
PLC-Blaster: A Worm Living Solely in the PLC
Ralf Spenneberg, Maik Brüggemann, Hendrik Schwartke

1OpenSource Security Ralf Spenneberg

info@os-s.de

Abstract. Industrial processes are controlled by programmable logic controllers
(PLC). Many PLCs sold today are equipped with Ethernet ports and can commu-
nicate using IP. Based on the Siemens SIMATIC S7-1200 we will demonstrate a
worm. This worm does not require any additional PCs to proliferate. The worm
lives and runs only on the PLC. The worm scans the network for new targets
(PLCs), attacks these targets and replicates itself onto the found targets. The
original main program running on the target is not modified. Once infected the
worm on the target again starts the scan. We will analyze the impact of the worm
on the target and possible mitigation techniques.

1. Introduction
IT systems are critical components in modern industrial processes. These processes would
not be possible without modern communication networks. Unfortunately with the adop-
tion of modern IT systems and communication networks in industrial systems the users
are exposed to attacks long known in the IT world. IT hacking attacks may harm indus-
trial systems in several ways. They can cause outages and high financial losses but at the
same time may have negative on the health and life of their environment. The efficiency
of these attacks has been demonstrated by Stuxnet [1]. Programmable logic controllers
of Siemens were modified to hinder the Iran in the enrichment of fissile material. The
worm spread amoung the PCs of the enrichment plant by exploiting vulnerabilities in the
Microsoft Windows operating system. The software of the PLCs was modified in such a
way that the centrifuges used for the enrichment process were destroyed. The worm re-
quired a personal computer to spread and attacked the PLCs from the PC. This paper will
demonstrate a worm which spreads only among the PLCs themselves. No PC is required.
The worm may be introduced into the plant using a already manipulated PLC. The worm
then spreads to further PLCs by replicating itself and modifing the target PLCs to execute
the worm in addition to the already installed user program.. This paper is based on the
Siemens SIMATIC S7-1200v3. The worm was written in Structured Text (ST), one of the
languages used to develop PLC software.

2. Related Work
2015 at BlackHat USA 2015 Klick et. al. demonstrated malware running on a PLC [2].
They implemented a proxy using the communication features of the PLC. We are using
the same communication features to implement the protocol used to transfer the worm
program. By using this protocol the worm may spread directly from one PLC to another
PLC. The worm does not require any support by further systems. Instead of using the
already well known SIMATIC S7-300 we based our work on the new S7-1200v3. The
protocol used by these PLCs differs from the older models. This paper will document the
new protocol as well.

3. PLC Architecture

PLCs use a simple architecture. They are based on a central processing module (CPU) and
further modules supporting digital inputs and outputs. The CPU executes the operating
system of the PLC and runs the user program. Additionally the CPU is responsible for
the communication with additional devices and manages the process image.

The process image stores the state of all inputs and outputs. The user program operates
on the process image rather than on the physical inputs and outputs. The user program
is run in cycles. The process image is refreshed by the CPU at the beginning and end of
each cycle. The maximum limit for a cycle is the cycle time. If this limit is violated the
PLC stops the user program and throws an exception.

Figure 1. Zyklus eines PLCs

The user program is structered by Program Organization Units (POU). These units con-
tain the instructions to control the PLC and thus the industrial process. Siemens SIMATIC
S7-1200 support the following POUs:

• Organisation block (OB): Main entry into the user program

• Data block (DB): Global memory

• Function (FC): Function

• Function block (FB): Function with persistent local memory

Additionally to the userdefined POUs several functions provided by Siemens are avail-
able. This paper uses the system POUs TCON and TDISCON. Using these POUs the
PLC may initiate and destroy TCP connections to arbitrary systems. Buffers may be send
and received on these connections with TRCV und TSEND.

4. Computer Worms
Computer worms have been around since 1988 [3] and are a well known species of mal-
ware. Several different flavours exist but they all have the same basic structure [4]. Ev-
ery worm attack can be structured in the following phases: Detection of possible targets,
Spreading to the target, Execution on the target and a malware function. On PLCs a worm
must support these functions as well. This paper will demonstrate the implementation of
each required component.

