
CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy

Nathan Dowlin∗1,2, Ran Gilad-Bachrach1, Kim Laine1,
Kristin Lauter1, Michael Naehrig1 and John Wernsing1

1Microsoft Research
2Department of Mathematics, Princeton University

December 17, 2015

Abstract
Applying machine learning to a problem which involves
medical, financial, or some other type of sensitive data, not
only requires accurate predictions but also careful attention
to maintaining data privacy and security. Legal and ethical
requirements may prevent the use of cloud-based machine
learning solutions for such tasks. In this work, we present a
method to convert learned neural networks to CryptoNets,
neural networks that can be applied to encrypted data. This
allows a data owner to send their data in encrypted form
to a cloud service that hosts the network. The encryption
ensures that the data remains confidential since the cloud
does not have access to the keys needed to decrypt it. Nev-
ertheless, we will show that the cloud service is capable of
applying the neural network to the encrypted data to make
encrypted predictions, and return them, also in encrypted
form. These encrypted predictions can be sent back to the
owner of the secret key who can decrypt them. Therefore,
the cloud service does not gain any information about the
raw data nor about the prediction it made.

We demonstrate CryptoNets on the MNIST optical char-
acter recognition tasks. CryptoNets achieve 99% accuracy
and can make more than 51000 predictions per hour on a
single PC. Therefore, they allow high throughput, accurate,
and private predictions.

1 Introduction
Consider a hospital that would like to use a cloud service
to predict the probability of readmission of a patient within
the next 30 days, in order to improve the quality of care and
to reduce costs. Due to ethical and legal requirements re-
garding the confidentiality of patient information, the hos-

∗The work was conducted while the author was visiting Microsoft Re-
search.

pital might be prohibited from using such a service. In this
work we present a way by which the hospital can get this
valuable service without sacrificing patient privacy. In the
protocol we propose, the hospital encrypts the private in-
formation and sends it in encrypted form to the prediction
provider, referred to as the cloud in our discussion below.
The cloud is able to compute the prediction over the en-
crypted data records and sends back the results that the hos-
pital can decrypt and read. The encryption scheme uses a
public key for encryption and a secret key (private key) for
decryption. It is important to note that the cloud does not
have access to the secret key, so it cannot decrypt the data,
nor can it decrypt the prediction. The only information it
obtains during the process is that it did perform a predic-
tion on behalf of the hospital. Hence, the cloud can charge
the hospital for its service but does not learn anything about
the patient’s medical files or the predicted outcomes. This
procedure allows for private and secure predictions without
requiring the establishment of trust between the data owner
and the service provider. This may have applications in
fields such as health, finance, business, and possibly oth-
ers.

It is important to note that this work only enables the
inference stage. We make the assumption that the cloud
already has a model, in our case it would be a neural net-
work, that was trained in some way, for example using a
set of unencrypted data. Training models for these kinds of
applications might be a challenge as well due to the same
concerns regarding privacy and security. The problem of
training such a model is sometimes referred to as privacy
preserving data-mining (Agrawal & Srikant, 2000). One
possible solution to training while preserving privacy lies in
the concept of differential privacy (Dwork, 2011). Work-
ing with a statistical database, differential privacy allows
to control the amount of information leaked from an indi-
vidual record in a dataset. Therefore, when training, one
can use this concept to ensure privacy for any entity whose

1



CryptoNets Dowlin et al.

information is contained in the dataset, as well as to create
models that do not leak this information about the data they
were trained on. However, the notion of differential privacy
is not useful in the inference phase since at this stage, we
are interested in examining a single record. Other options
include working on encrypted data for training as well, in
which case either simple classification techniques should
be used (Graepel et al., 2013), or other assumptions on the
data representation should be made (Aslett et al., 2015a).

The main ingredients of CryptoNets are homomorphic
encryption and neural networks. Homomorphic encryp-
tion was originally proposed by Rivest et al. (1978) as a
way to encrypt data such that certain operations can be
performed on it without decrypting it first. In his sem-
inal paper Gentry (2009) was the first to present a fully
homomorphic encryption scheme. The term ”fully homo-
morphic” means that the scheme allows arbitrarily many
operations to be performed on the encrypted data. Gen-
try’s original scheme was highly inefficient, but since then
the work of several researchers has produced significantly
more practical schemes. In this work, in particular, we use
the homomorphic encryption scheme of Bos et al. (2013).
This scheme is a leveled homomorphic encryption scheme,
which allows adding and multiplying encrypted messages
but requires that one knows in advance the complexity of
the arithmetic circuit that is to be applied to the data. In
other words, this cryptosystem allows to compute polyno-
mial functions of a fixed maximal degree on the encrypted
data. High degree polynomial computation requires the use
of large parameters in the scheme, which results in larger
encrypted messages and slower computation times. Hence,
a primary task in making practical use of this system is to
present the desired computation as a low-degree polyno-
mial. We refer the reader to Dowlin et al. (2015); Bos et al.
(2013) for details on the encryption scheme, and only give
a brief introduction to it in Section 3. We used the Sim-
ple Encrypted Arithmetic Library (SEAL) for homomorphic
encryption1.

To allow accurate predictions we propose using neural
networks, which in recent years have shown great promise
for a wide variety of learning tasks. Much of the revival
in the interest in neural networks is due to the unprece-
dented accuracies achieved in tasks such as image classi-
fication (Krizhevsky et al., 2012) and speech recognition
(Dahl et al., 2012). In Section 2 we present a brief back-
ground on neural networks, as well as the necessary ad-
justments for them to work with homomorphic encryption,
thus creating CryptoNets.

