
Don’t Skype & Type!
Acoustic Eavesdropping in Voice-Over-IP

Alberto Compagno∗, Mauro Conti†, Daniele Lain† and Gene Tsudik‡
∗Department of Computer Science, Sapienza University of Rome

Email: compagno@di.uniroma1.it
†Department of Mathematics, University of Padua

Email: conti@math.unipd.it, daniele.lain@studenti.unipd.it
‡Department of Computer Science, UC Irvine

Email: gts@ics.uci.edu

Abstract—Acoustic emanations of computer keyboards repre-
sent a serious privacy issue. As demonstrated in prior work,
spectral and temporal properties of keystroke sounds might
reveal what a user is typing. However, previous attacks assumed
relatively strong adversary models that are not very practical
in many real-world settings. Such strong models assume: (i)
adversary’s physical proximity to the victim, (ii) precise profiling
of the victim’s typing style and keyboard, and/or (iii) significant
amount of victim’s typed information (and its corresponding
sounds) available to the adversary.

In this paper, we investigate a new and practical keyboard
acoustic eavesdropping attack, called Skype & Type (S&T), which
is based on Voice-over-IP (VoIP). S&T relaxes prior strong
adversary assumptions. Our work is motivated by the simple
observation that people often engage in secondary activities
(including typing) while participating in VoIP calls. VoIP software
can acquire acoustic emanations of pressed keystrokes (which
might include passwords and other sensitive information) and
transmit them to others involved in the call. In fact, we show
that very popular VoIP software (Skype) conveys enough audio
information to reconstruct the victim’s input – keystrokes typed
on the remote keyboard. In particular, our results demonstrate
that, given some knowledge on the victim’s typing style and
the keyboard, the attacker attains top-5 accuracy of 91.7% in
guessing a random key pressed by the victim. (The accuracy
goes down to still alarming 41.89% if the attacker is oblivious
to both the typing style and the keyboard). Finally, we provide
evidence that Skype & Type attack is robust to various VoIP issues
(e.g., Internet bandwidth fluctuations and presence of voice over
keystrokes), thus confirming feasibility of this attack.

I. INTRODUCTION

Electronic devices, particularly smartphones and tablets,
are some of the most personal objects in many people’s lives,
storing and managing private and sensitive information, such
as photos, passwords, and messages. Protecting such sensitive
data by encryption is a common approach to prevent unautho-
rized access and disclosure. However, there is no protection if
data is leaked before encryption.

Eavesdropping on physical signals, such as acoustic or
electromagnetic emanations, is one way to recover either:
(1) clear-text data before encryption, e.g., during its input or
visualization, or (2) encryption keys, e.g., during data encryp-
tion and decryption. Indeed, the history of eavesdropping on
physical signals dates back to 1943, when a Bell engineer
discovered that an oscilloscope can retrieve the plain-text from

electromagnetic emanations of a Bell Telephone model 131-
B2 – a mixing device used by the US Army to encrypt
communications [8].

A common target for physical eavesdropping attacks are
input peripherals, such as keyboards, touchscreen surfaces and
printers. Some examples of physical eavesdropping attacks
that were already exploited are: electromagnetic emanations
of keyboards [29], videos of users typing on a keyboard [4] or
on a touchscreen [25], and keyboard acoustic emanations [3].
In particular, the research community invested a lot of effort
into studying keyboard acoustic emanations, showing that it is
a very serious privacy issue. Eavesdropping on keyboard em-
anations allows an adversary to learn what a victim is typing,
based on the sound produced by keystrokes. During the attack,
the sound is usually collected either using microphones [3, 10,
11, 5, 36, 14, 30, 35, 18], or by exploiting various sensors (e.g.,
accelerometers of mobile devices [17, 32]) to reconstruct the
same acoustic information. Once collected, the sound stream
is typically analyzed using various techniques: supervised [3,
10, 11, 18] and unsupervised [36, 5] machine learning, or
triangulation [14, 30, 35]. The final result of this analysis is a
full or partial reconstruction of the victim’s input.

To the best of our knowledge, all previous attacks on
keyboard acoustic emanations require a compromised (mali-
cious, i.e., controlled by the adversary) microphone near the
victim’s keyboard [3, 10, 11, 18, 5, 14, 30, 35]. We believe
that this requirement limits applicability of the attack, thus
reducing its feasibility in the real world. Although increasing
universal popularity of smartphones might ease deployment
of a compromised microphone close to the victim (e.g., one
in the attacker’s smartphone), the adversary still needs to
either physically position it, or control one, near the victim.
Otherwise, a keyboard acoustic eavesdropping attack cannot
be performed. Moreover, some previous approaches have even
more restrictive requirements: (i) a lot of training information
to cluster [5], thus requiring long-term collection of keystroke
sounds, or (ii) precise profiling of the victim’s typing style and
keyboard [3, 10, 11, 18].

In this paper, we propose a different type of the keyboard
acoustic eavesdropping attack that does not require the adver-
sary to control a microphone near the victim, and works with
a limited amount of keystroke data. We call it Skype & Type
attack, or S&T attack for short. As a basis for this attack,
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we exploit Voice-over-IP (VoIP), one of the most popular and
pervasive voice communication technologies used by great
multitudes of people throughout the world. We premise our
work on a very simple observation:

People involved in VoIP calls often engage in sec-
ondary activities, such as: writing email, contributing
their wisdom to social networks, reading news, watch-
ing videos, and even writing research papers. Many
of these activities involve using the keyboard (e.g.,
entering a password). VoIP software automatically
acquires all acoustic emanations, including those of
the keyboard, and transmits them to all other parties
involved in the call. If one of these parties is mali-
cious, it can determine what the user typed based on
keystroke sounds.

We believe this work is both timely and important, especially
due to growing pervasiveness of VoIP software1. Thus, key-
board acoustic eavesdropping attacks, if shown to be realistic,
should concern every VoIP user. None of the previous studies
on keyboard acoustic eavesdropping [3, 10, 11, 18, 5, 14, 30,
35] considered either the setting of our attack, or the features of
VoIP software. In particular, VoIP software performs a number
of transformations to the sound before transmitting it over the
Internet, e.g., downsample, approximation, compression, and
disruption of the stereo information by mixing the sound into a
single channel. Such transformations have not been considered
in the past. In fact, for some prior results, these transforma-
tions conflict with the assumptions, e.g., [14, 30, 35] require
stereo information for the recorded audio stream. Therefore,
conclusions from these results are largely inapplicable to S&T
attack.

A. Contributions

The contributions of this paper are:

• We demonstrate S&T attack based on keyboard acoustic
eavesdropping over VoIP software, with the goal of re-
covering text typed by the user during a VoIP call with
the attacker. S&T attack can also recover random text,
such as randomly generated passwords or PINs. We take
advantage of the spectral features of keystroke sounds,
and analyze them using supervised machine learning
algorithms.

• We evaluate S&T attack over a very popular VoIP soft-
ware: Skype. We designed a set of attack scenarios that
we consider to be more realistic than those used in
prior results on keyboard acoustic eavesdropping. We
show that S&T attack is highly accurate with minimal
profiling of the victim’s typing style and keyboard. It
remains quite accurate even if neither profiling is available
to the adversary. Our results show that S&T attack is
very feasible, and applicable to real world settings under
realistic assumptions. In particular, S&T attack allows
the adversary to greatly speed up brute-force cracking of
random passwords.

