” i
A , Windows

Developing a Metro style enabled
desktop browser

XXX 0, 0000

Abstract

Windows 8 Consumer Preview introduces a new programming paradigm called Metro
style. Metro style apps offer a clean, polished user experience that push app
experiences to the forefront, and immerse the user in a full screen environment
that’s tailored to the user’s hardware and context. Windows 8 Consumer Preview
also continues to offer desktop app experiences as found in previous versions of
Windows. In Windows 8 Consumer Preview, the browser that the user sets as the
“default” for handling web pages and associated protocols may be designed to access
both the Metro style experience as well as the traditional desktop experience. This
type of browser is called a “Metro style enabled desktop browser”. This guide
describes how to create such a browser. The information in this document applies
specifically to browsers that will be made available to end-users as the default viewer
for the http:// protocol and associated web pages and protocols on the x86/64
architecture.

This information applies to the following operating systems:
Windows 8 Consumer Preview

This document will be updated at the time of the final release of Windows 8, if
necessary.

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet website references, may change without notice. Some information relates to pre-
released product which may be substantially modified before it's commercially released. Microsoft makes no
warranties, express or implied, with respect to the information provided here. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

© 2012 Microsoft. All rights reserved.

Microsoft

Developing a Metro style enabled desktop browser - 2

Contents

Presentations Of DrOWSEIS ...t be s 3
User eXperienCe framiNg ... e et et e et e e s ee e sare e ste e ebe e e beeesbaeessseesareasnes 3
[0 g oY L= 1= o1 =1 4 o Yo VRSSOt 4
Ta 1 2= 1 =1 [o [RRTRURR 4
Sample “VisualElementsManifest.Xxml” file.......cocevireeiiecie e 5
Y T oY1 =T Yol =T o o - S 6
Register an Application User Model ID (AppUserModelID)ccccvvevveercreenveeennen. 8
Declare a tile for the Start SCreeNovvveevieceeceeeee s 8
Declare a splash SCreen loZ0cccviieiiiicieecee et e 8
Becoming the default BrOWSENc.uviciieciie e e 8
L =PSRRI 9
PIiNNINg SECONAArY tilES ..uuieeiiicieecee et 9
ACtiVation (JaUNCN) ..ottt e ba e e e e s re e 9
CoNtEXTUAI TAUNCN oo 10
Launching VS, SWITCHINE ...cccvieiiie ettt e ae e e eane e 12

Activating the Metro style enabled desktop browser for file and protocol
[oo] 411 - [o1 £~ 3 T T U UTO PP OUOPT 12
Invocation into desktop pPresentationccccecceeeeieecieeeciee e 12
Launching other Apps Via ProtoCoIScceeecieeeciieeiieeciee et 13
WINAOWINE ettt ettt e et e et e e st e e e tte e s teesabeeebeeebaeessaeesaseesnteesnbaseseeenseeans 14
Guidance for mMulti-process DrOWSENSc.cecceeeciieciie e 15
PAY o] ol olo] a1 = Yol £ PP 15
NY=F: [o] a W ol o1 - Yot ARSI 16
Y 4T ol Y - ot A SRS 16
[LV o X oo o 1 r= Yot SRR 16
PrINT CONTIACT. .o et 17
Process Lifetime Managementc.coeccieeciiiecieeciee ettt re e te e te e e sre e e srae e re e 17
(08 [o 1Y < =<1 U] RS 17
Completing downloads and uploads prior to suspend........ccccceeeeeceeeceeeceeennnenn, 17
Roaming browser application datacccecueeeeiieciie et 18
20T (= o (o] g o Y-1 0 4|1 o =R 18
YL ol o T=1 o F= VA o T S 19
Syncing favorites / Internet ShortCUtSccoceeiieiie e 19
SYNCING TYPEA URLS ettt ettt ettt tte e tre e e te e et e e bt e e ane s snteeeabeeenreas 20
SYNCINE DroWSEr NISTOIY ...ooiciiiceecceecee et 20
Roaming other registry SettiNgS.....cccuiecieeiiiie ettt e 22

