowerShell cmdlets Invoke-Command and Enter-PsSession. This setting can be enabled
through Group Policy under: Computer Configuration → Administrative Templates → Windows
Components → Windows Remote Shell → Allow Remote Shell Access. If set to “Disabled” on the

Page 12 © 2014 Mandiant, A FireEye Company. All rights reserved.

remote system, the source system attempting to initiate a Remote Shell connection will record the
following EID 142 event in the WinRM Operational log:

WSMan operation CreateShell failed, error code 2150859180.

Microsoft-Windows-PowerShell%4Analytic.etl
PowerShell analytic logging must be explicitly enabled to capture events, and is intended for
troubleshooting rather than a long-term auditing solution. When active, the log records all remotely
executed PowerShell commands and the corresponding responses under the following event IDs:

• EID 32850: Records the user account that authenticated for remoting. Example:
Request 7873936. Creating a server remote session. UserName: CORPDOMAIN\JohnD

• EID 32867 / 32868: Records each PowerShell input and output object that is exchanged
during PowerShell remoting, including protocol and version negotiation as well as command
I/O “payloads”. The objects are stored as XML encoded hexadecimal strings in a field denoted
“Payload data”, and due to length are often fragmented across multiple log messages.

While this log can contain forensically significant evidence of PowerShell remoting activity, the volume
of events and level of effort required to decode them limits their practical use during investigations.

The figure below displays an example of an EID 32867 event generated on a remotely accessed
system upon the execution of a simple PowerShell command: Invoke-Command {Get-ChildItem C:\}

Figure 6: Encoded PowerShell remoting command in PowerShell analytic log

Decoding this message results in the XML depicted below. Note that the command, “Get-ChildItem”,
and argument, “C:\”, are visible in plain-text.

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 13

Figure 7: Excerpt of decoded XML containing PowerShell command and argument

The subsequent EID 32868 events containing the command output, once decoded, appears as follows:

Figure 8: Excerpt of decoded XML containing output of PowerShell command

Microsoft-Windows-WinRM%4Analytic.etl
Similar to PowerShell Analytic logging, WinRM Analytic logging is not enabled by default; once
configured, it generates a large number of events that are once again encoded and difficult to analyze.
This log captures all of the SOAP messages used to encapsulate PowerShell remoting input and
output. EID 772 messages capture requests made to a target system; events containing commands
are written in fixed-length, encoded 3000 byte entries. EID 1044 messages capture responses from a
system; once again in encoded and fixed-length fragments.

As was the case for PowerShell Analytic logging, the authors concluded that the volume of events and
effort required to reassemble and decode them would be impractical in most cases.

Microsoft-Windows-AppLocker%4MSI and Script.evtx
As of Windows 7, Windows Server 2008, and later, Microsoft AppLocker provides the ability to audit
the execution of PowerShell Scripts, as well as to enforce rules that block or permit their execution. If
AppLocker Script Rules are configured in Audit mode, the AppLocker MSI and Script event log records
the following events upon the local execution of a PowerShell script:

• EID 8005: Records that AppLocker permitted the execution of a PowerShell script. Example:
%OSDRIVE%\TEMP\HelloWorld.ps1 was allowed to run

Page 14 © 2014 Mandiant, A FireEye Company. All rights reserved.

• EID 8006: Records that AppLocker would have prevented the execution of a PowerShell script
if rule enforcement had been enabled. Example:
%OSDRIVE%\TEMP\HELLOWORLD.PS1 was allowed to run but would have been prevented
from running if the AppLocker policy were enforced.

Other Logging Options in PowerShell 2.0
As noted in the preceding sections, the main shortcoming in PowerShell 2.0 logging is its inability to
record a detailed history of commands. The authors identified several potential workarounds that
organizations should consider proactively deploying in the event that upgrading to PowerShell 3.0 is
not feasible. Both of these examples entail modification of the “All user’s” profile,
%windir%\system32\WindowsPowerShell\v1.0\profile.ps1, to invoke additional commands
whenever PowerShell is started by any user with any shell. (Note that a user or attacker can still
bypass the execution of any profile by using the “-NoProfile” flag when running PowerShell.)