• We show, via extensive experiments, that S&T attack is
robust to VoIP-related issues, such as limited available
bandwidth that degrades call quality, as well as to voice
conversations on top of keystroke sounds.

1In 2016, Skype reached 300 million active monthly users [19].

• Based on the insights from the design and evaluation
phases of this work, we propose some tentative counter-
measures to S&T attack and similar attacks that exploit
spectral properties of the keystroke sounds.

B. Organization:

Section II overviews related literature and state-of-the-art
on keyboard eavesdropping. Next, Section III describes the
system model for our attack and various attack scenarios.
Section IV, presents S&T attack. Then, Section V evaluates
S&T attack, discusses our results and impact of VoIP-specific
issues. Section VI shows a practical application of S&T attack
to password cracking. Finally, Section VII proposes some
potential countermeasures, and Section VIII summarizes the
paper and overviews future work.

II. RELATED WORK

The problem of eavesdropping user input on keyboards is
an active and popular area of research. In the following, we first
report, in Section II-A, attacks that use acoustic emanations in
order to recover the victim’s typed text. We then report, in
Section II-B, attacks that eavesdrop different emanations of
keyboards, such as WiFi signal, wireless connections, vibra-
tions of surfaces, and optical emanations.

A. Attacks Using Sound Emanations

Research on keyboard acoustic eavesdropping started with
the seminal paper of Asonov and Agrawal [3]. They showed
that, by training a neural network on a specific keyboard, they
could later achieve good performance in eavesdropping the
input of the same keyboard, or of keyboards of the same model.
They also investigated why this is possible, and eventually
discovered that the plate beneath the keyboard, where the keys
hit the sensors, has a drum-like behavior. This causes the sound
of the keys to be slightly different one another. This paper
started a new field of research in acoustic eavesdropping of
keyboards. We can divide subsequent works based on whether
they leverage statistical properties of the sound spectrum, or
they use timing information.

Approaches that leverage statistical properties of the spec-
trum use machine learning techniques, and they then differ-
entiate in whether they use supervised [3, 10, 11, 18] or
unsupervised learning [5, 36] paradigms.

Supervised learning approaches require many labeled sam-
ples, and are highly dependent on the specific keyboard they
were trained with [3], as well as on the typing style [10, 11].
These techniques have been used to recover random text, such
as passwords [10, 11], by combining cross-correlation informa-
tion with a distance measure derived from Fast Fourier Trans-
form (FFT) coefficients. These FFT coefficients alone were
shown to carry enough information to recover keystrokes [18]
using a neural network, similarly to [3]. Overall, supervised
learning approaches have very high accuracy, however at the
price of strong assumptions on how the data is collected:
obtaining labeled samples of the acoustic emanations of the
victim on his keyboard can be difficult.

Unsupervised learning approaches can cluster together keys
from the sound, or can generate sets of constraints between
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different presses. Zhuang et al. [36] clustered together the
sound of the keys, and then assigned labels to the clusters
by leveraging the relative frequency of letters of the input lan-
guage. Their work is, therefore, especially suited to eavesdrop
on long texts where the language is known. Berger et al. [5]
generated sets of constraints from the recorded sound, and then
selected words from a dictionary that match these constraints.
Unsupervised learning approaches have the advantage that they
do not require ground truth, which can be difficult to obtain.
However, they have strong assumptions on the user input, such
as obtaining many samples, i.e., the emanations from the input
of a long text [36], or requiring it to be a dictionary word [5],
and are less effective when the input is random.

Another possible approach is to leverage timing informa-
tion. One convenient way to exploit timing information is using
multiple microphones, such as mobile phone microphones [14,
30, 35], and to analyze the Time Difference of Arrival (TDoA)
information to triangulate the position of the pressed key.
These proposals differ mostly in whether they required a
training phase [30], or used one [14] or more [35] mobile
phones. Another direction to exploit timing information is
keystroke dynamics. However, such approaches used different
side channels, rather than acoustic ones. Zhang et al. [34]
obtained timing information from procfs, and built sets
of constraints between consecutive letters that are useful to
recover both random and meaningful text. Song et al. [26]
remotely obtained timing information during an interactive
SSH session, ultimately recovering the victim’s password.
However, it would be possible to perform both these attack
by extracting timing information from acoustic emanations.

B. Attacks Using Other Emanations

Other approaches to the problem of keyboard eavesdrop-
ping used different side channels, rather than acoustic ones.
Besides the work on keystroke dynamics that we already
described, it is possible to leverage many other emanations.
Typing on a keyboard causes its electrical components to emit
electromagnetic waves, and it is possible to collect such waves,
in order to recover the keystrokes [29]. Furthermore, typing on
a keyboard causes the surface where the keyboard is placed to
vibrate. These vibrations can be collected by the accelerom-
eter of a smartphone, to understand the pressed keys [17].
Furthermore, typing on a keyboard causes the surface where
the keyboard is placed to vibrate. These vibrations can be
collected by the accelerometer of a smartphone, to understand
the pressed keys [17]. Understanding the movement of the
user’s hand on a keyboard is another method of recovering
his input. It is possible to do this using videos of the user
typing [4], or using WiFi signal fluctuation on the laptop used
by the user [2]. Finally, it is worth mentioning Wei et al. [32]
whose technique allows to reconstruct a target sound by using
wireless vibrometry, without the need of a microphone. Their
technique could be used to recover the acoustic emanations of
a keyboard.

III. SYSTEM AND THREAT MODELS

In order to identify precise attack scenarios, we begin
by defining a system model that serves as the base for the
attacks. Section III-A describes our assumptions about the
victim and the adversary, and carefully defines the problem of

keyboard acoustic eavesdropping. Section III-B then presents
some realistic attack scenarios (within the system model) and
discusses them in relation to the state-of-the-art.

A. System Model

Our system model is depicted in Figure 1. We suppose that
the victim owns a desktop or a laptop computer with a built-
in or attached keyboard, i.e., not a smartphone or a tablet-like
device. Hereafter it is referred to as target-device. A genuine
copy of some VoIP software is assumed to be installed on
target-device; this software is not compromised in any way.
Also, target-device is connected to the Internet and engaged
in a VoIP call with at least one adversary and perhaps other
parties.

Internet
connection

Attacker Victim

Target-deviceAttack-device

Fig. 1: The system model of our attack.

The attacker2 is a malicious user who wants to learn some
private information about the victim. The attacker owns and
fully controls a computer that we refer to as attack-device,
which has a genuine unmodified version of the same VoIP
software as target-device. The attacker uses attack-device to
receive and record the victim’s acoustic information using
VoIP software. We assume that the attacker relies solely on
information provided by VoIP software. In other words, during
the attack, it receives no additional acoustic information from
the victim, besides what VoIP software transmits to attack-
device.

B. Threat Model

S&T attack transpires as follows: during a VoIP call be-
tween the victim and the attacker, the former types something
on target-device, e.g., a password, that we refer to as target-
text. Typing target-text causes acoustic emanations from target-
device’s keyboard, which are then picked up by the target-
device’s microphone and transmitted to the attacker by VoIP.
The goal of the attacker is to learn the target-text by taking
advantage of these emanations.