One line of criticism against homomorphic encryption is
its inefficiency, which is commonly thought to make it im-
practical for nearly all applications. However, combining
together techniques from cryptography, machine learning

1Freely available at http://sealcrypto.codeplex.com

and software engineering, we show that CryptoNets may
be efficient and accurate enough for real world applica-
tions. We show that when CryptoNets are applied to the
MNIST dataset, an accuracy of 99% can be achieved with
a throughput of 51739 predictions per hour on a single PC,
and a latency of 570 seconds. Note that a single prediction
takes 570 seconds to complete, however, the same process
can make 8192 predictions simultaneously with no added
cost. Therefore, over an hour, our implementation can
make 51739 predictions on average. Hence, CryptoNets
are accurate, secure, private, and have a high throughput -
an unexpected combination in the realm of homomorphic
encryption.

2 Neural Networks
The goal of this work is to demonstrate the application of
neural networks over encrypted data. We use the term neu-
ral networks to refer to artificial feed-forward neural net-
works. These networks can be thought of as leveled cir-
cuits. Traditionally, these levels are called layers and are
visualized as being stacked so that the bottom-most layer is
the input layer. Each node of the input layer is fitted with
the value of one of the features of the instance at hand. Each
of the nodes in the following layers computes a function
over the values of the layer beneath it. The values com-
puted at the top-most layer are the outputs of the neural
network.

Several common functions can be computed at the
nodes. We have listed some of them here:

1. Weighted-Sum (convolution layer): Multiply the vec-
tor of values at the layer beneath it by a vector of
weights and sum the results. The weights are fixed
during the inference processes. This function is es-
sentially a dot product of the weight vector and the
vector of values of the feeding layer.

2. Max Pooling: Compute the maximal value of some of
the components of the feeding layer.

3. Mean Pooling: Compute the average value of some of
the components of the feeding layer.

4. Sigmoid: Take the value of one of the nodes in
the feeding layer and evaluate the function z 7→
1/(1+exp(−z)).

5. Rectified Linear: Take the value of one of the nodes
in the feeding layer and compute the function z 7→
max (0, z).

Since homomorphic encryption supports only additions
and multiplications, only polynomial functions can be com-
puted in a straight forward way. Moreover, due to the in-
creased complexity in computing circuits with nested mul-

2

http://sealcrypto.codeplex.com


CryptoNets Dowlin et al.

tiplications, it is desired to restrict the computation to low-
degree polynomials. The weighted-sum function can be di-
rectly implemented since it uses only additions and multi-
plications. Moreover, the multiplications here are between
precomputed weights and the values of the feeding layer.
Since the weights are not encrypted, it is possible to use
the more efficient plain multiplication operation, as is de-
scribed in Section 3.2.1. Some networks also add a bias
term to the result of the weighted sum. To add this bias
term a plain addition can be used since, again, the value of
this bias term is known to the cloud.

One thing to note is that the encryption scheme does
not support floating-point numbers. Instead, we use fixed
precision real numbers by converting them to integers by
proper scaling, although there are also other ways to do this
(Dowlin et al., 2015). Furthermore, the encryption scheme
applies all of its operations modulo some number t, which
is why it is important to pay attention to the growth in the
size of the numbers appearing throughout the computation,
and to make sure that reduction modulo t does not occur.
Otherwise the results of the computation might be unex-
pected. In our experiments, 5− 10 bits of precision on the
inputs and weights of the network were sufficient in main-
taining the accuracy of the neural network. All the num-
bers computed were smaller than 280, which guided us in
selecting the parameters for the encryption scheme as seen
in Section 3.2.5.

Max pooling cannot be computed directly since the max-
function is non-polynomial. However, powers of it can
be approximated due to the relation max (x1, . . . , xn) =

limd→∞
(∑

i x
d
i

)1/d
. To keep the degree small, d should be

kept reasonable small, with the smallest meaningful value
d = 1 returning a scalar multiple of the mean pooling func-
tion. We will use this scaled mean-pool function instead of
the max-pool function, as the sum

∑
xi is easy to compute

over encrypted data. The reason we use the scaled mean-
pool instead of the traditional mean-pool is that we prefer
not having to divide by the number of elements, although
this could in principle be done (Dowlin et al., 2015). The
only effect of not dividing is that the output gets scaled by
a factor, which then propagates to the next layers.

The sigmoid and the rectified linear activation functions
are non-polynomial functions. The solution of Xie et al.
(2014) was to approximate these functions with low-degree
polynomials, but we take a different approach here. We
try to control the trade-off between having a non-linear
transformation, which is needed by the learning algorithm,
and the need to keep the degree of the polynomials small,
to make the homomorphic encryption parameters feasible.
We chose to use the lowest-degree non-linear polynomial
function, which is the square function: sqr (z) := z2. It
is interesting to note that Livni et al. (2014) have recently
suggested a theoretical analysis of the problem of learning
neural networks with polynomial activation functions and

devoted much of their study to the square activation func-
tion.

As a conclusion, to make a network compatible with
homomorphic encryption some modifications are needed.
Preferably, these modifications should be taken into ac-
count while training. The activation functions should be
replaced by polynomial activation functions and the max
pooling replaced by scaled mean pooling. For the sake of
time-efficient evaluation, consecutive layers that use only
linear transformations, such as the weighted-sum or mean
pooling, can be collapsed.

