
 1

PENTEST LIMITED © 2016

Android App: Keyboard or Malware
Andrew Pannell, Pentest Limited

-- � --

1 INTRODUCTION
NDROID is the most popular mobile operating system.
Over 1.5 million new Android devices are activated daily
[1], with over 2 million apps available for download from

the official Google Play Store [2]. This rapid growth has meant
a rapid release of applications as developers try to cash in on
the latest technology. Android has been a target for malware
due to its wide adoption across a large user base (over 1.4 billion
active devices worldwide).

This paper will look at an application with over 50 million
downloads, and examines how the application is abusing
Android permissions in order to harvest personal private user
data and insert adverts maliciously.

2 PREVIOUS WORK
Previous work relating to the Android operating system by the
author of this paper includes;

Wireless backup applications, network and data security test,
2014

Android Operating System: A Forensic Examiners Perspective,
2012

Android Operating System: Vulnerabilities, exploits and
malicious code, 2012

3 ANDROID SECURITY
Part of the Android security architecture is developed around
an application ‘‘permission’’ model. An application starts with
zero permissions, which means that by default it should not be
able to do anything to impact any data on the device. An
application will have an AndroidManifest.xml file which
presents information to the Android operating system about
the application. The Manifest file will include:

Z Details of application components
Z The minimum version of the Android API required
Z Details of the system permissions required

The request for permissions are declared in the manifest file as:
<uses-permission />, for example if an application requests
access to the devices storage (either internal or external such as
a micro SD card) the manifest declaration would be:

<uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE" />

Prior to Android 6.0 (Marshmallow) when an application was
installed , permissions were accepted or denied in fu ll, i.e. if an
application requests access to the camera and contact
information upon the point of install, the user would either
agree to both of these and therefore the application would be
granted these permissions and the application would install. Or
the user denied these permissions to the application and the
application would fail and not be installed .

4 ANDROID APPLICATIONS
Android applications are written in Java, and because of the
vast form factors of Android devices the applications are
downloaded to the device in Java code format. When the
application is installed Android uses its Android Runtime to
fu lly compile the application from its code, to generate a
compiled app executable specific for the device. Therefore it is
trivial to take the application and reverse it into the Java classes
it came from. Although decompilation of Android applications
is a commonly d iscussed topic, it is worthwhile describing the
process in this paper for the sake of clarity.

The Android application is downloaded onto the d evice in a file
with an apk extension, for example FlashKeyboard .apk. This
apk file is a zipped d irectory containing the resources required
for the application. These resources include images, the
previously mentioned AndroidManifest.xml file and a
classes.dex file. The dex (Dalvik executable) file contains the
compiled Java code that we’re interested in reverse engineering.
To convert the classes.dex file to a readable format is a two-step
process. Firstly, it needs to be converted to a jar file using the
tool dex2jar [3]. Secondly, the jar file can read using a Java
Decompiler such as JD-GUI.

5 FLASH KEYBOARD
At the time that this research began (25th February 2016) the
application Flash Keyboard developed by DotC United was the
11th most popular downloaded Android application available
on the Google Play Store. The application had at that time been
installed between 50 million and 100 million times. The
application is so popular it had been downloaded more times
that other well recognized applications such as WhatsApp, this

A

 2

PENTEST LIMITED © 2016

is shown in Figure 1, which shows the top 20 downloads for the
American Play Store for April 2016. Flash keyboard is 11th.

Figure 1. Top 20 Downloaded applications

This paper was written against version 1.0.27 of the Android
application. The application is intended to be used as a
replacement to the stock keyboard and can be seen in Figure 2.

The idea of a 3rd party keyboard application is to improve the
stock keyboard in some way, whether that’s extra
customisation, improved auto-correct or otherwise.

The developers make a number of statements regarding
Privacy. First, on the application’s Play Store description the
developer make the following statement:

‘‘Privacy. Flash keyboard values your privacy. We don’t collect
any personal data without your explicit permission. ‘‘

Figure 2. Flash Keyboard

Additionally, a post was also made on the Flash Keyboard
Facebook page on 16th February 2016 which states:

‘‘Flash keyboard values your privacy. The warning that our
keyboard may collect ' all the text you type, including personal
data like passwords and cred it card numbers' is part of Android
notification that appears when you install ANY third -party
keyboard . We are just a keyboard not 007 and your trust means
a lot to us. Don't give us 1-star ju st because of that warning,
please~~~’’

This shows that the developers of Flash Keyboard present
themselves as taking the privacy of their users’ data seriously.