We make the following assumptions:

• As mentioned above, the attacker has no real-time audio-
related information beyond that provided by VoIP soft-
ware. Acoustic information can be degraded by VoIP soft-
ware by downsampling and mixing. In particular, without
loss of generality, we assume that audio is converted
into a single (mono) signal, as happens with some VoIP
software.

• If the victim discloses some keyboard acoustic emanations
together with the corresponding plaintext – the actual
pressed keys (aka ground truth) — the volume of this
information is small, on the order of a chat message or

2We use the terms adversary and attacker interchangeably.
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a short e-mail. We expect it to be no more than a few
hundred characters.

• target-text is very short (e.g., ≈ 10 characters) and
random, as is typically the case for an ideal password.

We now consider some realistic S&T attack scenarios. We
describe them starting with the more generous setting where
the attacker knows the victim’s typing style and keyboard
model, proceeding to the more challenging one where the
attacker has neither type of information.

1) COMPLETE PROFILING: In our initial scenario, the
attacker knows some of the victim’s keyboard acoustic em-
anations on target-device, along with the ground truth for
these emanations. This might happen if the victim unwittingly
provides some text samples to the attacker during the VoIP call,
e.g., sends chat messages, edits a shared document, or sends
email3. We refer to such disclosed emanations as “labeled
data”. To be realistic, the amount of labeled data should be
limited to a few samples for each character.

We refer to this as Complete Profiling scenario, since the
attacker has maximum information about the victim. This cor-
responds to attack scenarios used in prior supervised learning
approaches [3, 10, 11, 18], with the difference that we collect
acoustic emanations using VoIP software, while others collect
emanations directly from microphones physically near target-
device.

2) USER PROFILING: In this scenario, we assume that the
attacker does not have any labeled data from the victim on
target-device. However, the attacker can collect training data
of the victim while the victim is using the same type of device
(including the keyboard) as target-device4. This can be done,
e.g., with social engineering techniques, or with the help of an
accomplice. We refer to this as User Profiling scenario, since
unable to profile target-device, the attacker profiles the victim’s
(user’s) typing style on the same device type.

3) MODEL PROFILING: This is the most challenging sce-
nario, though the most realistic one. In it, the attacker has
absolutely no training data for the victim. In this setting, the
attacker and the victim are engaged in a VoIP call and the
only thing that the victim types on the keyboard is the secret
(password) that the attacker wants to obtain.

The initial goal of the attacker is to determine what laptop
the victim is using. To do so, we assume that the attacker
maintains a database of sounds from previous attacks on other
victims. If the attacker already profiled the model of the current
victim’s target-device, it can use this information to mount
the attack. We refer to this as Model Profiling scenario, since
although the attacker can not profile the current victim, it can
still profile a device of the same model as target-device.

3The ground truth could also be collected offline, if the adversary happened
to be near the victim, at some point before the actual attack. Note that this
attack still does not require physical proximity between the attacker and the
victim in real time

4In case the target-device is a desktop, knowing the model of the desktop
does not necessarily mean knowing the type of the keyboard. However, in
mixed video/audio call the keyboard model might be visually determined,
when the keyboard is placed in the visual range of the camera.

IV. SKYPE & TYPE ATTACK

In this section, we describe S&T attack in detail. Recall that
all of our scenarios involve the attacker engaged in a VoIP call
with the victim. During the call, the victim types something
on target-device’s keyboard. S&T attack proceeds as described
below and illustrated in Figure 2.

A. Data Processing 
Phase

B. Classification 
Phase

Internet

VoIP 
Keystroke 

Eavesdropping

A.1 
Data 

Segmentation

B.1 
Target-device 
Classification

B.2 
Key 

Classification

A.2 
Feature 

Extraction

Model Profiling
Scenario

Complete Profiling /
User Profiling scenarios

Fig. 2: S&T attack steps.

First, the attacker receives acoustic emanations of target-
device’s keyboard over VoIP, and records them directly. For
example, the attacker routes VoIP software output to some
local recording software. Then, the attacker conducts two main
attack phases: (i) data processing, and (ii) data classification.
Each phase involves two steps:

1) The data processing phase includes data segmentation and
feature extraction steps. They are performed in each of the
three attack scenarios defined in Section III.

2) Data classification phase includes target-device classifica-
tion and key classification steps. Their execution depends
on the specific attack scenario:
– In Complete Profiling and User Profiling scenarios the
attacker already profiled the victim, either on target-device
(Complete Profiling) or on a device of the same model
(User Profiling). The attacker uses such data as a training
set, and proceeds to classify target-text. This case is
indicated in Figure 2 by the path where key classification
follows feature extraction.
– In Model Profiling scenario the attacker has no knowl-
edge of the victim’s typing style or target-device. Thus,
the attacker begins by trying to identify target-device
by classifying its keyboard sounds. The attacker then
proceeds to classify target-text by using correct training
data. This case is indicated in Figure 2 by the path where
target-device classification is the next step after feature
extraction.

We now describe data processing, and data classification
phases in more detail.

A. Data Processing Phase

The main goal of this phase is to extract meaningful
features from acoustic information. The first step is data
segmentation needed to isolate the keystroke sounds within the
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recording. Subsequently, using these sound samples, we build
derived values (called features) that represent properties of
acoustic information. This step is commonly known as feature
extraction.

1) Data Segmentation: We perform data segmentation ac-
cording to the following observation: the waveform of the
keystroke sound presents two distinct peaks, shown in Figure 3.
These two peaks correspond to the events of: (1) the finger
pressing the key – press peak, and (2) the finger releasing
the key – release peak. Similar to [3], we only use the press
peak to segment the data and ignore the release peak. This is
because the former is generally louder than the latter and is
thus easier to isolate, even in very noisy scenarios.

0 5000 10000 15000
Samples

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

A
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p
lit

u
d
e

Press peak

Release peak

Fig. 3: Waveform of the “A” key, recorded on an Apple
Macbook Pro 13” laptop.

To perform automatic isolation of keystrokes, we set up
a detection mechanism as follows: we first normalize the
amplitude of the signal to have root mean square of 1. We then
sum up the FFT coefficients over small windows of 10ms, to
obtain the energy of each window. We detect a press event
when the energy of a window is above a certain threshold. We
then extract the subsequent 100ms [5, 36] as the waveform of
the given keystroke event. If the sounds of the keys are very
closely spaced it is possible to extract a shorter waveform.

2) Feature Extraction: As features, we extract the mel-
frequency cepstral coefficients (MFCC) [15]. These features
capture statistical properties of the spectrum of the sound,
which are the only information that we can use. Indeed, due
to the mono acoustic information, it is impossible to setup an
attack that requires stereo audio and leverages TDoA, such
as [14, 30, 35]. Among possible statistical properties of the
sound spectrum – including: MFCC, FFT coefficients, and
cepstral coefficients – we chose MFCC which yielded the
best results. To select the most suitable property, we ran
the follow experiment: using a Logistic Regression classifier
we classified a dataset with 10 samples for each of the 26
keys corresponding to the letters of the English alphabet,
in a 10-fold cross-validation scheme. We then evaluated the
accuracy of the classifier with the various spectral features:
FFT coefficients, cepstral coefficients, and MFCC. Results of
this experiment are shown in Figure 4, where it is easy to

observe that MFCC offers the best features. For the MFCC we
use parameters similar to those in [36] (i.e., we use a sliding
window of 10ms, with a step size of 2.5ms, 32 filters in the
mel scale filterbank, and we use the first 32 MFCC).