VVV A nnnn

Developing a Metro style enabled desktop browser - 3

Presentations of browsers

The desktop browser ecosystem is well established. Users expect that popular
Windows 7 desktop browsers will continue to work on Windows 8 Consumer
Preview, and that is the case. Beyond the desktop, Windows 8 Consumer Preview
introduces a new app programming model which enables development of apps that
are touch optimized, behave in the manner customers expect (maximize battery life,
emphasize reliability, adhere to customer preferences for privacy and potentially
sensitive devices like GPS, handle system start-up and shutdown without changing
the state or impacting other apps, etc.), take on the enhanced new look and feel of
Windows 8, and integrate with the richness of the PC via contracts. Apps that do
these things are said to participate in the Metro style user experience.

In Windows Consumer Preview, a web browser may be built as a Metro style app, a
desktop app, or a Metro style enabled desktop browser.

* Metro style app. A Metro style app adheres to the principles of the new app
model- it runs in an App Container, uses APIs found in the Windows Software
Development Kit (SDK) for Metro style apps, is packaged as an .appx file, and is
made available via the Windows Store.

¢ Desktop browsers. Same model as Windows 7.

* Metro style enabled desktop browser. A desktop browser that chooses to
participate in the new Metro style experience when the user has expressed
preference for the browser to do so. Such a browser can provide HTML5
rendering for webpages and service HTTP / HTTPS requests. By definition, such a
browser has full access to Win32 APIs for rendering HTMLS5, including the ability
to use multiple background processes, JIT compiling, and other distinctly
browser-related functionality (like background downloading of files). Desktop
browsers typically run at medium or low integrity level.

This guide focuses on developing a Metro style enabled desktop browser.

User experience framing

The following design and user experience principles provide framing for how to think
about web browsers in Windows 8 Consumer Preview:

* The user is in control of browser preference. Browser choice is one of personal
preference, and Windows 8 Consumer Preview continues to honor user selection.
Users can select the default via a “new app installed” system notification, and
they can also configure via other means, such as Set User Defaults (SUD) and Set
Program Access and User Defaults (SPAD).

* There is only one default browser on the system. Any and all browsers can
register their intent to be considered as the default (http:// protocol and the
other consolidated attributes which define a browser in SUD / SPAD), and the
user can select one browser as the default. This is the same model as Windows 7.

* A Metro style enabled desktop browser may participate in the Metro style user
experience only if it is the default browser. Desktop apps (typically packaged as
.MSI, medium integrity level) run in the desktop. Metro style apps (.appx
packaged, run in App Containers, APl set restricted to the Windows SDK for

VVV A nnnn

Developing a Metro style enabled desktop browser - 4

Impleme

Metro style apps, acquired via the Windows Store) run in the Metro style
experience. A Metro style enabled desktop browser can be thought of as a
desktop browser that can also participate in the new Metro style experience. The
restriction to limit Metro style user experience participation to the user’s default
browser is rooted in preserving the Metro style user experience. Note that this
limitation applies to all browsers, including Internet Explorer.

ntation

The

following sections detail the design and code required to build a Metro style

enabled desktop browser.

Technology Description

Installation Update installation code to create correctly formatted tiles, splash

screen, and other associated content which indicate to the system
that the browser is a Metro style enabled desktop browser.

Becoming the Default Understand the changes to how users select file and protocol

Browser handlers for apps in Windows Consumer Preview.

Tiles Provide a square tile for the Start screen and implement execute
commands for secondary tile invocation.

Activation (Launch) Implement the app activation contract to launch the browser in
the Metro style user experience.

Windowing Understand the rules governing window creation in the Metro
style user experience.

App Contracts Implement and participate in app contracts: Search, Share, Play
To, and Print.

Process Lifetime Save and restore state in the Metro style user experience.

Management

Roaming Browser Keep browser application data (e.g. settings) synchronized

Application Data between multiple Windows 8 devices.