The simplest solution entails adding the built-in “Start-Transcript” cmdlet21 to the profile. This cmdlet
records all user-typed commands and output that appears on the console to a specified text file. The
transcript only captures commands entered during local execution of PowerShell and would not include
input or output from a remote PowerShell session. Furthermore, transcripts only capture the output of
PowerShell commands / cmdlets – not the output from execution of external binaries.

The authors have worked with several organizations that have implemented homegrown logging
solutions. One such technique entails overwriting PowerShell’s built-in Prompt function22 (again,
through the addition of code in all user profiles). A custom prompt could capture any input submitted
at the local PowerShell command line and save it to a file or to an event log (using the Write-
EventLog cmdlet). Once again, this approach would not capture remoting activity.

Additional Logging in PowerShell 3.0 and Greater
The authors observed several new types of events generated by PowerShell 3.0 in the aforementioned
logs. These include:

• The PowerShell Operational event log records EID 40961 and 40962 messages, “PowerShell
console is starting up” and “PowerShell console is ready for user input”, upon local execution
of powershell.exe. These log entries also record the user account associated with the
activity.

• The PowerShell Analytic event log records EID 7937 messages upon the execution of any
command, script cmdlet, or external binary. These messages take the form “Command ____
is Started”. Arguments are not included.

The most significant addition to PowerShell 3.0 is the Module Logging23 capability. This feature can
provide detailed logging of all PowerShell command input and output, and can be configured on an
individual system or through Group Policy (Computer Configuration → Administrative Templates →
Windows Components → Windows PowerShell → Turn on Module Logging). When enabled, an
administrator must explicitly define which modules are to be logged. For example,
Microsoft.PowerShell.* enables module logging for the majority of PowerShell’s core components.

Module Logging records PowerShell commands and the resulting output regardless of whether they
are executed locally or through remoting. This evidence is captured in EID 4103 events stored in the
Microsoft Windows PowerShell Operational event log. However, note that module logging does not
record the execution of external Windows binaries nor their arguments.

21 http://technet.microsoft.com/en-us/library/hh849687.aspx
22 http://technet.microsoft.com/en-us/library/hh847739.aspx
23 http://technet.microsoft.com/en-us/library/hh857339.aspx

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 15

As an example, the following PowerShell command recursively searches for files with a “.txt”
extension in the C:\temp directory. The contents of any files matching this criteria are then searched
for the term “password”:

Get-ChildItem c:\temp -Filter *.txt -Recurse | Select-String password

This command results in the following EID 4103 event in the PowerShell Operational event log:

Figure 9: Module logging command input event (EID 4103) in PowerShell Operational event log

The resulting output from the command is written to the log follows:

Figure 10: Module logging command output event (EID 4103)

In another test scenario, the authors remotely executed Invoke-Mimikatz.ps1 using the same syntax
described in the Memory analysis section of this white paper. Due to the complexity and size of this
script, execution resulted in over 1,200 Module Logging events – one for each “command” embedded
within the script. Once complete, the Mimikatz output (typically displayed on console) also was
recorded in a Module Logging event, as shown in the figure below.

Page 16 © 2014 Mandiant, A FireEye Company. All rights reserved.

Figure 11: Module logging Invoke-Mimikatz.ps1 output (EID 4103)

PERSISTENT POWERSHELL

Common Techniques
As with any other type of malware, attackers can configure a Windows system to automatically
execute PowerShell upon system startup or user logon, and thereby persist beyond the point of initial
infection. Persistence is essential for certain types of malware, such as backdoors or keystroke
loggers, to survive reboot and serve their objectives. In practice, attackers can hijack the same
Windows mechanisms that have been widely (ab)used to persist other forms of malicious code:
registry auto-start extensibility points (AESPs), scheduled tasks, user startup folders, etc. Matt
Graeber’s “Practical Persistence with PowerShell”24 outlined several of these techniques (some of
which are implemented in the Persistence module of the PowerSploit framework).