MFCC FFT Cepstrum
Features

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Fig. 4: Average accuracy of single key classification, with
various features.

B. Classification Phase

In this phase, we apply a machine learning algorithm to
the features extracted in the Data Processing phase, in order
to perform:

• target-device classification using all keystroke sound em-
anations that the attacker received.

• Key classification of each single keyboard key of target-
device by using sound emanations of the keystrokes.

Each classification task is performed depending on the sce-
nario. In Complete Profiling and User Profiling scenarios, the
attacker already profiled the victim on target-device, and or on
a device of the same model, respectively. Then, the attacker
loads correct training data and performs the key classification
task, to understand target-text.

In contrast, in Model Profiling scenario, the attacker first
performs target-device classification task, in order to identify
the model. Next, the attacker loads correct training data, and
proceeds to the key classification task.

The only viable machine learning approach for both the key
and target-device classification tasks is a supervised learning
technique. As discussed in Section III-B, approaches that
require lots of data to cluster, such as [5] are incompatible
with our assumptions, because we have a small amount of both
training and testing data. Moreover, randomness of target-text
makes it impossible to implement constraint-based approaches,
which would require target-text to be a meaningful word, as
in [36].

1) Target-device Classification: We consider the task of
target-device classification as a multiclass classification prob-
lem, where different classes correspond to different target-
device models known to the attacker. More formally, we can
define the problem as follows: we have a number of samples
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s ∈ S, each represented by its feature vector ~s, and generated
by the same target-device l of model l̃, among a set L of known
target-device models. We want to know which target-device
model generated the samples in S, by classifying every sample
s, and then taking the mode of these predictions. To perform
this classification task, we use a k-nearest neighbors (k-NN)
classifier with k = 10 neighbors. We empirically determined
these parameters as best-suited for the problem at hand.

2) Key Classification: We consider key classification to
be a multiclass classification problem, where different classes
correspond to different keyboard keys. More formally, we can
define the problem in terms of expected output, as follows:
given the sample s generated by the victim pressing key k
among the set K keyboard keys, we want to determine the
probability of one of the keys k′ ∈ K being equal to k.

To evaluate the quality of the classifier on multiple predic-
tions we use the accuracy and the top-n accuracy measures.
Given the true values of k, accuracy is defined in the multiclass
classification case as the fraction of correctly classified samples
over all samples. Formally, if yi is the true value of the i-th
sample of our test set, and ŷi is its predicted value, the accuracy
measure is:

acc(y, ŷ) =

∑|y|
i=0 (yi = ŷi)

|y|
.

Given the definition of accuracy, the top-n accuracy is defined
as:

accn(y, ŷ)

∑|y|
i=0 (yi ∈ ŷi)

|y|
,

where the classifier is allowed to make n most probable
guesses, and ŷi is a set of n predictions ŷ0i . . . ŷn−1i for every
i-th sample of our test set.

To perform key classification, we use a Logistic Regression
(LR) classifier, since it outperformed all other classifiers,
including: Linear Discriminant Analysis (LDA), Support Vec-
tor Machines (SVM), Random Forest (RF), and k-nearest
neighbors. We show this in an experiment which uses each
candidate classifier to classify a dataset of 10 samples, for
each of the 26 keys corresponding to the letters of the English
alphabet, in a 10-fold cross-validation scenario. We use MFCC
as features, and, for each classifier, we optimize the hyper-
parameters with an extensive grid search.

Results of this experiment are shown in Figure 5. It
demonstrates that the best performing classifiers are LR and
SVM, especially if the classifier is allowed to make a small
number of predictions (between 1 and 5), which is more
realistic in an eavesdropping setting. In particular, both LR
and SVM exhibit around 90% accuracy for the first guess (top-
1 accuracy), and over 98.9% accuracy for five guesses (op-5
accuracy). However, LR slightly outperforms SVM until top-4.

V. EVALUATION

We now evaluate the performance of S&T attack on a
thorough set of experiments, that cover all scenarios we
described. We choose Skype as underlying VoIP software. This
is based on three reasons: (i) Skype is one of the most popular
VoIP software choices [19, 1, 21]; (ii) its codecs are used in the
Opus, an IETF standard [27], employed in many other VoIP
applications, such as Google Hangouts and Teamspeak [20];

0 2 4 6 8 10
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k-NN

Fig. 5: Average top-n accuracy of single key classification, as
a function of the number of guesses, with different classifiers.

(iii) it reflects our general assumption about mono audio.
Therefore, we believe Skype is fairly representative of a wide
range of VoIP software packages and its world-wide popularity
makes it appealing for attackers.

In this section, we first describe how we collected exper-
imental data. Then, we report the results of our experiments.
Finally, we analyze several issues arising from using VoIP
and Skype to perform S&T attack, such impact of bandwidth
reduction on the quality of the audio, and the likeliness for the
keystroke sound to overlap with the voice of the victim, that
might degrade the efficacy of S&T attack.

A. Data Collection

We collected data from five distinct users. For each user, the
task was to press the keys corresponding to the English alpha-
bet, sequentially from “A” to “Z”, and to repeat the sequence
ten times, first by only using the right index finger (activity
known as Hunt and Peck typing, or just HP typing), and then
by using all the fingers of both hands (Touch typing) [11].
We believe that typing the letters in the order of the English
alphabet, rather than, for example, typing English words did
not introduce bias. Typing the English alphabet in order is
similar to typing random text, that S&T attack targets.

Note that collecting only the sounds corresponding to letter
keys, instead of those for the entire keyboard, does not affect
our experiment. The “acoustic fingerprint” of every key is
related to its position on the keyboard plate [3]. Therefore, all
keys behave, and are detectable, in the same way [3]. Thanks
to this property, we believe that evaluating only the letters
is sufficient to prove our point. Moreover, because of this
property, it would be trivial to extend our approach to consider
different keyboard layouts, by associating the keystroke sound
with the position of the key, rather than the symbol of the key,
and then mapping the positions to different keyboard layouts.

Every user ran the experiment on six laptops: two Apple
Macbooks Pro 13” mid 2014, two Lenovo Thinkpads E540,
and two Toshiba Tecras M2. We selected these laptops to
be representative of many common modern laptop models:
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Macbook Pro is a very popular aluminium made high-end
laptop, Lenovo Thinkpad E540 is a 15” mid-priced laptop,
and Toshiba Tecra M2 is an older laptop model, manufactured
in 2004. All acoustic emanations of the laptop keyboards
were recorded by the microphone of the laptop in use, with
Audacity software v2.0.0. We recorded all data with a sampling
frequency of 44.1kHz, and then saved it in WAV format, 32-bit
PCM signed.

We then filtered the data obtained via Skype software.
To do so, we used two machines running Linux, with Skype
version 4.3.0.37, connected to a high-speed network. To simu-
late a microphone input from the calling computer, we routed
recorded data to Skype software, which “believed” that the
input came from a microphone. During the calls, there was no
sensible data loss. We analyze bandwidth requirements needed
for data loss to occur, and the impact of bandwidth reduction,
in Section V-C1.