Installation

No change is required to browser discovery and acquisition mechanisms:

Metro style enabled desktop browsers may be distributed via existing channels,
for example, web download, network share, OEM pre-install, or systems
management software.

Metro style enabled desktop browsers may be deployed via existing desktop app
deployment methods, for example, MSI packaged, Click-Once installer, or .ZIP
archive extraction with file copy.

Note: We strongly recommend that you digitally sign all the installation
executables, including those that might be used as “bootstrap files” during a
Click-Once installation, with an Authenticode Certificate issued by a Certificate
Authority (CA) that is a member of the Windows Root Certificate Program. For
more information on this best practice and the role of Windows SmartScreen in
Windows 8, see Protecting you from malware.

However, Windows must be able to identify that a browser is a Metro style enabled
desktop browser, otherwise the operating system will assume that the browser is

VVV A nnnn

Developing a Metro style enabled desktop browser - 5

desktop-capable only and will treat it accordingly. This means no interaction with the
Metro style user experience. A Metro style enabled desktop browser must perform
the following:

e Author a “VisualElementsManifest.xml” file that adheres to the schema and
example included in this document.

* Include the .xml file as part of the Metro style enabled desktop browser’s
installation contents.

* Include the supporting files as referenced by the .xml file (e.g. tile logo, splash
screen images, Resources.PRI file) as part of the Metro style enabled desktop
browser’s installation contents.

* During installation, copy the .xml file to the same directory as the browser
executable.

C:\Program Files\YourBrowser\browser.exe
C:\Program Files\YourBrowser\VisualElementsManifest.xml

* During installation, copy the supporting files to the same directory as the browser
executable (or relative to it).

C:\Program Files\YourBrowser\browser.exe

C:\Program Files\YourBrowser\VisualElementsManifest.xml
C:\Program Files\YourBrowser\logo.jpg

C:\Program Files\YourBrowser\logosmall.jpg

C:\Program Files\YourBrowser\imagefile.jpg

C:\Program Files\YourBrowser\Resources.PRI

Note: Should you wish to update the resources associated with the browser
after the initial install (for example: during an update), you must also update the
app’s shortcut timestamp. Doing so signals Windows to reread and reload the
visual elements.

* During installation, create a Start shortcut to your app populated with the
following properties:

PKEY_AppUserModel_IsDualMode set as TRUE (VT_BOOL)

PKEY_AppUserModel_ID set as the browser’s AppUserModellD (VT_LPWSTR). For
additional information relevant to this specific property, see Register an
Application User Model ID (AppUserModellD), in this document.

Sample “VisualElementsManifest.xml” file

<Application
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<VisualElements
DisplayName="displayname"
Logo="10go. jpg"
SmalTlLogo="T1ogosmall. jpg"
ForegroundText="T1ight"
BackgroundColor="blue">
<DefaultTile
ShortName="shortname"
ShowName="allLogos"

VVV A nnnn

Developing a Metro style enabled desktop browser - 6

/>
<SplashScreen
Image="1imagefile.jpg" />
</VisualElements>
</Application>

Note: Windows uses the DisplayName attribute under /Application/VisualElements
for the tile and splash screen. The BackgroundColor value under
/Application/VisualElements will also be used as the background color of the
SplashScreen.

For more information about the property values, see Default Tile.

Manifest schema

The following XSD is used to validate your VisualElementsManifest.xml file:

<?xml version="1.0" encoding="utf-8"7>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="st_nonemptystring">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="32767"/>
<xs:pattern value="[A\s] | ([A\s].*[A\s])"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_shortdisplayname">
<xs:restriction base="st_nonemptystring">
<xs:pattern value="ms-resource:.{1,256}"/>
<xs:pattern value=".{1,13}"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_displayname">
<xs:restriction base="st_nonemptystring">
<xs:pattern value="ms-resource:.{1,256}"/>
<xs:pattern value=".{1,256}"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_filenamecharset">
<xs:restriction base="st_nonemptystring">
<xs:pattern value=" [A&1t;>" %\ |\?*]+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_filename">
<xs:restriction base="st_f1ilenamecharset">
<xs:pattern
value="([A/\\]1*[A./\\T+) QA\N[A/ANT*[A./A\NTH) " />
<xs:pattern value="([A/\\]1*[A./\\1+) (/[A/\\I*[A./\\1+)*"/>
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_imagefile">

