

“I will be very surprised if this comes to light”

The following text presents the results of the report on the technical analysis conducted by third-line
analysts from the Security Operations Center (SOC) run by Exatel S.A. The report was drawn up based
on an incident which was identified by the incident response team operating as part of the Exatel’s
SOC at the end of March, while implementing the Fidelis Network advanced threat detection
solution.

Owing to the information obtained during the analysis conducted using the code reverse
engineering, the incident response team at the Exatel’s SOC managed to reach the functionality
which the authors of a fairly popular tool tried to embed in the software in order to send the specific
type of content to their servers. What is important, the users of the browser were not aware of the
fact of abuse, and even more, they were reassured by the manufacturer that this type of content will
not be transferred anywhere without their explicit consent.

Soon after the internal LAN of the organisation was connected to the Fidelis Network platform for
the purpose of monitoring, the incident response team from the Exatel’s SOC started to register from
several to several dozens of alarms per day regarding the violation of the
DLP.sendfiles.exfiltration rule, which was implemented by the Exatel’s SOC into that
system for the purpose of monitoring whether documents - in general, broadly understood data - are
not sent outside the web by means of the HTTP protocol and the POST method. This is actually how
web browsers transmit various data to remote servers, including, for instance, files attached to
messages sent using a webmail. It turned out that a small file bearing the name ueipdata.zip
and weighing several hundred bytes is sent regularly via this protocol to a server in Beijing from 3
computers located in the internal corporate network.

The Fidelis Network platform, implemented at Exatel is provided with the web memory module
which not only collects the metadata, but also the details of any transmission which violates the
security policy in any way. It is able to remember and carry out an in-depth analysis – using the DPI
(Deep Packet Inspection) – of both the communication protocols and diverse encoding methods of
the files nested in protocol payloads. Owing to this, the security experts from Exatel have full
knowledge about any possible incidents at their disposal.

The screenshot from the event analysis console of the Fidelis platform, which is shown above,
presents the details regarding a single alarm generated as a consequence of violation of the
previously mentioned rule, describing the potential exfiltration of data to the server in China.

The thing that attracted the attention of the specialists from the SOC was the fact that the sent
ueipdata.zip file contains a single zipped dat.txt file, which, in reality, is not a text file, but
rather it comprises data with large entropy, being either an output from the random generator, or a

result of encryption. Furthermore, the type of the file sent – identified by the content-type field
of the HTTP protocol – was labelled as image/pjpeg, that is,... an image:

However, the most surprising was the phrase which appeared several times in the content of the
sent HTTP packet and contained the following text string:

“IllBeVerySurprisedIfThisTurnsUp“.

Under these circumstances, the first and probably the most obvious subconscious translation of the
phrase was: ”I will be very surprised if this comes to light.” And taking into consideration the fact
that April Fools’ Day happened to be approaching, the experts from Exatel’s SOC initially thought that
perhaps one of their colleagues was testing if the newly installed Fidelis Network platform would be
able to detect such an incident.

However, the translation of this phrase turned out to be wrong.

Further analysis of the coincidence of the name of the target server in China and the user-agent
identifier recorded by Fidelis (the identifier which is usually used by the HTTP client for identification
purposes) allowed the experts from Exatel to reach the true offender and learn the proper
translation of the phrase.

The offender that stood behind the alarms in the Fidelis platform turned out to be the Maxthon web
browser, created and developed by the Chinese.

According to the data obtained from the StatsMonkey service in the year 2014, it occupies the sixth
position with regards to popularity in both, Poland and in China.

It was the Maxthon browser installed on computers of three company employees which sent the files
that were noticed by the Fidelis platform. What adds irony to the whole matter, is that the creators
of the browser inform on their website that it was created with the thought of ensuring security and
privacy to the users in the light of scandals related to violation of the privacy by the American
National Security Agency (NSA):

http://www.maxthon.com/blog/rightstarups-cloud-browser-with-muscle-security-startup-maxthon-
caters-to-html5-users/

As can be read in the opinions on Maxthon, the users are also really fond of this browser because of
the fact that… its creators do not share the data with the American National Security Agency (NSA):

StatsMonkey, 2014

http://www.maxthon.com/blog/rightstarups-cloud-browser-with-muscle-security-startup-maxthon-caters-to-html5-users/
http://www.maxthon.com/blog/rightstarups-cloud-browser-with-muscle-security-startup-maxthon-caters-to-html5-users/

Coming back to the previously mentioned text string: “IllBeVerySurprisedIfThisTurnsUp”, which
drew attention of the experts from the SOC, its appearance in the transmission was the result of both
a coincidence and a sense of humour of one of the Chinese programmers. He used such a static text
string in the code of the C++ library (based on the MFC framework) to separate the files nested in the
HTTP transmission - in our case, by instructing the Maxthon server how to decode the ZIP file in the
HTTP packet.