5. Implementing a Worm on the S7 1200

5.1. Architecture

The worm was written like any other worm software with some constraints. During the
development the specific PLC constraints must be met. Especially the maximum cycle
limit needs to be kept. The worm has to interrupt its execution every few milliseconds.
The execution may be continued during the next cycle. To meet these requirements the
worm was designed using a state machine. The current state is stored in a global variable.
At the start of each cycle the appropiate code in the worm is called. Thus the maximum
cycle time is never violated.

The sequence of the steps are shown in figure 2. The worm starts by initiating a connection
to a probable target. Once the connection is established the worm first checks whether the
target is already infected. If no infection is detected the worm will stop the execution
of the user program on the target to enable the transfer of its own code. The worm then
copies itself to the target and subsequently starts the target PLC again. The worm then
tests the next probable target.

Figure 2. Execution sequence of the worm

5.2. Target Detection

The worm starts by scanning for probable targets. Siemens SIMATIC PLCs may be iden-
tified by the port 102/tcp. This port can only be closed by an external firewall. No other
common service uses this port.

The S7-1200 manages TCP connections using the POU TCON. The usage of this POU
is shown in listing 3 on line 3. An arbitrary IP address and port are passed on line 9.
Once the POU is called, the PLC will attempt to establish the connection. This happens
asynchronously. In later cycles the current state of the connection can be verified. The
return value DONE (Zeile 5) signals whether the connection was established. If true, the
infection will continue. If the IP address and port is unreachable no error is triggered. The
timeout needs to be implemented by the worm by incrementing a counter each cycle.

1 IF "data".con_state = 10 THEN
2

3 "TCON_DB"(REQ:="data".action,
4 ID:=1,
5 DONE=>"data".con_done,
6 BUSY=>"data".con_busy,
7 ERROR=>"data".con_error,
8 STATUS=>"data".con_status,
9 CONNECT:="data".con_param);

10

11 IF "data".con_done = True THEN
12 // connection open
13 "data".con_state := 20;
14 ELSE
15 // connection not open
16 "data".con_timeout := "data".con_timeout + 1;
17 // connection timeout?
18 IF "data".con_timeout > 200 THEN
19 "data".con_state := 0;
20 END_IF;
21 END_IF;
22

23 GOTO CYCLE_END;
24 END_IF;

Figure 3. Target Detection using SCL

If no connection was established after 200 cycles the worm will continue in listing 4.
Although no connection was established the POU TDISCON has to be called to free the
resources for the next connections. In line 13 the IP adress is incremented. Thus a full /24
subnet is scanned for open ports 102/tcp.

1 IF "data".con_state = 0 THEN
2

3 "TDISCON_DB"(REQ:="data".action,
4 ID:=1,
5 DONE=>"data".con_done,
6 BUSY=>"data".con_busy,
7 ERROR=>"data".con_error,
8 STATUS=>"data".con_status);
9

10 IF "data".con_error = True OR
11 "data".con_done = True
12 THEN
13 "data".con_param.REM_STADDR[4] := \
14 ("data".con_param.REM_STADDR[4] + 1) MOD 255;
15 "data".con_timeout := 0;
16 "data".con_state := 10;
17 END_IF;
18

19 GOTO CYCLE_END;
20 END_IF;

Figure 4. Target detection in SCL

5.3. Infection
During the infection phase the worm replicates itself to the target PLC. Normally software
is transferred to the PLC using the Siemens TIA-Portal. The worm mimics the TIA-Portal
and implements the proprietary Siemens protocol. While we analyzed the protocol on our
own, the Wireshark plugin of Thomas Wiens can interpret the protocol as well [5].

5.3.1. Software Transfer Protocol

The proprietary protocol will be called S7CommPlus for the rest of this paper. It is a
binary protocol which utilizes both TPKT [6] and ISO8073 [7]. Typically both of these
protocols use port 102/tcp.

The main features of S7CommPlus are:
• Configuration of the PLC
• Starting and stopping the PLC
• Reading and writing process variables
• Program transfer (Up-/Download)
• Debugging
• Providing debugging information
• Alerting

5.3.2. Messages

Every message used by S7CommPlus has a similar structure. Figure 5 presents the first
message in a connection. The TIA portal sends this message to initiate a connection. The
general structure will be explained based on this message. The first two fields represent
the TPKT and ISO8073 protocol. Their contents is explained in the respective documen-
tation. The following byte 0x72 represents the start of the S7CommPlus message. A
version number distinguishes between different variants of the protocol. The length field
does not take into account the frame boundary. If the frame boundary is missing, further
data is following in additional messages. Following the length field the type field is trans-
ferred. The subtype further specifies the messages. The sequence number is incremented
for each message. Additional data is transferred in separate attribute blocks.