3 Homomorphic Encryption
Encrypting data is a prominent method for securing and
preserving privacy of data. Homomorphic encryption (HE)
(Rivest et al., 1978) adds to that the ability to act on the
data while it is still encrypted. In mathematics, a homo-
morphism is a structure-preserving transformation. For ex-
ample, consider the map Φ : Z→ Z7 such that Φ (z) := z
(mod 7). This map Φ preserves both the additive and mul-
tiplicative structure of the integers in the sense that for ev-
ery z1, z2 ∈ Z, we have that Φ (z1 + z2) = Φ (z1)⊕Φ (z2)
and Φ (z1 · z2) = Φ (z1) ⊗ Φ (z2) where ⊕ and ⊗ are the
addition and multiplication operations in Z7. The map Φ is
a ring homomorphism between the rings Z and Z7.

In the context of homomorphic encryption, we will be in-
terested in preserving the additive and multiplicative struc-
tures of the rings of plaintexts and ciphertexts in the en-
cryption and decryption operations. Since the first such
encryption scheme was introduced (Gentry, 2009), there
have been many advances in this field (see e.g. Naehrig
et al. (2011); Gentry et al. (2012a,b)). Technically speak-
ing, (fully) homomorphic encryption allows for an arbitrary
number of addition and multiplication operations to be per-
formed on the encrypted data. For the sake of efficiency, we
will instead use a weaker variant of this idea often called
leveled homomorphic encryption, where the parameters of
the encryption scheme are chosen so that arithmetic circuits
of (roughly speaking) a predetermined depth can be evalu-
ated. In our case this amounts to knowing the structure of
the neural network, including the activation functions. The
particular encryption scheme that we employ is YASHE’,
described in Bos et al. (2013).

3.1 Description of the method

The encryption scheme of Bos et al. (2013) maps plain-
text messages from the ring Rn

t := Zt [x] /(xn + 1) to
the ring Rn

q := Zq [x] /(xn + 1). See Appendix A.1 for
a brief introduction to rings and their properties. The en-
cryption scheme chooses random polynomials f ′, g ∈ Rn

q ,
and defines f := tf ′ + 1. The public key h is defined to

3



CryptoNets Dowlin et al.

be h := tgf−1, while f is the secret key. Since not every
element inRn

q is invertible, these steps are iterated until the
corresponding f has an inverse and h can be computed.

A message m ∈ Rn
t is encrypted by computing

c := [bq/tcm+ e+ hs]q

where e and s are random noise polynomials in Rn
q , with

coefficients of small absolute value. We use the notation
[a]q (resp. [a]t) to denote the reduction of the coefficients
of amodulo q (resp. t) to the symmetric interval of length q
(resp. t) around 0. Decrypting is done by computing

m :=

[⌊
t

q
fc

⌉]
t

.

Here the product fc is first computed inRn
q , the coefficients

are interpreted as integers, scaled by t/q, and rounded to the
nearest integers. Finally they are interpreted modulo t.

Two ciphertexts c1 and c2, with underlying messagesm1

andm2, can be added together inRn
q to yield the encryption

of m1 +m2. This works because

c1 + c2 = bq/tc (m1 +m2) + (e1 + e2)

+ h (s1 + s2) ,
(1)

which decrypts to m1 +m2 ∈ Rn
t .

To multiply two messages we first compute⌊
t

q
c1c2

⌉
= bq/tc (m1m2) + e′ + h2s1s2 (2)

where e′ is a noise term that under the right conditions is
still small. It is easy to see that the term above decrypts to
m1 ·m2, but under the secret key f2 ∈ Rn

q . Using a pro-
cess called relinearization (Bos et al., 2013) it is possible
to modify the result so that it will be decryptable under the
original secret key.

3.2 Practical considerations
The first thing to note is that the method described above
works as long as the noise terms appearing in the encryp-
tions of m1 and m2 are small enough. Otherwise the de-
cryptions might not yield correct answers. The security
level of the system depends on the parameters n, q, t, and
the amount of noise added. The maximum amount of noise
that a ciphertext can have and still be decryptable depends
on the parameters q and t.

When ciphertexts are added or multiplied, the noise in
the resulting ciphertext is typically larger than in the inputs.
Noise growth is particularly strong in multiplication. This
essentially means that the parameter q should be selected
to be large enough to support the increased noise, which
necessitates choosing a larger n for security reasons.

If the computation to be performed is expressed as an
arithmetic circuit with addition and multiplication nodes,
the main limitation to using the scheme is the number of
multiplication gates in the path from the inputs to the out-
puts. This number we refer to as the level. Keeping the
level low allows for selecting smaller values for the param-
eters, which results in faster computation and smaller ci-
phertexts. Note that the level is not the same as the degree
of a polynomial to be evaluated, and instead behaves like
the logarithm of the degree.

While keeping the parameters small improves perfor-
mance, for our tasks, we would like to make t large to
prevent the coefficients of the plaintext polynomials from
reducing modulo t at any point during the computation.
To better understand this point, note that the atomic ob-
jects used in a neural network are real numbers. The neural
network takes as its input a vector of real numbers and,
through a series of additions, multiplications, and other
real functions, it computes its outputs, which are also real
numbers. However, the homomorphic encryption scheme
works over the ring Rn

t := Zt [x] /(xn + 1). This means
that some conversion process between real numbers and el-
ements of Rn

t is needed. We refer to such conversions as
encodings (real numbers to Rn

t ) and decodings (Rn
t to real

numbers). If the coefficients of a polynomial in Rn
t are re-

duced modulo t after say, an addition, there is usually a
problem with decoding it correctly to the sum of the real
numbers, and instead the result is likely to be unexpected.
This is why we need to keep track of how large the co-
efficients of the plaintext polynomials grow throughout the
entire computation, and choose the parameter t to be larger.