At the end of the data collection and processing phase, we
obtained datasets for all the five users on all six laptops, with
both the HP and Touch-typing styles. All datasets are both
unfiltered, i.e., raw recordings from the laptop’s microphone,
and filtered through Skype. Each dataset consists of 260
samples, 10 for each of the 26 letters of the English alphabet.
The number of users and of laptops we considered is in line
with related work on the topic [3, 10, 11, 18], where only 1−3
keyboards were involved and a single test user.

B. S&T Attack Evaluation

We evaluated S&T attack with all scenarios described in
Section III-B. We evaluated Complete Profiling scenario in
great detail, by analyzing performance of S&T attack sepa-
rately for all three laptop models, two different typing styles,
and VoIP filtered and unfiltered data. We consider this to be
a favorable scenario for showing the accuracy of S&T attack.
In particular, we evaluate performance by considering VoIP
transformation, and various combinations of laptops and typing
styles. We then further analyzed only the realistic combination
of Touch typing data, filtered with Skype.

We evaluated S&T attack accuracy in recognizing single
characters, according to the top-n accuracy, defined in [6], as
mentioned in Section IV-B2. As a baseline, we considered a
random guess with accuracy x/l, where x is the number of
guesses, and l is the size of the alphabet. On our experimental
setup, therefore, accuracy of the random guess is x/26, since
we considered the 26 letters of the English alphabet. Because
we want to eavesdrop on possibly random text, we can not use
“smarter” random guesses that, for example, take into account
relative frequencies of letters in a given language.

1) Complete Profiling Scenario: To evaluate the scenario
where the victim disclosed some labeled data to the attacker,
we proceeded as follows. We considered all the datasets one
at a time, where each dataset we recall it consists of 260
samples (10 for every letter of the alphabet), in a stratified 10-
fold cross-validation scheme5. For every fold, we performed

5In a stratified k-fold cross-validation scheme, the dataset is split in k
subsamples of equal size, and each subsample has the same percentage of
samples for every class as the complete dataset. One subsample is used as
testing data, and the other k − 1 subsamples are used as training data. The
process is repeated k times, using each of the subsamples as testing data.

feature selection on the train data using a Recursive Feature
Elimination algorithm [9]. We calculated the accuracy of the
classifier over each fold, and finally we calculated the mean
and standard deviation of the accuracy values we obtained.

Figure 6 depicts the results. In particular, we show the
results of the different combinations of typing style (HP or
Touch), and of the type of data (filtered through Skype or
unfiltered). In Figure 6a, we show the accuracy on the HP
typing and unfiltered data combination, that we consider as the
most favorable. In this case, S&T attack achieves the lowest
performance on the Lenovo laptops with top-1 accuracy of
52.4%, and a top-5 accuracy 84.5%. On the Macbook Pro
and Toshiba laptops, we obtain instead a very high top-1
accuracy, 90.1% and 74.5% respectively, and a top-5 accuracy
of 98.9% and 94.2%, respectively. We believe that the different
performance between the three laptops is due to different build
qualities, where the keyboard of the particular Lenovo laptop
model that we considered is made of cheap plastic materials.

We report the other results for the HP typing and Skype
filtered data combination, for Touch typing and unfiltered
data combination and for Touch typing and Skype filtered
data combination in figures 6b, 6c, and 6d, respectively. We
can see that there is a very small difference between the
four combinations. For example, on the Macbook Pro laptop
we have a top-1 accuracy of 90.1% on the favorable HP
typing and unfiltered data combination, but we still have a
top-1 accuracy of 83.23% on the realistic Touch typing and
Skype filtered data combination. The same tendency across the
different combinations holds for every laptop. In particular, the
comparison of the results of unfiltered data with Skype filtered
data, reported on average in Figure 7, shows that Skype does
not reduce the accuracy of S&T attack. This means that a
keyboard acoustic eavesdropping attack over VoIP is feasible
and can be considered a real-world threat.
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Fig. 7: S&T attack performance: Complete Profiling scenario,
average accuracy of unfiltered and Skype filtered data.

From now onwards, we focus our analysis only on the
most realistic combination, i.e., the Touch typing and Skype
filtered data. We consider this combination to be the most
realistic, because S&T attack will be usually carried out over
Skype, and it is more common for users to type with the Touch
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(a) HP typing, unfiltered.
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(b) HP typing, Skype filtered.
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(c) Touch typing, unfiltered.
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(d) Touch typing, Skype filtered.

Fig. 6: S&T attack performance: Complete Profiling scenario, average accuracy.

typing style, rather than the HP typing style. We limit ourself
to this combination to further understand only the real-world
performance of S&T attack.

2) A More Realistic Small Training Set: As discussed in
Section III-B, a possible way to set up S&T attack on the
Complete Profiling scenario would exploit data accidentally
disclosed by the victim, e.g., instant-messaging with the at-
tacker during the VoIP call. However, each of the datasets we
collected comprises 10 repetitions of every letter from “A” to
“Z”, totally 260 letters, which is a reasonably low amount,
but has unrealistic letter frequencies. We therefore trained the
classifier with a small subset of the training data that respects
the letter frequency of the English language. To do this, we
retained 10 samples of the most frequent letters according
to the Oxford Dictionary [22]. Then, we randomly excluded
samples of the less frequent letters until only one sample for
the least frequent letters was available. Ultimately, the subset
contained 105 samples, that can be a realistic short message,
such as a chat message, or an email. We then evaluated the

performance of the classifier trained with this subset, on a 10-
fold cross-validation scheme. This random exclusion scheme
was repeated 20 times for every fold. We report the results on
the Touch typing Skype filtered data in Figure 8.

We observe that we suffer a loss of around 30% accuracy
on every laptop, mainly because the (less frequent) letters for
which we have only a few examples in the training set are
harder to classify. However, the performance of the classifier
are still good enough, even with such a very small training
set, made of 105 samples with realistic letter frequency. This
further motivates the Complete Profiling scenario: the attacker
can exploit even a few emanations that the victim discloses
with a short chat message during a Skype call.

3) User Profiling Scenario: In this case, we recall that the
attacker profiled the victim on a laptop of the same model
of the target laptop. Therefore, to evaluate this scenario we
proceeded as follows. We selected the dataset of a particular
user on one of the six laptop, and we used such dataset as
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Fig. 8: S&T attack performance: Complete Profiling scenario,
average accuracy, on a small subset of 105 samples that
respects the letter frequency of the English language.

our training set. We recall that such dataset is formed by 260
samples, 10 for every letter of the alphabet. This training set
modeled the data that the attacker acquired, e.g., with social
engineering techniques. We used the dataset of the same user
on the other laptop of the same model as a test set, to model
the target laptop. We performed this selection for all the six
laptops, and we report the results of this attack in Figure 9 for
the realistic combination of Touch typing and Skype filtered
data.
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Fig. 9: S&T attack performance: User Profiling scenario,
average accuracy.