The library, which implemented the HTTP protocol client written by himself still in the year 2007:

was used by the creators of Maxthon to create a part of the browser functionality, and the true
meaning of the aforementioned phrase was in fact: ”I will be very surprised if this sequence of
characters appears somewhere in the attached file sent by this program”.

However we focused on the ueipdata.zip file, which leaves the computers on which the browser
was installed in strange circumstances (and form). After a short investigation, the abbreviation – UEIP
– was successfully deciphered as ”User Experience Improvement Program”. This is the name of the
programme, which – as the creators of the browser claim – is voluntary and anonymous, and its aim
is to help the creators in improving the browser by sharing the information about: the hardware on
which the browser is installed, the data concerning the operating system, and possible error and
crash data reported during the functioning of the browser.

According to its creators, it is possible to resign from the UEIP programme at any time and ”the
privacy of the user is respected”.

The Exatel’s security experts decided to check this. They installed the Maxthon browser on their test
machine, making sure that they had unchecked the option of participation in the UEIP programme on
the startup screen:

Result? Unfortunately none.
The TCP traffic monitoring on the network interface of the machine during the use of the browser

showed regular communication with the same Maxthon server (u.dcs.maxthon.com),
containing the ueipdata.zip file in its payload.

The specialists from the SOC were intrigued by several issues.

Firstly, why is the data of the UEIP programme transmitted to the Maxthon manufacturer despite the
explicit lack of consent of the user?
Secondly, why is the ueipdata.zip file, which contains an apparently text file dat.txt that, in
fact, is not a text file, sent further on pretending to be an image file?
And thirdly, what does the browser transfer to the Maxthon servers in the ZIP file?

The security experts from Exatel decided to investigate this matter in more details. For this purpose,
they located the part of the code of the main process of the Maxthon browser that executes the data

encryption command (the data that after encryption is saved in the dat.txt file, zipped into the
ueipdata.zip file and transmitted to the Maxthon server). As they quickly noticed, the data is
encrypted with a symmetric Rijndael (AES) algorithm, using a constant 16-byte key –
“eu3o4[r04cml4eir”, statically compiled in the browser code, without using any kind of
obfuscation.

The encryption key, along with the plain text data buffer to be encrypted and its size, just before

building the new ueipdata.zip file and sending it to the Maxthon server, are provided as
parameters in execution of Encode export function located in the Maxthon’s dynamic library
MxEncode.dll responsible for encryption of the UEIP data transmitted between the browser and
the remote Maxthon server, and included in the ZIP files.

Analysis has shown also that the MxEncode library was created using the Crypto++ open source

library which can be noticed in symbol table of the Maxthon’s PE executable:

AVlogic_error@std@@

AVlength_error@std@@

AVout_of_range@std@@

AVtype_info@@

AVbad_exception@std@@

AV?$BlockCipherFinal@$0A@VEnc@Rijndael@CryptoPP

AV?$BlockCipherImpl@URijndael_Info@CryptoPP@@VBlockCipher@2

AVexception@std@@

AV?$FixedBlockSize@$0BA@@CryptoPP@@

AVEnc@Rijndael@CryptoPP@@

AV_Iostream_error_category@std@@

AV_Generic_error_category@std@@

AURijndael_Info@CryptoPP@@

AVNotImplemented@CryptoPP@@

AVAlgorithm@CryptoPP@@

AVDec@Rijndael@CryptoPP@@

AV?$TwoBases@VBlockCipher@CryptoPP@@URijndael_Info@2@@CryptoPP@@

AV?$BlockCipherFinal@$00VDec@Rijndael@CryptoPP@@@CryptoPP@@

AVNameValuePairs@CryptoPP@@

AVNullNameValuePairs@CryptoPP@@

AVInvalidKeyLength@CryptoPP@@

AVInvalidArgument@CryptoPP@@

AVbad_alloc@st

Further analysis demonstrated that the MxEncode library is also responsible for encryption and
decryption of local Maxthon configuration files on the user’s disk, which content is also protected by
the manufacturer from the perspective of free viewing.