To make the computations faster, it is also important to
keep track of what parts of the data need to be secured.
A common task that is repeatedly performed in the neural
network is computing the weighted some of the inputs from
the previous layer. While the data from the previous layer
is encrypted, the weights are known to the network in their
plain form. Therefore, when multiplying the data by the
weights we can use a more efficient form of multiplication,
described below.

3.2.1 Plain operations

In applying neural networks a common operation is to add
or multiply some value, which is derived from the data,
with some known constant. The naive way to implement
such operations is to first encrypt the constant and than
perform the addition or multiplication operation. However,
this process is both computationally intensive and adds a
large amount of noise if the operation is multiplication.
However, this is not necessary. Let c = bq/tcm + e + hs
be the encrypted message andw the known constant. Addi-
tion can be achieved by multiplying w by bq/tc and adding
that to c, which results in bq/tc (m+ w) + e+ hs. This is

4



CryptoNets Dowlin et al.

essentially just encrypting w with no noise and performing
normal homomorphic addition.

For multiplication, even the scaling is not needed since
cw = bq/tcmw+e′+hs′. This is very efficient, especially
ifw is a sparse polynomial. For example, ifw is a scalar (as
it would be in the scenario below), then this multiplication
is computed in linear time in the degree of c, which is n−1.

3.2.2 Encoding

As we already discussed above, there is a mismatch be-
tween the atomic constructs in neural networks (real num-
bers), and the atomic constructs in the homomorphic en-
cryption schemes (polynomials in Rn

t ). An encoding
scheme should map one to the other in a way that preserves
the addition and multiplication operations. Such an encod-
ing scheme can be constructed in several ways. For exam-
ple, it is possible to convert the real numbers to fixed pre-
cision numbers, and then use their binary representation to
convert them into a polynomial with the coefficients given
by the binary expansion. This polynomial will have the
property that when evaluated at 2 it will return the encoded
value. Another option is to encode the fixed precision num-
ber as a constant polynomial. This encoding is simple, but
might seem inefficient in the sense that only one coeffi-
cient of the polynomial is being used. In Section 3.2.4 we
show how multiple such instances can be encoded simulta-
neously to make use of the entire space. One problem with
such a scalar encoding is that the only coefficient of the
message polynomials grows very rapidly when homomor-
phic operations are performed

3.2.3 Encoding large numbers

As we have already explained, a major challenge for com-
puting in this encryption scheme lies in preventing the co-
efficients of the plaintext polynomials from overflowing t.
This forces us to choose large values for t, which causes
the noise to grow more rapidly in the ciphertexts and de-
creases (with q fixed) the maximum amount of noise tol-
erated. Therefore, we need to choose a larger q, and sub-
sequently a larger n for security reasons. One way to par-
tially overcome this issue is by using the Chinese Remain-
der Theorem (CRT) (see Section A.2). The idea is to use
multiple primes t1, . . . , tk. Given a polynomial

∑
aix

i we
can convert it to k polynomials in such a way that the j-th
polynomial is

∑
[ai (mod tj)]x

i. Each such polynomial
is encrypted and manipulated identically. The CRT guaran-
tees that we will be able to decode back the result, as long
as its coefficient do not grow beyond

∏
tj . Therefore, this

method allows us to encode exponentially large numbers
while increasing time and space linearly in the number of
primes used.

3.2.4 Parallel Computation

The encryption uses polynomials of high degree. For ex-
ample, in our case n = 8192, both ciphertext and plaintext
polynomials can have degree up to 8191. If the data is en-
coded as a scalar, only one out of the 8192 coefficients is
being used, while all the operations (additions and multi-
plications) act on the entire 8192 coefficient polynomials.
Therefore, the operations are slow due to the high degree,
but the result contains only a single significant coefficient.
Another application of the CRT allows us to perform Sin-
gle Instruction Multiple Data (SIMD) operations at no extra
cost Gentry et al. (2012b). Assume that t is selected such
that xn + 1 ≡

∏
(x− αi) (mod t). In this case the CRT

can be used to show that Rn
t
∼= Z×nt . The isomorphism

is explicit and easy to compute, which means that we can
encode n values into a single polynomial, operate on this
polynomial, and decode the n different results.

Note that we use here the CRT in an opposite direction
to how we use it when encoding large numbers in Sec-
tion 3.2.3). When encoding large numbers, we take a single
number and break it into multiple small numbers that are
being processed in parallel and joined together at the end.
On the other hand, here we take multiple scalars and join
them together to form a single polynomial. This polyno-
mial is being processed as a single unit and only upon com-
pleting the computation is it broken into its components.

3.2.5 Parameter Selection

The main parameters defining the cryptosystem are the
plaintext modulus t, the coefficient modulus q and the de-
gree n of the polynomial modulus (xn + 1). To allow
for encoding large enough numbers for the purposes of
the network, we used two plaintext moduli and both of
the CRT techniques described above. The values used are
t1 = 1099511922689 and t2 = 1099512004609. They
were selected so that their product is greater than 280,
which is large enough for applying the network. Moreover,
they are small enough so that with the coefficient modulus
q = 2383 − 233 + 1 and the polynomial modulus x8192 + 1
they allow for computing the desired network correctly, i.e.
so that the noise does not grow too large. Finally, the plain-
text moduli are chosen such that

x8192 + 1 =

8191∏
i=0

(
x− α1,2

i

)
(mod t1,2)

In other words, the polynomial modulus breaks into lin-
ear components, which allows for optimal use of the SIMD
technique described in Section 3.2.4.