We can see that the top-1 accuracy decreases to as low as
14% on the Toshiba and Lenovo laptops, and to 19% on the
Macbook Pro. However, the top-5 accuracy grows up to 41.9%,
54%, and 45.6% on the Lenovo, respectively, Macbook Pro,
and Toshiba laptops, restoring a good accuracy of the attack.
This result shows that it is still useful to use techniques such
as social engineering to obtain labeled data of the victim on a
different laptop.

4) Model Profiling Scenario: We now evaluate the unfavor-
able, however most realistic, scenario where the attacker does
not know anything about the victim. We recall that performing
S&T attack in this scenario requires two different steps: (i)
target-device classification, and (ii) key classification.

Target-device classification. The first step for the attacker
is to understand whether the target-device is a known one.
We suppose that the attacker collected a database of sounds
of many different keyboards, used by himself or by some
accomplices. When the attacker receives acoustic emanations
of the keyboard of the target-device, either (i) the laptop model
is present on the database, or (ii) the laptop model is not
present.

If the model of the target-device is present in the database,
the attacker can then use this data to train the classifier. To
evaluate this scenario, we proceeded as follows. We completely
excluded all the records of one user and of one specific laptop
of the original dataset. We did this to create a training set where
both the victim’s typing style and the victim’s target-device are
unknown to the attacker. We also added a number of keyboards
and laptops on the training set, namely an external Apple
keyboard (unknown model), a Logitech Internet keyboard, a
Logitech Y keyboard, an Acer E15 laptop, and a Sony Vaio
Pro 2013 laptop. We added these models to show that one
laptop is recognizable from its keyboard acoustic emanations
among many different models. We evaluated the accuracy of
the k-NN classifier in classifying the correct laptop model, on
the Touch typing and Skype filtered data combination. In our
results, we guess the correct laptop model 93% of the times.
This experiment confirms that an attacker is indeed able to
understand what laptop the victim is using, by using acoustic
emanations of the keyboard disclosed through Skype.

If the model of the target-device is not present in the
database, the attacker needs to understand it, as he can not
conclude S&T attack until he obtains training data for that
model. One way, to understand that the target-device is not
known, is to use the confidence of the classifier. In particular,
we observed that, if the target-device is present in the database,
most of the samples are classified correctly (i.e., most of
the samples “vote” correctly). When the target-device is not
present on the database, the predicted labels for the samples
are more spread among known models. A simple way to assess
if the votes are spread out among the possible labels is to
calculate the difference between the mean and the most voted
label. We observed that trying to classify an unknown laptop
leads to a lower distance of this metric (0.21 versus 0.45). The
attacker can use these observations, and try to use any further
information he can gather, for example social engineering
techniques, laptop [12], microphone [7], or webcam [16]
fingerprinting.

Key classification. Once the attacker understood what target-
device the victim is using, he can move to understand the keys
that the victim typed. However, the attacker does not have any
data about the victim, besides the test data, to train the classifier
with. He can therefore use, as a training set, the data of another
user on a laptop of the same model of the target-device. We
report the results of S&T attack in this scenario in Figure 10,
for the Touch typing and Skype filtered data combination.
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Fig. 10: S&T attack performance: Model Profiling scenario,
average accuracy.

We can see that, as expected, the accuracy decreased from
the previous scenarios. However, especially with the Macbook
Pro datasets and the Toshiba datasets, we still have a notable
advantage from a random guess baseline. Randomly guessing
the labels has an top-1 accuracy of 3.84%, and a top-5 accuracy
of 19.23%. Indeed, our classifier outperforms this baseline, as
high as twice as better if we consider top-5 accuracy, as we
report in Table I.

TABLE I: S&T attack performance: Model Profiling scenario,
accuracy and improvement from the random guess baseline.

Dataset Top-1 Improv.
from
random
guess

Top-5 Improv.
from
random
guess

Macbook Pro 11.99% +312% 40.95% +213%
Lenovo 6.87% +178% 29.22% +152%
Toshiba 9.14% +237% 34.77% +180%

To further improve these results, the attacker can use a
different strategy to build his training set. We suppose that
the attacker recorded multiple users on a laptop of the same
model of the target-device. This can be obtained by multiple
attackers, or by an attacker and some accomplices. The attacker
then combines all these samples of different users to form a
“crowd” training set. We evaluated this scenario as follows:
we selected the dataset of one user on a given laptop, as a
test set. We then created the training set by combining the
data of the other users on the laptop of the same model. We
repeated this experiment selecting every combination of user
and laptop as test set, and the corresponding other users and
laptop as a training set. Results for the the Touch typing and
Skype filtered data combination are reported in Figure 11 and
in Table II. We observe that the overall accuracy grows by 6-
10%, and therefore this technique can be used by the attacker
to further improve the detection rate of the classifier.

These results show that it is indeed still possible, in a
realistic VoIP scenario, and against a target text which is both
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Fig. 11: S&T attack performance: Model Profiling scenario
with “crowd” training data, average accuracy.

TABLE II: S&T attack performance: Model Profiling scenario
with “crowd” training data, accuracy and improvement from
the random guess baseline.

Dataset Top-1 Improv.
from
random
guess

Top-5 Improv.
from
random
guess

Macbook Pro 15.85% +412% 49.30% +256%
Lenovo 9.74% +253% 35.68% +185%
Toshiba 12.90% +335% 40.68% +211%

short and random, to perform S&T attack. Moreover, it is
possible to do this with little to no specific training data of
the victim, meaning that the attacker can effectively have no
knowledge of the victim.

C. VoIP-specific Issues

To conclude our experimental evaluation, we further ana-
lyze the impact of some issues that arise by using VoIP to
perform S&T attack, and that we did not consider before.
Indeed, using VoIP as the attack medium poses additional
challenges to the attacker, such as the probable presence of
speech on top of the sound of keystrokes, that need to be
evaluated as well. Moreover, by using Skype as the VoIP
software, we need to investigate whether technicalities of the
SILK codec [27] degrade the performance of S&T attack, and
to what extent. For example, the codec reduces the audible
bandwidth, when the available Internet bandwidth is low, and
this operation degrades the spectrum of the sound. We now
analyze the impact of different Internet bandwidths on the
performance of our system in Section V-C1, and the impact
of the victim talking while pressing the keys of the target text
(e.g., talking while typing a password) in Section V-C2.

1) The Impact Of Bandwidth: In our experimental setup, to
filter the recorded data through Skype, both the receiving and
sending machines were connected to a high-speed network.
However, a realistic call can happen through slower network
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connections. We therefore did a number of sample Skype
calls between the two computers, monitoring the network load
of the transmitting one. To assess the impact of bandwidth
reduction on the accuracy of our classifier, we designed an
experiment as follows: we filtered all the data recorded on
one of the Macbook Pro laptops by all the users with the HP
typing style using Skype, together with a five minutes sample
of the Harvard Sentences, commonly used to evaluate the
quality of VoIP applications [23]. We initially let the Skype
software use the full bandwidth available, and we measured
that the software used an average of 70 Kbit/s without any
noticeable packet loss. We subsequently limited the bandwidth
of the transmitting machine at 60 Kbit/s, 50 Kbit/s, 40 Kbit/s,
30 Kbit/s, respectively, 20 Kbit/s. We observed that, with
values below 20 Kbit/s, the quality of the call is compromised,
because of frequent disconnections. S&T attack with such
a small bandwidth is therefore not possible, and we argue
that real users suffering this degradation of service would
anyway not be willing neither able to continue the Skype
call. Therefore, we believe the bandwidths we selected are
representative of all the conditions on which we find the
Skype software is able to operate. We then evaluated both the
accuracy of S&T attack, and the quality of the call by using
the voice recognition software CMU Sphinx v5 [13] on the
Harvard Sentences. We show the results in Figure 12.