For example, an attacker could ensure that PowerShell automatically executed
c:\windows\system32\evil.ps1 upon startup by setting the following registry key25, value, and data:

● Key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
● Value: RunTotallyLegitPowerShell
● Data:

powershell.exe -NonInteractive -WindowStyle Hidden -ExecutionPolicy bypass -
File "C:\windows\system32\evil.ps1"

Forensic investigation of this and other registry-based persistence mechanisms are well-documented.
They leave easy-to-detect footprints, and tools such as RegRipper26 or AutoRuns27 greatly simplify the
process of enumerating and detecting such anomalies. Registry key timeline analysis might also
identify that the parent Run key was last modified upon the date and time upon which the value was
added. Similarly, filesystem timeline analysis of the Standard Information and Filename Attributes
could identify the creation of evil.ps1 during a period of attacker activity.

24 Graeber, Matthew. "Exploit Monday: Practical Persistence with PowerShell." Exploit Monday. n.p., 4 Apr. 2013.
30 Jun. 2014 <http://www.exploit-monday.com/2013/04/PersistenceWithPowerShell.html>
25 This example shows a Run key within the HKEY_LOCAL_MACHINE\SOFTWARE hive, but an attacker could also
modify the same key within a user’s own profile (and may be forced to do so if not running under the context of an
Administrator).
26 http://regripper.wordpress.com/
27 “Autoruns for Windows.” Windows SysInternals. n.p., 13 May 2014. 30 Jun 2014.
<http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx>

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 17

Other persistence techniques not reliant on the registry, such as scheduled tasks or the StartUp folder,
have similar benefits and drawbacks: they are simple to create, and simple to detect. Recurring
scheduled tasks can be identified through analysis of .job files within %systemroot%\tasks and
evidence in the Task Scheduler Operational Event Log. Use of the “StartUp” folder requires the
creation of a file in one of a limited number of locations (either the “StartUp” folder for each targeted
user, or the system-wide “All Users” directory). Detailing the evidence and the forensic analysis
techniques for these and other common persistence mechanisms is beyond the scope of this white
paper.

Profiles and WMI
One noteworthy feature distinguishes PowerShell from other built-in Windows scripting languages
(and, conveniently, can be used for malware persistence): the use of profiles. A profile is simply a
script that executes whenever PowerShell starts up28. PowerShell supports per-user profiles, stored
within path
C:\Users\<USERNAME>\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1. It also
supports a global profile that applies to all users from all hosts at location:
C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1. In fact, Microsoft documents29 that
there are up to six types of profiles that may load under different PowerShell contexts.

This gives way to another persistence mechanism that is easy to create, but may be harder to detect.
An attacker could add code to a user or system profile that executes an external binary, or more
covertly, loads shellcode or a malicious DLL encoded in the profile itself. Under these conditions, the
attacker need only ensure that powershell.exe executes upon startup or user logon. This eliminates
the need to load an external malicious script; however, an analyst might still detect the modification of
the affected profile file(s) through manual inspection or file system timeline analysis.

The most covert method of PowerShell persistence included in Graeber’s research, and provided as a
feature in PowerSploit, leverages WMI events. WMI provides an event handling infrastructure that can
be hijacked to automatically execute powershell.exe. An attacker can register a permanent WMI
event filter and consumer pair that will perpetually execute, until unregistered, on a system. This
entails the following steps30:

● Create a WMI event filter - essentially a query that the operating system will regularly
execute. For the purpose of malware persistence, this should be designed to be an event that
is guaranteed to recur on a system. The following PowerShell code creates a filter named
“DoBadThings” that is satisfied when the system time is “08:00”.

$filter = Set-WmiInstance -Class __EventFilter -Namespace "root\subscription" -
Arguments
@{name='DoBadThings';EventNameSpace='root\CimV2';QueryLanguage="WQL";Query="SEL
ECT * FROM __InstanceModificationEvent WITHIN 60 WHERE TargetInstance ISA
'Win32_LocalTime' AND TargetInstance.Hour = 08 AND TargetInstance.Minute = 00
GROUP WITHIN 60};

● Create a WMI command-line event consumer. This is akin to a trigger that can be invoked

when a WMI event filter returns data. Instead of processing the event data, this consumer
only needs to launch powershell.exe with the desired arguments. This example creates a
consumer named “DoBadThings” that simply runs PowerShell in non-interactive mode:

28 Adding the switch -NoProfile to a PowerShell command line will prevent any profiles from loading within the
session.
29 Wilson, Ed. “Understanding and Using PowerShell Profiles.” Hey, Scripting Guy! Blog. n.p., 4 Jan 2013. 30 Jun
2014. <http://blogs.technet.com/b/heyscriptingguy/archive/2013/01/04/understanding-and-using-powershell-
profiles.aspx>
30 The authors recommend using PowerSploit’s Persistence module to automate this process - it generates an
output PowerShell script that serves as a useful reference for the syntax required for each of these steps.