5



CryptoNets Dowlin et al.

4 Empirical Results
We have tested CryptoNets on the MNIST dataset (LeCun
et al., 1998). This dataset consists of 60,000 images of hand
written digits. Each image is a 28x28 pixel array, where
each pixel is represented by its gray level in the range of
0-255. We used the training part of this dataset, consist-
ing of 50,000 images, to train a network and the remaining
10,000 images for testing. The details of the network used
are presented in Table 1. The accuracy of the training net-
work is 99% (it mislabels only 105 out of the 10, 000 test
examples).

4.1 Timing analysis

Since the network can accept batches of size 8192 (due to
the choice of the degree n = 8192 in the encryption pa-
rameters) we timed the network on the first 8192 images
of the test set to match the batch size. The latency of the
network is governed by the time to process a batch while
the throughput is also a function of the batch size. There-
fore, we separated the report for these two parameters and
also reported on the time per instance. These results are
presented in Table 2.

Applying the network takes 570 seconds on a PC with a
single Intel Xeon E5-1620 CPU running at 3.5GHz, with
16GB of RAM, running the Windows 10 operating sys-
tem. Since applying the network allows making 8192 pre-
dictions simultaneously using the SIMD operations as de-
scribed in Section 3.2.4, this PC can sustain a throughput
of 8192 × 3600/570 ≈ 51739 predictions per hour. En-
crypting the data takes 122 seconds and additional 0.060
seconds for every parallel instance to be encoded. There-
fore, if 8192 instances are encoded, a throughput of 48068
instances per hour can be encrypted and encoded. Decrypt-
ing the data takes 5 seconds and additional 0.046 seconds to
decode predictions for each instance. Therefore, a through-
put of 77236 decryptions and decoding per hour is achiev-
able with our setup.

4.2 Description of the Network

The network has two forms: the model that is the direct
output of training, and the simplified version which is actu-
ally used for making predictions. The trained network has
9 layers, and the simplified version has 5 layers. A visu-
alization of the latter is given in Table 1, though we will
describe both of them here.

Here is a description of the network used for training:

1. Convolution Layer: The input image is 28 × 28. The
convolution has windows, or kernels, of size 5 × 5, a
stride of (2, 2), and a mapcount of 5. The output of
this layer is therefore 5× 13× 13.

2. Square Activation Layer: This layer squares the value
at each input node.

3. Scaled Mean Pool Layer: This layer has 1 × 3 × 3
windows, and again outputs a multi-array of dimen-
sion 5× 13× 13.

4. Convolution Layer: This convolution has a kernel size
of 1 × 5 × 5, a stride of (1, 2, 2), and a mapcount of
10. The output layer is therefore 50× 5× 5.

5. Scaled Mean Pool Layer: As with the first mean pool,
the kernel size is 1×3×3, and the output is 50×5×5.

6. Fully Connected Layer: This layer fully connects the
incoming 50 · 5 · 5 = 1250 nodes to the outgoing 100
nodes, or equivalently, is multiplication by a 100 ×
1250 matrix.

7. Square Activation Layer: This layer squares the value
at each input node.

8. Fully Connected Layer: This layer fully connects the
incoming 100 nodes to the outgoing 10 nodes, or
equivalently, is multiplication by a 10× 100 matrix.

9. Sigmoid Activation Function: This layer applies the
sigmoid function to each of the 10 incoming values.

The sigmoid activation function is necessary for the
training stage in order to get reasonable error terms when
running the gradient descent algorithm. However, we don’t
have a good way of dealing with the sigmoid in the en-
crypted realm. Luckily, once we have our weights fixed
and want to make predictions, we can simply leave it out.
This is because the prediction of the neural network is given
by the index of the maximum value of its output vector, and
since the sigmoid function is monotone increasing, whether
or not we apply it will not affect the prediction.

The other change that we make to the network is just
for an increase in efficiency. Since layers 3 through 6 are
all linear, they can all be viewed as matrix multiplication
and composed into a single linear layer corresponding to a
matrix of dimension 100 by 5 · 13 · 13 = 865. Thus, our
final network for making predictions is only 5 layers deep.

One obstacle to training networks using the square acti-
vation function is that, unlike the rectified linear and sig-
moid functions, its derivative is unbounded. This can lead
to strange behavior when running the gradient descent al-
gorithm. Especially for deeper nets it sometimes blows
up or overfits. The overfitting issue can be partially re-
solved by the addition of convolution layers without activa-
tion functions (layers 4 and 5 in our network). This allows
us to reduce the number of degrees of freedom in the out-
put polynomial. However, for even deeper nets (10 to 20
layers) something else will be needed to aid in training.

6



CryptoNets Dowlin et al.

4.3 Message sizes
The images consist of 28 × 28 pixels. Each pixel is en-
crypted as 2 polynomials (two values for t are used to-
gether with CRT to allow for the large numbers needed).
Each coefficient in the polynomial requires 48 bytes and
therefore, each image requires 28 × 28 × 8192 × 2 × 48
bytes or 588 MB. However, the same message can contain
8192 images and therefore, the per image message size is
only 73.5 KB. The response of the classifier contains only
10 values (for the 10 possible digits) and therefore the mes-
sage size is 10×8192×2×48 which is 7.5 MB or 0.94 KB
per image, when 8192 images are encoded together. These
numbers are summarized in Table 3.