No Limit 60Kbit/s 50Kbit/s 40Kbit/s 30Kbit/s 20Kbit/s
Bandwidth Limit

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Speech recognition accuracy

Character recognition accuracy

Fraction of lost samples

Fig. 12: Voice recognition and S&T attack accuracy, on data
acquired through Skype with different connection bandwidths.

We can see that, while there is no change to the accuracy of
the voice recognition software until the 20 Kbit/s threshold, the
classifier suffers a noticeable loss at and under 40 Kbit/s. This
analysis shows that aggressive downsampling, and communi-
cation errors, can greatly hinder the accuracy of the attacker
on the eavesdropping task, and that a loss of the order of 20%
is to be expected if the connection speed is very low. We also
observe that, at 20 Kbit/s, even if the Skype call is working,
many samples of both the speech and keyboard sounds are
lost or irreparably damaged due to the small bandwidth, and
the final quality of the call might be undesirable for the user.
However, it is realistic to assume Skype to be always working
at the best possible quality or almost at the best possible
quality, since 70-50Kbit/s are bandwidths that are small enough
to be almost guaranteed.

2) The Impact Of Voice: In the experiments we described
so far, we did not consider that the victim can possibly be
talking while he types the target text. However, in a VoIP call,
this can happen frequently, as it is probable that the victim is
talking while he types something on the keyboard of his target-
device. We evaluated the impact of this scenario as follows: we
considered all the data of one user on the Macbook Pro laptop,
consisting of 260 samples, 10 for every class, in a 10-fold
cross-validation scheme. For every fold, we performed feature
selection on the train data with a Recursive Feature Elimination
algorithm, and we then overlapped the test data with a random
part of a recording of some Harvard Sentences with the pauses
stripped out (so that the recording always has some voice in
it). To account for the random overlap, we repeated the process
10 times, to have the keystroke sound overlap different random
phonemes. We then evaluated the mean and standard deviation
of the accuracy of the classifier.

We repeated this experiment with different relative inten-
sities of the voice against the intensity of the sound of the
keystrokes. We started at -20dB, meaning that the keystrokes
are 20dB louder than the voice of the speaker, and evaluated
progressive steps of 5dB, until we had the voice of the speaker
20dB louder than the keystrokes. We performed this scheme on
the data for all users on the Macbook Pro laptop, with Touch
typing and data filtered with Skype. We show the results in
Figure 13.
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Fig. 13: S&T attack performance: average accuracy, overlap of
keystroke sounds and voice, at different relative intensity.

We observe that, from −20dB until 0dB, the system does
not suffer almost any performance loss, and then the accuracy
rapidly decreases, until it reaches the random guess baseline at
+20dB. We explain both the positive and the negative results
with the phenomenon of auditory masking [31], where only the
most powerful tone among all the tones at a given frequency
is audible. In our case, the greater the difference between
the intensity of the sound of the keystroke and of the voice,
the more only the frequencies of the louder sound will be
audible. However, it is realistic to assume that the speaker
will talk at a reasonable volume during the Skype call. Given
that the keystrokes are very loud when recorded from a laptop
microphone (sometimes almost peaking the headroom of the
microphone), it is unlikely that the victim will talk more than
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5dB louder than a keystroke sound. These results therefore
show that the victim speaking does not prevent the attacker to
perform S&T attack.

VI. AN S&T ATTACK APPLICATION: PASSWORD
CRACKING

We now consider a practical application of eavesdropping,
which is the problem of password cracking. Password cracking
is an important problem, as passwords are one of the main
targets of attackers. Well known attacks that aims at guessing
a password use dictionaries, lists of known passwords, or social
engineering techniques.

Secure passwords that prevent dictionary attacks are ran-
dom combinations of alphanumeric characters. It is possible
to generate such random passwords with computers, or with
initialisms (using the initial letter of many words) [33]. This
last technique leads to random-looking passwords that are
almost as secure as truly random ones [28, 33], but easier to
memorize. To crack these secure random passwords, attackers
need to use brute-force techniques that, however, require lots of
time. For example, there are (26+26+10)10 ≈ 839 quadrillion
possible passwords composed of ten lowercase and uppercase
letters, and numbers. A brute-force attack would require, on
average, half of this number of tries.

In the following, we analyze how our attack can help
greatly decrease the average required trials to successfully
crack a password. In particular, in Section VI-3, we calculate
the entropy reduction of passwords thanks to our attack, and in
Section VI-4 we calculate the reduction of the average number
of trials of an improved brute-force scheme that leverages our
attack.

3) Entropy Reduction: It is common to assess the security
of random passwords by calculating the Shannon entropy
H(X) [24] of the password generation process, as a measure
of its unpredictability. The generation process is represented
by the random variable X with n possible values {x1, ..., xn}
that have probability P (xi). Shannon entropy is then defined
as follows:

H(X) = −
n∑

i=1

P(xi) log2 P(xi).

We can rewrite the formula, since we assume random pass-
words, composed of n characters selected with uniform prob-
ability among an alphabet A composed of l = |A| symbols,
as follows:

H(X) = log2(l
n),

that give us the bits of entropy of the password generation
process, and therefore of the password. For example, the pass-
word we considered previously, composed of ten lowercase and
uppercase letters, and numbers, selected uniformly at random,
has an entropy of H(X) = log2((26 + 26 + 10)10) = 59.54
bits.

It is possible to understand the speedup of brute-force
techniques by assessing the entropy reduction of passwords
thanks to our attack. We consider a password composed of
10 lowercase characters of the English alphabet, selected with
uniform probability. Such a password has log2(26

10) = 47.0
bits of entropy. On the Complete Profiling scenario, our attack

has more than 90% accuracy within five guesses, on the Touch
typing, Skype filtered dataset. This means that the entropy of
the password is now log2(5

10) = 23.22 bits with very high
probability, with an entropy reduction of more than 50%. We
can not calculate the entropy reduction of the password on
scenarios with lower accuracy, such as the Model Profiling
scenario, because it is highly probable that at least one set of
predictions is not correct. Instead, to evaluate these scenarios,
we design an improved brute-force scheme, that allows us
to greatly reduce the average number of trials required to
successfully crack the password.

4) Average Trials Reduction: As introduced in our moti-
vating example, a brute-force attack on a password in which
the characters are selected uniformly at random requires,
on average, half of the number of trials before succeeding.
However, as we know the accuracy of our attack, we can try
the most probable characters before the others. For example, if
our attack has a top-5 accuracy of 50%, it is reasonable to try
these five guesses first, for every character. We can therefore
define a brute-force strategy as follows: given the x guesses
of our attack for each of the n characters, we first consider
all the xn combinations of such characters. We then assume
that the set of x guesses of the first character was wrong, and
subsequently consider all the other characters. When we finish
considering that one set of guesses was wrong, we consider all
the combinations of two wrong guesses (i.e., first and second
sets of guesses were wrong, first and third sets were wrong, up
to the seventh and eighth sets). We repeat this scheme until we
finally try the combinations where the classifier was always
wrong. This brute-force scheme leverages the probability of
success of our attack to minimize, on average, the required
time to crack a password.