Taking the above-mentioned issues into consideration, the SOC experts from Exatel decided to
monitor the communication between the Maxthon browser and its encryption module
MxEncode.dll, and to conduct Man-In-The-Middle attack on the Maxthon encryption library.

They took advantage of the fact that in order to transmit the encrypted UEIP data to the server in
China – Maxthon browser would first load the MxEncode.dll library located in its installation
catalogue, transmit the data to be encrypted to the library (including the encryption code) triggering
its export Encode function, and the library, after the data encryption, would return the encrypted
output buffer to the Maxthon process, which would then transmit the already-encrypted data.

Thus, the experts from the SOC created their own DLL library which imitated the original MxEncode
library, embedding their own two export functions – Encode and Decode – just like in the original
DLL file.

#include <stdio.h>

#include <windows.h>

extern "C" {

char mxEncodeDLLFile[] = "MxEncodeOrig.dll";

char encFile[] = "enc.dat";

char decFile[] = "dec.dat";

typedefint (*MxDecodePtr)(char *outBuf, char *inBuf,

 intbufSize, unsigned char *key);

typedefint (*MxEncodePtr)(char *outBuf, char *inBuf,

 intbufSize, unsigned char *key);

__declspec(dllexport) intMxEncode(char *outBuf,

 char *inBuf, intbufSize,

 unsigned char *key)

{

 HMODULE lib = LoadLibrary(mxEncodeDLLFile);

 void *ptr = GetProcAddress(lib, "MxEncode");

 MxEncodePtrMxEncode = (MxEncodePtr) ptr;

 FILE *f=fopen(encFile, "ab");

 fprintf(f, "[ENC.KEY] %s\r\n", key);

 fprintf(f, "[ENC.SIZ] %d\r\n", bufSize);

 fprintf(f, "[ENC.BUF] ");

 fwrite(inBuf, 1, bufSize, f);

 fprintf(f, "\r\n");

 fclose(f);

 return MxEncode(outBuf, inBuf,

 bufSize, key);

}

__declspec(dllexport) intMxDecode(char *outBuf,

 char *inBuf, intbufSize, unsigned char *key)

{

 HMODULE lib = LoadLibrary(mxEncodeDLLFile);

 void *ptr = GetProcAddress(lib, "MxDecode");

 MxDecodePtrMxDecode = (MxDecodePtr) ptr;

 int ret = MxDecode(outBuf, inBuf,

 bufSize, key);

 FILE *f=fopen(decFile, "ab");

Maxthon
browser

Maxthon server

 fprintf(f, "[DEC.KEY] %s\r\n", key);

 fprintf(f, "[DEC.SIZ] %d\r\n", bufSize);

 fprintf(f, "[DEC.BUF] ");

 fwrite(outBuf, 1, bufSize, f);

 fprintf(f, "\r\n");

 fclose(f);

 return ret;

}

BOOL APIENTRY DllMain(HINSTANCE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved)

{

 return TRUE;

}

}

In both functions, they inserted the code that saved the data of every single Maxthon browser’s
encryption request on the disk, into a file indicated by them. After receiving the request for
encryption and saving the data on the disk, the library provided by the Exatel experts should load the
true Maxthon’s encryption library (that was renamed to MxEncodeOrig.dll), triggering the
relevant encryption function, and return the encrypted data to the Maxthon browser, which will
thereafter transmit the data to the Maxthon server.

Thus, they allowed Maxthon to let all the data through their library which encryption would be
required by the browser before its transmission to China. Using this method, aside of obtaining the
entire already-decrypted UEIP transmission to the servers in Beijing, they also let Maxthon decrypt
the configuration files, additionally capturing the decryption keys and the data returned by the
Decode function of the original MxEncode library.

Then, the browser was launched to check the effect.

Just after Maxthon was launched, it loaded the MxEncode library and requested encryption of the
first data before its transmission, providing the experts from Exatel with the encryption key, which
had been obtained during the prior analysis using the reverse engineering.