<xs:restriction base="st_filename">
<xs:pattern value=".+\.((jpg) | (png) | (jpeg))"/>

VVV A nnnn

Developing a Metro style enabled desktop browser - 7

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_color">
<xs:restriction base="xs:string">
<xs:pattern value="#[\da-fA-F]{6}"/>
<xs:pattern
value="black|silver|gray|white|maroon|red|purple|fuchsialgreen|Time|ol
ive|yellow|navy|blue|teal|aqua"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="st_foregroundtext">
<xs:restriction base="xs:string">
<xs:enumeration value="Tight"/>
<Xs:enumeration value="dark"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="ct_defaulttile">
<xs:attribute name="ShortName" type="st_shortdisplayname"
use="optional" />

</xs:complexType>

<xs:complexType name="ct_splashscreen">
<xs:attribute name="Image" type="st_imagefile"
use="required"/>
</xs:complexType>

<xs:complexType name="ct_visualelements">
<xs:all>
<xs:element name="DefaultTile" type="ct_defaulttile"
minOccurs="0"/>
<xs:element name="SplashScreen" type="ct_splashscreen"/>
</xs:all>
<xs:attribute name="DisplayName" type="st_displayname"
use="required"/>
<xs:attribute name="Logo" type="st_imagefile" use="required"/>
<xs:attribute name="SmallLogo" type="st_imagefile"
use="required"/>
<xs:attribute name="ForegroundText" type="st_foregroundtext"
use="required" />
<xs:attribute name="BackgroundColor" type="st_color"
use="required"/>
</xs:complexType>

<xs:complexType name="ct_application">
<xs:all>
<xs:element name="VisualElements" type="ct_visualelements"
/>
</xs:all>
</xs:complexType>

<xs:element name="Application" type="ct_application" />

</Xs:schema>

VVV A nnnn

Developing a Metro style enabled desktop browser - 8

Register an Application User Model ID (AppUserModellD)

A Metro style enabled desktop browser must register an explicit Application User
Model ID (AppUserModellD) for itself. This ID must be provided under the progID
registered with SUD. The AppUserModellD may not be longer than 64 characters.
When running in the Metro style experience, this AppUserModellD is immutable by
the running browser process.

The AppUserModellD should be specified in the shortcut properties for the app as
created during installation. For more information about assigning an
AppUserModelD, see http://msdn.microsoft.com/en-
us/library/dd378459%28VS.85%29.aspx#where.

Note: Metro style enabled desktop browsers should not set an AppUserModellD at
runtime when participating in the Metro style user experience (browsers may
continue to do so when activating in the desktop). This is not supported in the new
experience and can lead to unpredictable behavior.

Declare a square tile for the Start screen
During installation, a Metro style enabled desktop browser must communicate the
details of its app tile. The tile assets that must be included are:
¢ Square tile logo
* At 1x(.75x and 1.4x plateaus are optional but highly recommended)
* Small Logo
¢ Background Color
* Foreground Text Value
¢ Short Name (optional — use only if the display name is too long to fit on a the tile

on the Start screen)

For more information, see Creating and managing tiles, toast, and Windows push
notifications.

Declare a splash screen logo

During installation, a Metro style enabled desktop browser must communicate the
details of its splash screen logo. This is a png, jpg, or jpeg and must be specified at
.75x, 1x, and 1.4x plateaus. These images must occur within a Package Resource
Index (PRI). The PRI may be created using free tools included with the Windows
Software Development Kit (SDK) for Metro style apps.

For more information about PRI, review the documentation for the ResourceManager
Class.