03 00 00 e1 02 f0 80 72 01 00 d2 31 00 00 04 car ...1....
00 00 00 02 00 00 01 20 36 00 00 01 1d 00 04 00 6.......
00 00 00 00 a1 00 00 00 d3 82 1f 00 00 a3 81 69i
00 15 16 53 65 72 76 65 72 53 65 73 73 69 6f 6e ...Serve rSession
5f 36 42 36 31 38 32 46 31 a3 82 21 00 15 2c 31 _6B6182F 1..!..,1
3a 3a 3a 36 2e 30 3a 3a 54 43 50 2f 49 50 20 2d :::6.0:: TCP/IP -
3e 20 49 6e 74 65 6c 28 52 29 20 50 52 4f 2f 31 > Intel(R) PRO/1
30 30 30 20 4d 54 20 44 2e 2e 2e a3 82 28 00 15 000 MT D(..
00 a3 82 29 00 15 00 a3 82 2a 00 15 11 4d 41 49 ...).... .*...MAI
4b 2d 50 43 5f 33 32 39 31 38 39 35 31 35 a3 82 K-PC_329 189515..
2b 00 04 01 a3 82 2c 00 12 00 2d c6 c0 a3 82 2d +.....,. ..-....-
00 15 00 a1 00 00 00 d3 81 7f 00 00 a3 81 69 00i.
15 15 53 75 62 73 63 72 69 70 74 69 6f 6e 43 6f ..Subscr iptionCo
6e 74 61 69 6e 65 72 a2 a2 00 00 00 00 72 01 00 ntainer.r..
00

TPKT , ISO8073 , Magic Byte , Version , Length , Type , Reserved , Subtype ,

Sequence number ,

Attribute blocks , Frame boundary ,

Unknown

Figure 5. S7CommPlus message structure

5.3.3. Attribute blocks

The actual data is structured using attribute blocks. Figure 6 shows the first attribute
block of the preceding example. Each attribute block starts with the byte 0xA3. This
block contains a string. The actual string starts with its length and the value of the string.

a3 81 69i
00 15 16 53 65 72 76 65 72 53 65 73 73 69 6f 6e ...Serve rSession
5f 36 42 36 31 38 32 46 31 _6B6182F 1

Attribute block start , Attribute ID , Format? , datatype , Length , Value ,

Figure 6. Attribute block

5.3.4. Coding numbers

Within the attribute blocks numbers are coded in a special way. The number may have a
variable length. The first bit of each byte encodes whether further bytes follow. Figure 7
explains the decoding of the attribute id and the length field of the last example. If values
are stored within the attribute block this encoding is not used.

Figure 7. Encoding of numbers

5.3.5. Anti Replay Mechanism

The S7CommPlus protocol detects replay attacks. To detect the replay attack the PLC
sends a random byte in the 25th byte of its response message (figure 8). The value of the
random byte ranges between 0x06 and 0x7f. This is the anti replay challenge.

The TIA portal needs to base the 24th and 29th byte in its response based on the challenge.
The anti replay byte is calculated by the following formula:

antireplaybyte = challenge + 0x80

03 00 00 89 02 f0 80 72 01 00 7a 32 00 00 04 car ..z2....
00 00 00 02 36 11 02 87 22 87 3d a1 00 00 01 206... ".=....
82 1f 00 00 a3 81 69 00 15 00 a3 82 32 00 17 00i.2...
00 01 3a 82 3b 00 04 82 00 82 3c 00 04 81 40 82 ..:.;... ..<...@.
3d 00 04 84 80 c0 40 82 3e 00 04 84 80 c0 40 82 =.....@. >.....@.
3f 00 15 1b 31 3b 36 45 53 37 20 32 31 32 2d 31 ?...1;6E S7 212-1
42 45 33 31 2d 30 58 42 30 20 3b 56 33 2e 30 82 BE31-0XB 0 ;V3.0.
40 00 15 05 32 3b 35 34 34 82 41 00 03 00 03 00 @...2;54 4.A.....
a2 00 00 00 00 72 01 00 00

Challenge , Attribute block

Figure 8. Anti replay mechanim

All further messages sent by the TIA portal to the S7-1200 need to use the anti replay
byte in their 24th byte. The grey attribute block needs to be mirrored as well.