Maxthon
browser

Maxthon server

Our MxEncode.DLL

”bugged”

As can be seen, the transmission to the server contained: Windows Service Pack version, version of
the Maxthon browser, screen resolution (of the virtual machine), type and frequency of the
processor and local path in which Maxthon was installed on the disk. The values of configuration
variables were also sent, namely: information whether the adblock was on or not, the number of
already blocked ads and the website address of the home page.

The aforementioned data can be considered consistent with the list of information which
transmission is mentioned by the authors in the description of the UEIP programme (leaving aside
the fact that the user did not give their consent to join this programme).

Then, the SOC specialists from Exatel focused on capturing the the MxEncode library encryption
activity at the moment of opening a website. After visiting the first website (it was Onet for that
matter), it turned out that the fact of visiting this website was also recorded and reported to the
Maxthon server.

The same referred to information about each visited website.

Logging to an e-mail account:

Visit on the website of the Polish parliament:

Visit on the Bank’s website:

Thus, all queries by means of the GET method of the HTTP protocol were sent to the Maxthon server.

In short, what does this mean?

The entire user’s website browsing history reaches the server of the Maxthon creators in Beijing,
including contents of all the entered Google search queries.

While continuing the web surfing using Maxthon with “encryption MITM mode” built in by the
Exatel, the experts noticed that also the complete list of software installed on the computer,
including precise version numbers, is transferred from their test machine to China server, once in
about five transmitted ueipdata.zip files.

In reality, this piece of information transmitted without the user’s knowledge between the Browser
and the Maxthon server allows to conduct a very precise targeted attack. By gaining knowledge
about the user’s website browsing preferences, information about his Google searches as well as the
complete list of software installed on the user’s computer, the attacker only needs an e-mail address
to which he will send a message (authenticated by its content), containing an attached armed
remote code execution exploit.

Additionally, due to another mistake committed by the browsers’ creators, this time an error in the
cryptographic architecture, the data which is transmitted without the prior authorisation of the user
may be intercepted and decrypted by any potential attacker. All the attacker’s needs to accomplish
that is to “stand” between the user browser and the Maxthon server to intercept the
communication. The intercepted UEIP transmission may be decrypted using AES symmetric keys,
obtained from the Maxthon’s binary code, after reverse engineering the code.

One way to decrypt the intercepted files in the offline-mode is to use the following Python code,
provided by the Fidelis Threat Research Team. The code employs AES128 ECB decription of the
dat.txt file using the aforementioned encryption key acquired during reverse engineering:

from Crypto.Cipher import AES

data = open('dat.txt','rb').read()

aes = AES.new('eu3o4[r04cml4eir', AES.MODE_ECB)

d = aes.decrypt(data)

print d

Thus, the experts from the SOC had good reasons to doubt the security of use of the Maxthon

browser, just like its other users who noticed the ueipdata.zip files created on their disks.

The Maxthon user asking question on the official Maxthon browser forum received an evasive
answer from the authors, that there are… two different types of the UEIP programme.

On the other hand, the following request of the user, addressed both to the creators and to other

users, for help in disclosing the accurate content of the ueipdata.zip file, whose creation was
noticed by the user on their disk, resulted in sending a message to the user, that all answers to the
questions can be found in the description of the privacy policy.

To sum up the above considerations: the Maxthon browser is not secure.

It allows conducting the targeted attack on a selected user by revealing the browser authors the
complete list of exact versions of programms, some of which may be vulnerable, also providing them
with user’s browsing history and Google searches.

The use of the symmetric cryptography and static encryption keys embedded in the code to
obfuscate the transmission of the UEIP data, actually allows to conduct the Man-In-The-Middle
attack by any attacker, resulting in decryption of the UEIP data intercepted between the user’s
browser and the Maxthon server in Beijing.

It is also worth emphasising that the Exatel’s SOC got in touch with the creators of the Maxthon
browser, sending a detailed technical report, with a request for Maxthon to respond, either in the
form of a notice sent to the users about the type of data transmitted from their browsers to the
Maxthon servers in Beijing, or in the form of a Maxthon browser software patch which would enable
the alarmed users to deactivate effectively the transmission of the UEIP files to their servers. This
request was ignored.

The latest version of the browser downloaded from the creators’ website (version 4.9.3.1000) was
tested by the Exatel’s Security Operations Center team and still transmits the UEIP data, without
respecting in any way the user’s choice regarding the participation in the UEIP programme. Until the
delivery of this text for publication, nothing has changed.

Security Operations Center, Exatel