It is interesting to put the message sizes used in compar-
ison to natural raw representations of these messages. The
size of the message depends on the representation used.
For example, if each image is represented as an array of
size 28x28 and each pixel is represented as a double pre-
cision floating point number, then the size of each image
is approximately 6 KB, which is 12 times smaller than the
encrypted version. More concise representation is possible
if only a single byte is used to represent each pixel, which
will bring the ratio between the encrypted size to the un-
encrypted size to 96. The sparsity of the data allows com-
pressing the data even further, and indeed the compressed
version of this dataset has an average of only 165 bytes
per instance. Therefore, comparing to that, the encrypted
version would be 456 times larger. In conclusion, the en-
crypted data is one to three orders of magnitude larger than
the unencrypted data. The exact factor depends on what
is considered a natural representation of the data in its raw
form.

5 Discussion and Conclusions
The growing interest in Machine Learning As a Service
(MLAS), where a marketplace of predictors is available on
a pay-per-use basis, requires attention to the security and
privacy of this model. Not all data types are sensitive, but
in many applications in medicine, finance, and marketing
the relevant data on which predictions are to be made is
typically very sensitive.

Different methods can be used to protect the data. For
example, the prediction provider and the data owner can
encrypt the data while in transit using traditional cryptog-
raphy. These methods are promising in terms of through-
put, latency, and accuracy, but they require some way to
establish trust between the cloud and the data owner. The
provider also needs to guarantee the safety of the keys, and
the safety of the data against attackers while it is stored in
the cloud.

Another possible approach would be using secure Multi-
Party Computation (MPC) techniques (Goldreich, 1998).

Most MPC methods establish a communication protocol
between the parties involved, such that if the parties follow
the protocol they will end with the desired results while
protecting the security and privacy of their respective as-
sets (Barni et al., 2006; Orlandi et al., 2007; Piva et al.,
2008; Chen & Zhong, 2009). Barni et al. (2006) presented
a method of this type, where the data owner encrypts the
data and sends it to the cloud. The cloud computes an inner
product between the data and the weights of the first layer,
and sends the result to the data owner. The data owner de-
crypts, applies the non-linear transformation, and encrypts
the result before sending it back to the cloud. The cloud
can apply the second layer and send the output back to
the data owner. The process continues until all the lay-
ers have been computed. In Orlandi et al. (2007) they also
noted that this procedure leaks much of the information of
the weights of the network to the data owner, and added a
method to obscure the weights. The main difference be-
tween these methods and the method we describe in this
paper is that in our method the data owner does not have
to maintain a constant presence while the neural network
is evaluated. For example, the data owner can encrypt the
data and store it in the cloud in its encrypted form. The
cloud can apply one or several networks to the data while
the data owner is offline. Whenever the data owner wishes
to read the predictions, it can retrieve the information and
decrypt it, allowing the data owner to maintain a much sim-
pler infrastructure. Moreover, since intermediate results are
not shared, less information is leaked from the cloud to the
data owner.

Graepel et al. (2013) suggested the use of homomor-
phic encryption for machine learning algorithms. They fo-
cused on finding algorithms where the training can be done
over encrypted data, and therefore were forced to use learn-
ing algorithms in which the training algorithm can be ex-
pressed as a low degree polynomial. As a result, most of
the algorithms proposed were of the linear discrimination
type. Several authors also looked at nearest neighbor clas-
sification (Zhan et al., 2005; Qi & Atallah, 2008). However,
linear classifiers and nearest neighbor classifiers do not de-
liver the same level of accuracy that neural networks are
capable of.

Aslett et al. (2015a,b) presented ways to train machine
learning models over data encrypted with homomorphic
encryption. They presented both simple algorithms, such
as naive Bayes classifiers, as well as more involved random
models such as random forests and some variations of it.
Their work differs from our work in several major aspects:
The models they propose work well on some tasks, but do
not compete well with neural networks on tasks such as rec-
ognizing objects in images. They also had to use a unique
coding scheme, in which values are compared to threshold
before encryption, to allow the learning algorithm to work.
CryptoNets imposes fewer requirements on the data owner,

7



CryptoNets Dowlin et al.

Table 1: Breakdown of the time it takes to apply CryptoNets to the MNIST network
Layer Description Time to compute

Convolution layer Weighted sums layer with windows of size 5× 5, stride size of 2. From
each window, 5 different maps are computed and a padding is added to

the upper side and left side of each image.

46 seconds

1st square layer Squares each of the 835 outputs of the convolution layer 290 seconds
Pool layer Weighted sum layer that generates 100 outputs from the 835 outputs of

the 1st square layer
195 seconds

2nd square layer Squares each of the 100 outputs of the pool layer 36 seconds
Output layer Weighted sum that generates 10 outputs (corresponding to the 10 digits)

from the 100 outputs of the 2nd square layer
3 seconds

Table 2: The performance of CryptoNet for MNIST
Stage Latency Additional latency per each instance in

a batch
Throughput

Encoding+Encryption 122 seconds 0.060 seconds 48068 per hour
Network application 570 seconds 0 51739 per hour

Decryption+Decoding 5 seconds 0.046 seconds 77236 per hour

Table 3: Message sizes of CryptoNet for MNIST
Message size Size per instance

Owner→ Cloud 588 MB 73.5 KB
Cloud→ Owner 7.5 MB 0.94 KB

and allows the use of neural networks, however it does not
support training on the encrypted data.