03 00 00 8c 02 f0 80 72 02 00 7d 31 00 00 05 42r ..}1...B
00 00 00 03 00 00 03 a2 34 00 00 03 a2 01 01 82 4.......
32 01 00 17 00 00 01 3a 82 3b 00 04 82 00 82 3c 2......: .;.....<
00 04 81 40 82 3d 00 04 00 82 3e 00 04 84 80 c0 ...@.=.. ..>.....
40 82 3f 00 15 00 82 40 00 15 1a 31 3b 36 45 53 @.?....@ ...1;6ES
37 20 32 31 32 2d 31 42 45 33 31 2d 30 58 42 30 7 212-1B E31-0XB0
3b 56 33 2e 30 82 41 00 03 00 00 00 00 00 00 04 ;V3.0.A.
e8 89 69 00 12 00 00 00 00 89 6a 00 13 00 89 6b ..i..... ..j....k
00 04 00 00 00 00 00 00 72 02 00 00

Anti replay byte , Attribute block

Figure 9. Anti replay Mechanism

5.3.6. Transfer of the program

To transfer the user program a specific message is used (Figure 10). Each message trans-
fers one POU. The POU type distinguishes between the different POU variants. The block
number specifies the place im memory on the PLC.

03 00 04 00 02 f0 00 72 02 05 a9 31 00 00 04 car ...1....
00 00 00 1d 00 00 03 a2 34 00 00 00 03 00 04 00 4.......
00 00 00 00 a1 8a 32 00 01 94 57 20 00 a3 81 692. ..W ...i
00 15 04 4d 61 69 6e
...

POU type , Block number , Attribute block

Figure 10. Transferring the user program

Several attribute blocks follow the message header. Additionally to the actual byte code
meta information is stored on the S7. This meta information specifies the required mem-
ory, the creation date, block number, used language, source code and protection features.
The TIA portal may use this information to verify the code.

5.3.7. Determining the required messages

During the transfer of the user program several messages are exchanged which are not
mandatory for the process. These irrelevant messages would increase the memory re-
quired by the worm and are therefore skipped.

The figure 11 displays the required messages for a successful infection. The communi-
cation is initiated. To avoid repeated infections the worm first tests the target and tries to
download a copy of itself. The upload of additional code is only possible after halting the
PLC. Then the program is transferred. At the end the PLC is started again.

S7-1200 Infected S7-1200

ISO8073 CR

ISO8073 CC

Connection Request

Connection Confirm

Connection Established

GET OB9999

Error or OB9999

Stop SPS

Stop OK

Transfer Datablocks

Transfer OK

Transfer OB9999

Transfer OK

Start SPS

Start OK

Figure 11. Messages exchanged during infection

5.3.8. Implementation

Based on the analysis of the protocol the transfer of a program may be recorded, modified
and replayed to a PLC. All required messages are known. To store the messages within
the worm a static DB POU is used. Additional DBs are used to store temporary variables
and the send/receive buffer.

The static DB has to store all messages required for the infection. This DB block cannot
be generated using the TIA portal but needs to be coded manually.

Figure 12. Manual generation of the DB

6. Starting the worm
The transferred code adds to the user program already running on the target PLC. An ad-
ditional OB and the required DBs are added. The original code on the target is untouched.
The OB is automatically detected by the PLC and executed.

Figure 13. The worm is run as normal code

7. Malware Function
While the worm is already functional we implemented different malware function to
demonstrate the possible impact.

7.1. Command & Control Server

Our worm will contact a command & control server. The communication is based on
TCP. Different features within the worm may be triggered by the C&C server.

7.2. Socks4 Proxy

Our worm serves a Socks4 proxy. Once the worm connected to the C&C server, arbitrary
connections to additional clients within the network of the PLC may be initiated using the
embedded Socks4 proxy.

7.3. Denial of Service

The execution on the PLC can be stopped by violation the cycle time limit. The worm
implements an endless loop triggering an error condition within the PLC with the impact
of a DoS.