6 PERMISSIONS
When an application is installed on Android , the user is
presented with a list of permission the application requires, so
they can make an informed choice before installing . Table 1
shows the permissions required by the Flash Keyboard
application.

Google have developed Android’s permission system to allow
non-technical users to make informed decisions when installing
an application. However, it is evident from the number of
installations of Flash Keyboard that many users do not read the
requested permission or do not understand the risk related to
them. Maybe because the application is listed in the top 20
applications or the statements of privacy from the developers
reassures the users to override their concerns.

 3

PENTEST LIMITED © 2016

Table 1. List of permissions shown on Play Store

6.1 Excessive Permissions
Pentest consider a number of the requested permissions to be
particularly ‘‘dangerous’’. These are permissions that are in
excess of what would be required for the normal operation of a
keyboard application. Further explanation is provided below of
the requested permissions of particular concern.

6.1.1 Bluetooth
BLUETOOTH & BLUETOOTH_ADMIN These permissions allow the
Flash Keyboard application to ‘‘connect to paired Bluetooth
devices as well as d iscover and pair Bluetooth devices’’. It is not
clear why Flash Keyboard requests these permissions.

6.1.2 Camera
CAMERA This is a strange permission for a keyboard application
to request, there isn't a common use case where a keyboard
application would regularly require access to the hardware
camera. Fu rther analysis of the applications code shows this
permission is used for a custom ‘‘sticker’’ generator.

6.1.3 Contacts
READ_CONTACTS This permission is used to allow the
application to read the user's contacts data. It is understood this
is so that Flash Keyboard can add the user ’s contacts to the
d ictionary for predictive text.

6.1.4 Device Admin
BIND_DEVICE_ADMIN This permission is u sed to grant
administrator access to the application. Device admin is
developed in mind for enterprise environments in order to
place certain restrictions on the device. Figure 3a and Figure 3b
show the details of which parts of the device admin API is used
by Flash Keyboard . These are ‘‘allow shortcut functions’’, which
isn’t documented or currently used in the application and,
‘‘prevent unexpected uninstallations’’, which makes it d ifficult
for users to uninstall the application. Lastly, ‘‘lock the screen’’,
which controls how the lock screen works.

 4

PENTEST LIMITED © 2016

Figure 3. (a) and (b) Device Admin

Figure 4 show s the message received when attempting to
uninstall the application. The uninstall process fails because the
application has been granted device administrator privilege.

Figure 4. Uninstallation

Although only a limited subset of device admin API feature are
implemented . Additional device admin API functions could be
added in fu ture updates without notification to the user, as the
user has granted the application the overall device admin
permission. For example the developers could update the
application to remotely lock the device immediately, set a
screen unlock password essentially hold ing the user to ransom,
d isable the device’s camera, and remotely wipe the device.

6.1.5 Keyguard
DISABLE_KEYGUARD Allows the application to d isable the
keyguard , this in Android means the lock screen.

This permission in conjunction with the DEVICE_ADMIN
permission, allows Flash Keyboard to replace the standard
Android lock screen with its own custom lock screen. This
custom lock screen allows the developers to monitise the
application by d isplaying paid for advertisements on the
lockscreen. Figure 5a shows the Android lock screen on the
device prior to installation of Flash Keyboard . Figure 5Error!
Reference source not found.b shows the lock screen after the
application has been installed .

Figure 5. (a) and (b) Lockscreen

6.1.6 Location
ACCESS_COARSE_LOCATION & ACCESS_FINE_LOCATION These
permissions allow approximate location and precise location
respectively. These leverage Wi-Fi triangulation, Cell towers,
and GPS in order to provide accuracy. The fine location
permission has been known to provide between 1 and 3 meters
of accuracy depending on the hardware implemented in the
device. Location is considered sensitive information.

6.1.7 Logs
READ_LOGS Allows an application to read the low -level system
log files. The Android developer ’s site makes the
recommendation that this permissions is not for use by third -
party applications, because Log entries can contain the user ’s
private information. For example, research has shown that it is
not unheard of to find developers writing user credentials to the
log file.

6.1.8 Network/Wi-Fi State
ACCESS_NETWORK_STATE & ACCESS_WIFI_STATE &
CHANGE_NETWORK_STATE & CHANGE_WIFI_STATE These
permissions allow the application to toggle Wi-Fi on and off, as
well as toggling mobile data. It is not clear why Flash Keyboard

 5

PENTEST LIMITED © 2016

requests these permissions.

6.1.9 Processes
KILL_BACKGROUND_PROCESSES allows an application to call
killBackgroundProcesses(String) This means that the
application could make calls to kill other processes. For
example, this could be abused for d isabling other applications
such as anti-virus.