Training neural networks over encrypted data is still
possible. If all the activation functions are polynomials,
and the loss function is polynomial too, back-propagation
can be computed using additions and multiplications only.
However, there are several challenges in doing so. Com-
putational complexity is a major challenge. Even when
trained on plaintext, neural networks are slow to train. To-
day, much of the effort in the field of machine learning goes
towards accelerating this training process by using sophis-
ticated hardware such as GPUs. However, adding homo-
morphic encryption to the process will make the process
at least an order of magnitude slower. It is more likely
that the slowdown would be much worse since the level
of the computed polynomial is proportional to the number
of back-propagation steps made, and therefore using lev-
eled homomorphic encryption does not seem to be feasible.
Another challenging aspect in the presence of encryption is
the lack of ability of a data scientist to inspect the data and
the trained models, to correct mislabeled items, to add fea-
tures, and to tune the network.

The main contribution of this work is a method that en-
joys the accuracy of neural networks with the simplicity

of use of homomorphic encryption. By combining tech-
niques from cryptography, machine learning, and engineer-
ing, we were able to create a setup in which both accuracy
and security are achieved, while maintaining a high level
of throughput. This work leaves much room for improve-
ment, however. For example, the throughput and latency
can be significantly improved by using GPUs and FPGAs
to accelerate the computation. Another direction for further
progress would be finding more efficient encoding schemes
that allow for smaller parameters, and hence faster homo-
morphic computation.

References
Agrawal, Rakesh and Srikant, Ramakrishnan. Privacy-

preserving data mining. In ACM Sigmod Record, pp.
439–450. ACM, 2000.

Aslett, Louis JM, Esperança, Pedro M, and Holmes,
Chris C. Encrypted statistical machine learning:
new privacy preserving methods. arXiv preprint
arXiv:1508.06845, 2015a.

Aslett, Louis JM, Esperança, Pedro M, and Holmes,
Chris C. A review of homomorphic encryption and
software tools for encrypted statistical machine learning.
arXiv preprint arXiv:1508.06574, 2015b.

Barni, Mauro, Orlandi, Claudio, and Piva, Alessandro.
A privacy-preserving protocol for neural-network-based
computation. In Proceedings of the 8th workshop on
Multimedia and security, pp. 146–151. ACM, 2006.

8



CryptoNets Dowlin et al.

Bos, Joppe W, Lauter, Kristin, Loftus, Jake, and Naehrig,
Michael. Improved security for a ring-based fully ho-
momorphic encryption scheme. In Cryptography and
Coding, pp. 45–64. Springer, 2013.

Chen, Tingting and Zhong, Sheng. Privacy-preserving
backpropagation neural network learning. Neural Net-
works, IEEE Transactions on, 20(10):1554–1564, 2009.

Dahl, George E, Yu, Dong, Deng, Li, and Acero, Alex.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. Audio, Speech, and
Language Processing, IEEE Transactions on, 20(1):30–
42, 2012.

Dowlin, Nathan, Gilad-Bachrach, Ran, Laine, Kim,
Lauter, Kristin, Naehrig, Michael, and Wernsing,
John. Manual for using homomorphic encryption
for bioinformatics. Technical report, Microsoft Re-
search, 2015. http://research.microsoft.
com/apps/pubs/default.aspx?id=258435.

Dwork, Cynthia. Differential privacy. In Encyclopedia
of Cryptography and Security, pp. 338–340. Springer,
2011.

Eisenbud, David. Commutative Algebra: with a view to-
ward algebraic geometry, volume 150. Springer Science
& Business Media, 1995.

Gentry, Craig. Fully homomorphic encryption using ideal
lattices. In STOC, volume 9, pp. 169–178, 2009.

Gentry, Craig, Halevi, Shai, and Smart, Nigel P. Fully ho-
momorphic encryption with polylog overhead. In Ad-
vances in Cryptology–EUROCRYPT 2012, pp. 465–482.
Springer, 2012a.

Gentry, Craig, Halevi, Shai, and Smart, Nigel P. Ho-
momorphic evaluation of the aes circuit. In Advances
in Cryptology–CRYPTO 2012, pp. 850–867. Springer,
2012b.

Goldreich, Oded. Secure multi-party computation.
Manuscript. Preliminary version, 1998.

Graepel, Thore, Lauter, Kristin, and Naehrig, Michael. Ml
confidential: Machine learning on encrypted data. In
Information Security and Cryptology–ICISC 2012, pp.
1–21. Springer, 2013.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

LeCun, Yan, Cortes, Corinna, and Burges, Christo-
pher J.C. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

Livni, Roi, Shalev-Shwartz, Shai, and Shamir, Ohad. On
the computational efficiency of training neural networks.
In Advances in Neural Information Processing Systems,
pp. 855–863, 2014.

Naehrig, Michael, Lauter, Kristin, and Vaikuntanathan,
Vinod. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM workshop on Cloud com-
puting security workshop, pp. 113–124. ACM, 2011.

Orlandi, Claudio, Piva, Alessandro, and Barni, Mauro.
Oblivious neural network computing via homomorphic
encryption. EURASIP Journal on Information Security,
2007:18, 2007.

Piva, Alessandro, Orlandi, Claudio, Caini, M, Bianchi,
Tiziano, and Barni, Mauro. Enhancing privacy in re-
mote data classification. In Proceedings of The Ifip Tc
11 23rd International Information Security Conference,
pp. 33–46. Springer, 2008.