7.4. Manipulating Outputs

The worm may manipulate any outputs of the PLC. Using the POU POKE any value
within the process image may be modified.

8. Detection of the worm, Persistance and Resources

8.1. Detection of the worm

8.1.1. TIA portal

The TIA portal may verify the user program on the PLC and can detect modified and
added POUs (Figure 14). The red outlined area points at the POUs used by the worm.
The analysis of the POUs is not possible though, because the TIA portal only analyzes
the XML sourcecode. Additionally, by exploiting a bug in the TIA portal the worm may
crash the application.

8.1.2. Stopping the PLC

The PLC is stopped during the infection for about 10 seconds. The original user program
does not run during this time. This interruption may be noticed and is logged within the
PLC.

8.1.3. Network traffic

The worm generates unusual network traffic within an ICS environment. During the scan
and infection phase many suspicous packets are sent.

8.2. Persistence

8.2.1. Restart/Reboot

The worm is stored on the PLC. It is part of the user program and will survive a Restart
and even the removal of power.

Figure 14. TIA portal exposes the worm

8.2.2. Factory Reset

The TIA portal may trigger a factory reset of the PLC. All settings and the user program
including the worm are cleared from the device.

8.2.3. Program transfer

Our worm is stored in OB9999. If this POU is overwritten the worm is removed from the
PLC.

8.3. Resources

8.3.1. Cycle time

The maximum cycle limit is a hard quota. By default the limit is 150ms. The worm must
not violate this limit. We measured the cycle time of a PLC without any user program.
The cycle time is 0 ms. We then infected the S7 using our worm and measured again. The
maximum measured cycle time is 7ms. This represents 4.7% of the limit.

8.3.2. Memory

The worm requires 38,5KB RAM for storing the worm. 9,0KB (23,3%) are needed by the
malware functions. Additionally 216,6KB flash is needed. Table 1 displays the available

memory of the different models.

Model RAM Flash
S7-1211 50KB (77%) 1MB (21%)
S7-1212 75KB (51%) 1MB (21%)
S7-1214 100KB (38%) 4MB (5%)
S7-1215 125KB (30%) 4MB (5%)
S7-1217 150KB (25%) 4MB (5%)

Table 1. Memory footprint

9. Protection Features
The PLC S7-1200v3 offers three different protection features. We will analyze each of
these features and will evaluate whether the feature will protect the PLC against the worm
infection. This analysis is based on TIA portal V11 SP2 Update 5 and the S7-1200 using
firmware 3.0.2.

9.1. Knowhow Protection

The knowhow protection protects the user program from unauthorized access. Using a
password the unauthorized access and modification of a POU is prohibited.

The knowhow protection is implemented using an attribute block. This block is written on
the PLC during the program transfer. The block is displayed in figure 15. The flag toggles
the knowhow protection. The stored password hash is generated based on the password P
using the following formula:

H = sha-1(encode_utf-16le(P))

A3 93 5C 00 17 00 00 0D 77 9A 78 00 0B 00 01 9Aw.x.....
79 10 02 14 E8 F9 7F BA 91 04 D1 EA 50 47 94 8E y...........PG..
6D FB 67 FA CD 9F 5B 73 00 m.g...[s.

Start of the attribute block , datatype , container ID Attribute ID (container knowhow) ,

datatype , attribut-ID (flag) datatype , flag

Attribut-ID (passwort hash) datatype , length , passwort hash ,

Figure 15. Attribute block: knowhow protection

The TIA portal evaluates the attribute block. If the flag is set the TIA portal prohibits read
and write access to the corresponding program block without the correct password. The
password is checked using the hash.

The XML source code on PLC is encrypted using AES128-CBC. This prevents access to
the code. Figure 16 shows the encrypted source code.

9.1.1. Vulnerabilities

Missing integrity protection
The block may be read and modified despite the knowhow protection. The protection is

<NetworkContainer>
<Network Lang="SCL" ProgrammingContext="Plain"

Mnemonic="International" RefID="1">
<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"

xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc" />
<CipherData>
<CipherValue>

AQIDAQIDAQIDAQIDAQIDAS/acA/s+L3CoQYaeAQMOq ...
</CipherValue>
</CipherData>

</EncryptedData>
...