Page 18 © 2014 Mandiant, A FireEye Company. All rights reserved.

$consumer = Set-WmiInstance -Namespace "root\subscription" -Class
'CommandLineEventConsumer' -Arguments @{
name=DoBadThings;CommandLineTemplate="$($Env:SystemRoot)\System32\WindowsPowerS
hell\v1.0\powershell.exe -NonInteractive";RunInteractively='false'};

● Finally, associate the named filter with the named consumer by “binding” the two together.

Using our previous examples, sample code would be as follows:

Set-WmiInstance -Namespace "root\subscription" -Class __FilterToConsumerBinding
-Arguments @{Filter=$filter;Consumer=$consumer}

An attacker could subsequently embed malicious code in a user or system-wide PowerShell profile that
would automatically load each time powershell.exe started. Figure 12 illustrates malicious (and
encoded) PowerShell code added to a user profile through the use of PowerSploit.

Figure 12: Malicious PowerShell added to "profile.ps1" by PowerSploit's Persistence module

As an alternative, malicious code could be compressed, base64 encoded, and added to the command-
line arguments specified in the WMI event consumer. This approach is even more covert, since it
avoids the need to modify the user profile or drop PowerShell scripts elsewhere on disk. However, any
included arguments would be subject to Windows’ maximum command-line length limit (8,191
characters).

How can an investigator identify evidence of this technique? Analysts should first review all system
and user PowerShell profiles on disk for the presence of malicious code. Although this technique is not
strictly required for persistence via WMI, its relative simplicity and inclusion in the PowerSploit
Persistence module increases the likelihood that an attacker may use it. As previously noted, a system
may contain multiple per-user and per-host profile files; every copy of profile.ps1,
Microsoft.PowerShell_profile.ps1, and Microsoft.PowerShellISE_profile.ps1 should be
reviewed. The authors observed that these files are not updated frequently during the course of
normal system operation. If an attacker tampered with them, their last modification timestamp(s)
may correspond to a period of intrusion activity.

Upon creation or modification to any WMI object, such as an event filter or consumer, Windows
updates the core WMI repository files within C:\windows\system32\wbem\repository. These files
include: objects.data, index.btr, and mapping[#].map. The Last Modified timestamp of each file
is updated upon these changes. However, further testing indicated that these files are regularly
updated during the course of normal system operation. As a result, their Last Modified timestamps are
unlikely to correlate with attacker activity.

The contents of the WMI repository files adhere to an undocumented structure. As of this writing, the
authors were unable to identify research, tools, or techniques available to analyze the contents of
these files beyond simple use of “strings”. Testing demonstrated that following the execution of
PowerSploit’s WMI Persistence module, several pertinent clear-text strings were present in
objects.data, including:

● Event filter name (PowerSploit uses “Updater” by default)
● Event consumer name (also “Updater” by default)

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 19

● WQL query used by filter
● Command line invoked by consumer

An investigative process that leverages strings from objects.data (recovered from one or multiple
systems) entails the following:

● Search for any reference to CommandLineEventConsumer.Name, excluding the following
common default consumer that will be present on most Windows systems:
CommandLineEventConsumer.Name="BVTConsumer"

● Search for any reference to powershell.exe or common arguments like -ExecutionPolicy

and -NonInteractive

● Once identified, search for known event filter and event consumer names used by the attacker
or their toolkit. PowerSploit’s default name “Updater” may be too generic for this purpose, but
it’s worthwhile to sample a subset of known good systems in your environment.