Qi, Yinian and Atallah, Mikhail J. Efficient privacy-
preserving k-nearest neighbor search. In Distributed
Computing Systems, 2008. ICDCS’08. The 28th Inter-
national Conference on, pp. 311–319. IEEE, 2008.

Rivest, Ronald L, Adleman, Len, and Dertouzos,
Michael L. On data banks and privacy homomor-
phisms. Foundations of secure computation, 4(11):169–
180, 1978.

Xie, Pengtao, Bilenko, Misha, Finley, Tom, Gilad-
Bachrach, Ran, Lauter, Kristin, and Naehrig, Michael.
Crypto-nets: Neural networks over encrypted data. arXiv
preprint arXiv:1412.6181, 2014.

Zhan, Justin Zhijun, Chang, LiWu, and Matwin, Stan. Pri-
vacy preserving k-nearest neighbor classification. IJ Net-
work Security, 1(1):46–51, 2005.

A Commutative Algebra
Many of our results rely on concepts in commutative alge-
bra that might be unfamiliar to some readers. In this section
we provide some background on the concepts used in this
paper. We refer the reader to Eisenbud (1995) for a com-
prehensive introduction to the field.

A.1 Rings
A commutative ring R is a set on which there are two oper-
ations defined: addition and multiplication, such that there
is 0 ∈ R which is the identity element for addition and
1 ∈ Rwhich is the identity for the multiplication operation.
For every element a ∈ R there exists an element −a ∈ R

9

http://research.microsoft.com/apps/pubs/default.aspx?id=258435
http://research.microsoft.com/apps/pubs/default.aspx?id=258435


CryptoNets Dowlin et al.

such that a + (−a) = 0. Furthermore, the following hold
for every a, b, c ∈ R:

a (bc) = (ab) c ;

a (b+ c) = ab+ ac ;

(a+ b) c = ac+ bc ;

a+ (b+ c) = (a+ b) + c ;

a+ b = b+ a ;

ab = ba .

Since all the rings we discuss in this work are commutative
rings, we use the term “ring” to refer to a “commutative
ring”.

Several rings appear in this work. The set Z of inte-
gers is a ring, as is the set Zm of integers modulo m,
whose elements can be thought of as sets of the form
{i+ am : a ∈ Z}, where i is an integer. When we write
k ∈ Zm, we mean the set {k + am : a ∈ Z}. Conversely,
we say that k ∈ Z represents, or is a representative of, this
element of Zm.

The set R[x] of polynomials with coefficients in a
ring R is itself a ring. In this work we deal a lot
with the ring Zm [x] of polynomials with integer coef-
ficients modulo m. Finally, the set Zm [x] /(xn + 1),
whose elements can be thought of as sets of the form
{p (x) + q (x) (xn + 1) : q (x) ∈ Zm [x]}, where p(x) ∈
Zm[x], is a ring. When we write r(x) ∈ Zm[x]/(xn+1) we
mean the set {r (x) + q (x) (xn + 1) : q (x) ∈ Zm [x]},
and conversely say that r(x) represents, or is a representa-
tive of, this element of Zm [x] /(xn + 1). The polynomials
with coefficients in some fixed set of representatives of ele-
ments of Zm, and of degree at most n−1, form a complete
set of representatives of elements of Zm [x] /(xn + 1). To
simplify the notation, we refer to the ring Zm [x] /(xn + 1)
as Rn

m.

A.2 Chinese Remainder Theorem (CRT)

An element p ∈ R is said to be prime if for every f, g ∈ R
it is true that if p divides fg, then p divides at least one
of f and g. The Chinese Remainder Theorem states that
R ∼=

∏
iR/(pi) when the p1, . . . , pn are distinct primes.

This should be interpreted as follows: An element r ∈ R
is uniquely represented by elements r1, . . . , rn such that
ri ∈ R/(pi). This allows breaking r ∈ R, which might be
large (in some sense), into n “small” values r1, . . . , rn. At
the same time, it is also true that every r1, . . . , rn such that
ri ∈ R/(pi) has a unique r ∈ R that represents it. This
allows us to pack n “small” values r1, . . . , rn into a single
large value r ∈ R.

The Chinese Remainder Theorem can be written in an
explicit ”constructive” form. The transformation fromR to∏

iR/(pi) is the easier one, and is simply given by sending

r to the the sets {r + qpi : q ∈ R} for each i. In the other
direction, given r1, . . . , rn, they can be mapped to

∑
qiri,

where qi ∈ R are such that for every j 6= i, pj divides qi,
and pi divides qi−1. The values of the qi can be computed
as follows: First let q̂i :=

∏
j 6=i pi. Next, let q̂−1i ∈ R

be such that pi divides q̂iq̂−1i − 1. This is always possi-
ble when the ideals (pi) and (pj) are coprime (Eisenbud,
1995), which is the case when R is the ring of integers, or
a polynomial ring over integers modulo a prime number.
Finally, let pi := q̂iq̂

−1
i .

10


	Introduction
	Neural Networks
	Homomorphic Encryption
	Description of the method
	Practical considerations
	Plain operations
	Encoding 
	Encoding large numbers
	Parallel Computation
	Parameter Selection


	Empirical Results
	Timing analysis
	Description of the Network
	Message sizes

	Discussion and Conclusions
	Commutative Algebra
	Rings
	Chinese Remainder Theorem (CRT)