Figure 16. Encrypted source code

implemented within the TIA portal and not within the PLC. Using self-written tools to
read and write blocks on the PLC any access is granted. Even the knowhow protection
flag may be reset resulting in full access using the TIA portal.

AES-key may be derived
The key for the AES encryption may be derived from the password hash. The password
hash may be read using self-written software. The key is calculated using the following
formula:

K = truncate128Bit(H) XOR M

with M :

M = 0x28,0x6f,0x76,0x5c,0x6e,0x3b,0x1e,0x4c,
0xd0,0x8e,0x42,0x31,0x43,0x7b,0x8e,0xbf

Fixed by the vendor in SSA-8330481.

9.1.2. Evaluation of the protection in the context of the worm

This feature does not protect against the worm attack.

9.2. Copy protection

The copy protection prohibits the duplication of the user program to a second PLC. The
serial number of the target PLC is stored within the user program preventing the TIA
portal from transferring the user program to additional PLCs. The serial number is stored
in a separate attribute block.

1http://www.siemens.com/cert/pool/cert/siemens_security_advisory_
ssa-833048.pdf

9.2.1. Vulnerabilities

Missing integrity protection
The integrity of the attribute block is not protected. The stored serial number may be
modified or removed. The PLC does not check the serial number itself. The protection is
only implemented within the TIA portal.

Fixed by the vendor in SSA-8330482.

9.2.2. Evaluation of the protection in the context of the worm

This feature does not protect against the worm attack.

9.3. Access protection

The access protection prevents access to the PLC using the S7CommPlus protocol without
a password. Three different protection levels are available. Table 2 lists the different
levels.

Function None Write Read/Write
Start/Stop CPU yes no no
Write Program yes no no
Read Program yes yes no
Manipulate memory/output yes yes yes
Read identification yes yes yes
Setting IP address yes yes yes
Setting date yes no no
Factory reset yes no no

Table 2. Access based on the protection level

The authenticaton uses a challenge response mechanism [8].

9.3.1. Evaluation of the protection in the context of the worm

The access protection can protect the PLC against the worm attack. The write protection
prevents anybody from modifying the code on the PLC. The used challenge response
authentication is probably secure. If the used password is not known to the worm the
worm may not infect the PLC. By default the access protection ist turned off.

10. Conclusion
In this paper we demonstrate the feasibility of a PLC worm. Such a worm represents a
new threat to industrial networks. Traditionally such networks are well protected against
attacks from the outside. By introducing a PLC already infected with the worm the PLC
is the origin of the attack and not just the target. Infected PLCs may be distributed by

2http://www.siemens.com/cert/pool/cert/siemens_security_advisory_
ssa-833048.pdf

a supplier of an industrial component or during the transport of such a component. The
worm may then spread internally and does not require any standard PCs or servers. It will
therefore not be detected by any antivirus product. Furthermore the plant operator has
very few options to detect the malware on the PLCs.

References
[1] Eric Chien Nicolas Falliere, Liam O Murchu. W32.Stuxnet Dossier. Last accessed

https://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf on
06.02.2016, 2011.

[2] Johannes Klick u.a. Internet-facing PLCs - A New Back Orifice.
https://www.blackhat.com/docs/us-15/materials/
us-15-Klick-Internet-Facing-PLCs-A-New-Back-Orifice-wp.
pdf, 2015.

[3] pressetext.deutschland. Malware-Jubiläum: 20 Jahre Internet-Würmer. http://www.
pressetext.com/news/20081101001, 2008.

[4] Nicholas Weaver u.a. A Taxonomy of Computer Worms. https://www1.icsi.
berkeley.edu/~nweaver/papers/2003-taxonomy.pdf, 2003.

[5] thomas_v2. S7comm Wireshark dissector plugin. http://sourceforge.net/
projects/s7commwireshark/files/.

[6] Dwight E. Cass Marshall T. Rose. ISO Transport Service on top of the TCP. Last accessed
https://tools.ietf.org/html/rfc1006 on 21.02.2016, 1987.

[7] International Organization for Standardization. Connection oriented transport protocol.
ISO Std. 8073, 1988.

[8] SCADAStrangeLove. S4x13 Releases: S7 password offline bruteforce tool. http:
//scadastrangelove.blogspot.de/2013/01/s7brut.html, 2013.