6.1.10 SMS
READ_SMS Allows the application to read SMS messages stored
on the device and SIM card . This permission is used by Flash
Keyboard to add terms to the d ictionary for predictive text.
Figure 6 shows an example of the code used . The application
reads the contents of text messages, and adds each word into
the user ’s d ictionary.

Figure 6. uv.class

 6.1.11 System Overlay
SYSTEM_ALERT_WINDOW This permission allow s an application
to create windows using the TYPE_SYSTEM_ALERT, shown on
top of all other apps. The Android developer ’s site d irectly
states ‘‘Very few apps should use this permission; these
windows are intended for system -level interaction with the
user.’’

It is not clear why Flash Keyboard requests th is permission.
This permission can be abused in a similar way to Clickjacking
in Web Applications.

6.1.12 Download Notification
DOWNLOAD_WITHOUT_NOTIFICATION This permission allows an
application to remove the notification to the user that the
application is downloading external files. Facebook and
WhatsApp have previously used this permission to silently
update applications without updating the application via the
Play Store. This is a violation of the terms and cond itions
provided by the Play Store and these apps have since removed
this permission.

6.1.13 Keypresses
BIND_INPUT_METHOD This permission allows the application to
act as a keyboard , connecting to the input method editor. This
allows keypresses to be sent to the Flash Keyboard application
be to be processed . By its very definition and use case, a
keyboard requires access to keypresses, therefore having
interaction with everything the user types. Android brings this
to user ’s attention by presenting a warning when enabling the
keyboard as shown in Figure 7.

Figure 7. Warning

At this point there is no evidence to suggest Flash keyboard is
logging keys entered by the user.

6.2 Internet Access
From June 2015 Google enabled Internet access by default for
applications from Android 6.0 [4]. Prior to this point
application has to request Internet access. The application still
needs to declare the android.permission.INTERNET in the
manifest, but this is option is no longer presented to the user. To
confirm; the INTERNET permission is declared in Flash
Keyboard’s manifest file, and is therefore the granted access to
the Internet.

public class uv
 implements SharedPreferences.OnSharedPreference
ChangeListener
{
 static final String PREF = "sms";
 static final String PREF_KEY_MAX_ID = "max_id";
 static final Logger jdField_a_of_type_OrgSlf4jL
ogger = LoggerFactory.getLogger("SmsDictionaryLoa
der");
 private final Context jdField_a_of_type_Android
ContentContext = MainApp.a();
 private final SharedPreferences jdField_a_of_ty
pe_AndroidContentSharedPreferences;
 private final ContentObserver jdField_a_of_type
_AndroidDatabaseContentObserver = new ContentObse
rver(null)
 {

jdField_a_of_type_OrgSlf4jLogger.debug("id: " + p
aramLong + " addWordsToDictionary success: " + a(
localuq.a) + str);

 6

PENTEST LIMITED © 2016

7 TRANSMITTED DATA
Analysis of the application made it clear it was communicating
out to servers in various countries. This included the United
States, the Netherlands and China. The data going to China is
possibly for the use of analytics. Figure 8Error! Not a valid
bookmark self-reference. shows an example a HTTP POST
request made by the application which send encoded data to
the address tdcv3.talkingdata.net. TalkingData is China’s
largest independent Big Data service platform with focus on the
mobile Internet.

Figure 8. Example of transmitted data

By decompiling application and analysing the code for the
relevant class, it was identified that the data was being encoded
using GZIP. Figure 9 shows the decompiled class which makes
reference to GZIPOutputStream and the Talking Data URL.

Figure 9. com.tendcloud.tenddata.s

Analysis of the decoded GZIP data reveals that the following
information was being sent:

Z Device manufacturer
Z Device model number
Z Device IMEI
Z Android version
Z Owners email address
Z Wi-Fi SSID
Z Wi-Fi MAC
Z Mobile Network (e.g. Vodafone)
Z GPS co-ordinates accurate to 1-3 meters
Z Information about nearby Bluetooth devices
Z Details of any proxies used by the device

It is worth noting that the Wi-Fi SSID and MAC included all
nearby Wi-Fi access point not just the access point that device
was connected to.

Evidently the application sends personal information such as
email address and location to this Chinese analytical server
without the knowledge of the user.