Since this scheme takes into account the fact that we only
have a probability for the set of guesses to be correct, we can
use it to assess the speedup that our attack gives to brute-force.
In particular, we can calculate how many tries we require to
have 50% probability of guessing the password, which is the
average number of guesses the brute-force needs to succeed.
We consider again a password composed of ten lowercase and
uppercase letters, and numbers.

The baseline brute-force attack that we previously de-
scribed requires (26)10

2 = 8.39 · 1013 guesses to have 50%
probability. On the Complete Profiling scenario, that we recall
has an average top-5 accuracy of more than 90%, we only need
9.76 · 106 tries to have 50% probability. This corresponds to
a very high average speedup of 107. On the Model Profiling
scenario, where we have a top-5 accuracy around 40%, we
need 7.79 · 1012 tries to reach 50% probability of cracking the
password, which is still one order of magnitude better than
plain brute-force attacks, on average. There is similar tendency
if the attack guesses ten characters for every character of the
password. We show the cumulative distribution function of the
probability of success for the brute-force, and for our enhanced
scheme in the Model Profiling scenario, in Figure 14. These
results show that our attack is, indeed, able to greatly speed
up brute-force attacks, either thanks to its high accuracy, or
thanks to the probability strategy we introduced.
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Fig. 14: Cumulative distribution function of the probability
of cracking the password, for regular brute-force, and for our
scheme.

VII. POSSIBLE COUNTERMEASURES

The evaluation of our attack on real data showed that
keyboard acoustic eavesdropping through VoIP applications is
a real threat. In this section, we briefly discuss some possible
countermeasures, and analyze their effectiveness in preventing
our attack, and other attacks that leverage statistical properties
of the spectrum of the sound.

A simple countermeasure to our attack could be a short
“ducking” effect, a technique where we greatly reduce the
volume of the microphone and overlap it with a different
sound, when a keystroke is detected. However, this could
ruin the quality of the voice call, as the voice is removed
in its entirety as well. An effective countermeasure should be
less intrusive as possible, and disrupt only the sound of the
keystrokes, avoiding to ruin the call of the user.

To build a less intrusive countermeasure, which could
potentially prevent all of the techniques that leverage spectrum
information, we can apply short random transformations to the
sound when we detect a keystroke. A convenient way to do it
is to apply a random multi-band equalizer over a number of
small frequency bands of the spectrum. This technique allows
us to modify the intensity of specific frequency ranges, called
“bands”. Each band should be selected at random, and its
intensity should be modified by a random small amount, thus
effectively modifying the spectrum of the sound. Moreover,
with this approach, the voice of the speaker should be still
intelligible.

To show the efficacy of this countermeasure, we designed
an experiment as follows: we considered all the data recorded
on the Macbook Pro laptop, one user at a time, in a 10-
fold cross-validation scheme. For every fold, we applied a
multiband equalizer with 100 bands to the test data only, where
each band has a random center between 100 Hz and 3000 Hz,
a very high resonance Q of 50, and a random gain between
-5dB and +5dB. We then tried to classify these samples. We
did this using both MFCC and FFT features, to see if such
countermeasure could prove effective even against different

spectral features. We report the results of this experiment in
Figure 15, where we show the accuracy of the attack both
without and with the countermeasure, for MFCC and FFT
features.
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Fig. 15: Average accuracy of single key classification against
a random equalization countermeasure.

We observe that our countermeasure successfully disrupts
FFT coefficients, such as the ones used in [3, 10, 11, 18], by
reducing the accuracy of the attack to the baseline random
guess. For the MFCC features that we use in our attack, how-
ever, the countermeasure still manages to reduce the accuracy
by 50% on average, but the features prove to be partially robust
to this tampering.

Ultimately, the most effective and unobtrusive solution to
the attack is prevention. It is therefore better not to Skype and
Type or, at least, not to type sensitive information, such as
passwords or confidential emails.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we designed a highly accurate VoIP keyboard
acoustic eavesdropping attack. We first described a number
of realistic attack scenarios, using VoIP as a novel means to
acquire acoustic information, and with realistic assumptions,
such as random target text and very small training sets in Sec-
tion III. We then designed an attack that considered all of these
real-world limitations that an attacker could have, and carefully
selected the tools of the trade to maximize the accuracy of
the attack in Section IV. We thoroughly evaluated our attack,
using the VoIP software Skype, on the different scenarios in
terms of accuracy of character recognition in Section V. We
studied a practical application of S&T attack, the problem of
password cracking from an attacker, in Section VI. We finally
discussed some possible countermeasures to our attack, and
to other attacks that leverage spectral features of the sound of
keyboards, in Section VII.

We believe that our work is an important contribution to
keyboard acoustic eavesdropping, because of the real-world
applicability of our attack. Our attack proves to be feasible
and accurate over the VoIP software Skype, on all the attack
scenarios we considered, with minimal or no profiling of the
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victim’s typing style and keyboard. In particular, it is accurate
on our Model Profiling scenario, where the attacker profiles
a laptop of the same model of the laptop of the victim, but
has no information or data about the victim. This allows
an attacker to effectively steal information from an unknown
victim. If the goal for the attacker is to eavesdrop a random
password, we showed how our enhanced bruteforce scheme,
where we first try the letters guessed by the attack, reduces
the average number of tries by 12 orders of magnitude on the
most favorable attack scenario, and by one order of magnitude
on the most difficult attack scenario. Moreover, we always
considered the most realistic scenarios and assumptions, that
are unfavorable for the attacker. Therefore, all of our results
would increase with more favorable conditions, for example if
the target text is in a known language, or if it is predictably
random (such as common user passwords). We also considered
VoIP-specific issues of our attack, such as the impact of the
audible bandwidth reduction operated by VoIP software in
presence of low Internet bandwidth, and the problem of the
victim speaking on top of the sound of the keystrokes. We
showed how our attack is robust to bandwidth reduction, and
to the presence of other sounds, such as voice. We finally
discussed some countermeasures, and observed that our attack
is indeed hard to counter, and is more easily prevented by
avoiding to type sensitive data during VoIP calls.

A. Future Work

We believe that our choice of laptops and test users is
a representative sample. The number of tested laptops was
in line with related work, and the number of users was
greater, as related work always collected data only on one
user [3, 10, 11, 18]. However, it would be useful to run the
experiments on more laptop models, and with more users,
to further confirm that our attack works regardless of the
different construction materials, and of different typing styles.
Moreover, we consider Skype to be representative of most
VoIP software, but we aim to evaluate the attack over different
software, for example Google Hangouts. We also plan to test
S&T attack against meaningful target text, such as English text,
and to use dictionaries and crowdsourced approaches (e.g.,
Google Instant), to correct detection errors and improve the
accuracy of S&T attack.

We finally aim to take a further look at the possible
countermeasures, to analyze the actual real-time feasibility of
random equalization in the presence of the sound of keystrokes,
evaluate its impact on the perceived quality of the call by the
user, and to improve its performance.
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