Turning to the registry, the authors observed that registering a WMI filter that uses Win32_LocalTime
in its WQL query creates an empty key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\ESS\//./root/CIMV2\Win32ClockProvider. The
PowerSploit Persistence module, when configured using the parameter New-
ElevatedPersistenceOption -PermanentWMI -Daily -At '[HH] [AM/PM]', generates an event filter
that uses Win32_LocalTime. Though not intrinsically malicious, this key is uncommon and may
indicate that a suspicious WMI filter has been installed. Furthermore, the key’s Last Modified
timestamp may indicate the date and time at which an attacker registered the filter. However, note
that a malicious event filter may use any trigger – the use of Win32_LocalTime is merely one of the
default options provided by PowerSploit

The second WMI persistence option made available through PowerSploit, New-
ElevatedPersistenceOption -PermanentWMI -AtStartup, triggers within a fixed range of seconds
after system startup time. In contrast to the “Daily” option, the authors did not observe any changes
to the registry following the creation of this type of WMI filter.

If collecting evidence from a live system, as opposed to a forensic disk image, the PowerShell cmdlet
Get-WMIObject can provide all of the information needed. The following three commands respectively
return all WMI event filters, consumers, and filter-consumer binding objects on a given system:

Get-WMIObject -Namespace root\Subscription -Class __EventFilter
Get-WMIObject -Namespace root\Subscription -Class __EventConsumer
Get-WMIObject -Namespace root\Subscription -Class __FilterToConsumerBinding

Figure 13 provides an excerpt of the output of Get-WMIObject to list event consumers.

Figure 13: Enumerating WMI Event consumers with PowerShell

Page 20 © 2014 Mandiant, A FireEye Company. All rights reserved.

An investigator could run these commands on multiple systems (e.g. through PowerShell remoting) to
establish a baseline of filter names, consumer names, consumer command lines, etc. unique to an
organization’s Windows environment. Such data could help identify anomalous entries in the future.

During initial attempts to identify malicious entries, limiting review to consumers should be sufficient -
it’s easier to spot a suspicious WMI consumer command-line than a filter. As previously noted, the
authors have not found command-line consumers that invoke powershell.exe to be common or
legitimate in most Windows networks - but this may vary or change as it is increasingly adopted for
legitimate purposes. Get-WMIObject also returns a useful attribute associated with each filter and
consumer: CreatorSID. As its name implies, this contains the SID of the user that registered the
object, which may be another useful data point when evaluating whether it is legitimate.

The authors identified several additional sources of evidence that recorded the creation of WMI filters
and consumers to persist PowerShell code. These proved to be unreliable or impractical, but are
summarized below for the sake of completeness.

WMI trace logging generates event log entries (EID 11) upon the creation or modification of all WMI
objects, including filters and consumers. This log is disabled by default, but can be enabled with the
following command:

wevtutil.exe sl Microsoft-Windows-WMI-Activity/Trace /e:true

Due to the amount of noise generated by trace level logging, the authors concluded that this event log
would roll too frequently to be a useful source of evidence on most systems.

Fragments of WMI filter names, consumer names, and consumer command-lines may be present in
the process memory space of the WMI provider host process wmiprvse.exe and / or the instance of
svchost.exe that loads the “WinMgmt” service. In practice, the amount of data related to legitimate
WMI objects tracked by these processes minimizes the likelihood that they can be used to identify
anomalies. Investigators will be better served by examining strings from WBEM repository files, or
using the Get-WMIObject cmdlet on a live system.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the following individuals for their contributions:

● Matt Graeber, for being Mandiant’s resident PowerShell guru and his constant willingness to
answer questions and share new findings.

● Joseph Bialek, whose PowerShell exploits and war-stories provided the initial inspiration to
pursue this project.

● Lee Holmes, Chris Campbell, Nikhil Mittal, Chris Gates, David Wyatt, and all of the other
authors, bloggers, and PowerShell hackers, cited throughout this white paper, whose prior
research served as the foundation of the authors’ work.

 © 2014 Mandiant, A FireEye Company. All rights reserved. Page 21

APPENDIX: POWERSHELL VERSION TABLE
The following table summarizes the versions of PowerShell installed by default for each modern
version of Windows, as well as the latest compatible version of PowerShell available with a Windows
Management Framework (WMF) update.

 PowerShell 2.0 PowerShell 3.0 PowerShell 4.0

Windows 7 Default (SP1) Requires WMF 3.0
Update

Requires WMF 4.0
Update

Windows Server 2008 Default (R2 SP1) Requires WMF 3.0
Update

Requires WMF 4.0
Update

Windows 8 Default Requires WMF 4.0
Update

Windows 8.1 Default

Windows Server 2012 Default Default (R2)