8 DECEPTIVE BEHAVIOUR
Google forbids deceptive behaviour and the Android
Developer Policy Center states:

‘‘We don’t allow apps that attempt to deceive users. Apps must
provide accurate d isclosure of their functionality and should
perform as reasonably expected by the user. Apps must not
attempt to mimic functionality or warnings from the operating
system or other apps. Any changes to device settings must be
made with the user ’s knowledge and consent and be easily
reversible by the user.’’

Pentest believe that the Flash keyboard is in breaches this policy
for the following reasons:

Z Mimics operating system functionality by replacing
the built-in lock screen with its own.

Z Does not d isclose that it replaces the lock screen to
d isplay advertisements.

Z Allows application updates and intentionally hides
operating system notifications that would alert the
user to the update.

Z Makes it d ifficult for the average user to uninstall.
Z Sends personal information to a 3rd party site without

the user ’s knowledge.

POST /g/d HTTP/1.1
Content-Length: 2305
Host: tdcv3.talkingdata.net
Connection: close

U&?¯3õp¢cFø=k×·X3hÊiÍ•ÇzÕ±Á×†acÚ0•møÀð•‘XìäÉ•Ï•bŸ–
ÄÀtpÂA:KI"£B
---SNIP---

package com.tendcloud.tenddata;

import android.os.SystemClock;
import android.util.Log;
import java.io.ByteArrayOutputStream;
import java.util.Map;
import java.util.TreeMap;
import java.util.zip.GZIPOutputStream;

public final class s
{
 private static final di a = new di("", "tdcv3.t
alkingdata.net", b, 443);
 public static final String a = "tdcv3.talkingda
ta.net";
 private static String b = "211.151.164.164";
 private static final String c = "http://tdcv3.t
alkingdata.net/g/d";

 public static boolean a(du paramdu)
 {
 TreeMap localTreeMap = new TreeMap();
 try
 {
 ByteArrayOutputStream localByteArrayOutputS
tream = new ByteArrayOutputStream(1024);
 GZIPOutputStream localGZIPOutputStream = ne
w GZIPOutputStream(localByteArrayOutputStream);
 new co(localGZIPOutputStream).a(paramdu);
 localGZIPOutputStream.finish();
 localGZIPOutputStream.close();

 7

PENTEST LIMITED © 2016

9 CONCLUSION
It is Pentest’s opinion that this application was not written by
the developers to be intentionally malicious. However through
disregard for Android’s development policy and a desire to
monitise a free application, have created an application that
deceives users, gathers personal information and obstructs
uninstallation.

In more sinister hands, this application could covertly
download updates that weaponises the application; to exploit
the granted privileges for mass or even targeted surveillance.

Pentest Limited attempted to make contact with the developers
of Flash Keyboard in order to make them aware of this research,
the findings, and to offer an explanation but received no
response.

Pentest also notified Google on the 22nd April 2016. Although no
official response has been received, as of 6th June 2016 Flash
Keyboard appears to be removed from the Google Play Store.

Following its removal, another application called ‘‘Flash
Keyboard Lite’’ by a developer called ‘‘Flash Keyboard team ’’
has since appeared on the Google Play store. An initial
inspection this ‘‘new ’’ application appears to be built from the
same original codebase as Flash Keyboard .

10 TECHNICAL SPECIFICS
This section provides the details about the equipment used
during testing.

Hardware device: Motorola G (3rd Generation), Android
version 5.1.1, Build Number LPI23.72-47.

Application: Flash Keyboard , Version: 1.0.27, MD5 Hash:
e5e2323a48959b12113206f83a094220

ABOUT PENTEST
Established in 2001, Pentest Limited is a leading international
provider of IT security, specialising in Web Application Security
and Penetration Testing services. Pentest consultants offer
expertise, flexibility, clear communication and extensive
support before, during and after any assessment. Pentest is an
ISO 27001 & 9001 accredited organisation, committed to
providing an unparalleled service in the Information Security
industry. For more information, or for further details about
Pentest's services, please visit www.pentest.co.uk or call +44 (0)
161 233 0100.

REFERENCES

[1
]

"1.5m Android devices activated daily," [Online]. Available:
http:/ / www.pocket-lint.com/ news/ 122459-1-5m-
android-devices-activated-daily-1-billion-total-devices-on-
horizon.

[2
]

"Number of available applications in the Google Play
Store," [Online]. Available:
http:/ / www.statista.com/ statistics/ 266210/ number-of-
available-applications-in-the-google-play-store/ .

[3
]

"GitHub - Dex2Jar," [Online]. Available:
https:/ / github.com/ pxb1988/ dex2jar.

[4
]

"Normal Permissions," [Online]. Available:
https:/ / developer.android .com/ guide/ topics/ security/ n
ormal-permissions.html.