Becoming the default browser

Upon installation, Windows Consumer Preview presents the user with a system
notification that enables selection of the browser as the system default. Dismissing or
ignoring the notification and/or dismissing the flyout without making a selection
results in the default browser remaining unchanged. The user may also change the
default browser via other operating system mechanisms, including SUD.

VVV A nnnn

Tiles

Developing a Metro style enabled desktop browser - 9

In Windows Consumer Preview, the start menu has been replaced by a Start screen of
tiles.

If the default browser supports the Metro style user experience, the browser’s app
tile (and secondary tiles, if they exist) will display in Start in a manner similar to Metro
style apps (as defined by properties that were specified in the XML manifest that
was copied during browser installation). Otherwise, the tile will appear as a desktop
app. Verbs appropriate to the Metro style user experience and desktop mode of the
app will appear on the tile. The tile will appear in search results like any other tile.
Other tile actions (re-arrange, pin/unpin, etc.) are no different for browsers than they
are for other app tiles.

The default Metro style enabled desktop browser always appears as a square tile.
Any secondary tiles belonging to the default Metro style enabled desktop browser
also appear with Metro style user experience tile visuals.

Pinning secondary tiles

Secondary tiles enable users to promote interesting content and deep links — for
example, a reference to a specific location inside of the pinning app — from Metro
style apps onto the Start screen. A typical use of secondary tiles by a Metro style
enabled desktop browser might involve surfacing the ability to create a tile that
represents a link to a particular website important to the user, e.g. a “favorite”. For
more information about using secondary tiles, see Creating and managing secondary
tiles.

A Metro style enabled desktop browser may pin secondary tiles while running in the
Metro style user experience. These tiles will be associated with the app that created
them (the Metro style enabled desktop browser), the same as any other secondary
tile.

While the secondary tiles’ parent Metro style enabled desktop browser app is the
current default browser, those secondary tiles launch in the Metro style user
experience and have Metro style visuals. If their parent app is no longer the default
browser, those secondary tiles are treated the same as any desktop tile.

* The system examines the Application User Model ID of the app to verify the
calling app is the current default browser.
* The app supplied arguments will be stored in the shortcut and supplied in the

Arguments field of the LaunchActivatedEvent.

Attempts to call the secondary tiles APIs from any browser running in desktop mode
will fail.

Activation (launch)

Metro style enabled desktop browsers are capable of activating in both the desktop
and the Metro style user experience (the latter only when configured as the default
browser). To support desktop activation, no changes are necessary. To support Metro
style user experience activation, changes are required.

VVV A nnnn

Developing a Metro style enabled desktop browser - 10

The following rules govern app activation:

¢ Desktop shortcuts, pinned taskbar icons, and other “desktop artifacts” activate
the Metro style enabled desktop browser in the desktop.

* Tiles in the Start screen activate the browser in the Metro style user experience
when the browser is the default. When the browser is not the default, tiles
activate the browser in the desktop. This same behavior also applies to a
browser’s secondary tiles.

* Browsers that wish to activate in the Metro style user experience for file and
protocol contracts must call IApplicationActivationManager::ActivateForFile or
IApplicationActivationManager::ActivateForProtocol in the implementation of
their verb handler. Verb handlers must be implemented as a DelegateExecute
handler. For more information about verb handling, see the
FileActivatedEventArgs.Verb property.

* ltisstrongly recommended that browsers implement “contextual launching”.
This means taking the calling app’s presentation (desktop or Metro style user
experience) into account when determining the browser’s presentation (desktop
or Metro style user experience) for activations originating from other apps,such
as when a user clicks an http:// link in their mail app.

¢ Search contract activations always activate in the Metro style user experience.
These activations can only occur if the browser is the user’s default. For more
information, please reference the Search contract section of this document.

Contextual launch

Users expect a seamless experience when activating a browser via a link; for example,
launching a browser by clicking on an http:// link in a mail or messaging app. When
following a link within a Metro style app, most users expect a Metro style
presentation of the linked content. Conversely, when following a link from a desktop
app, most users expect a desktop style presentation of the linked content.

When the browser is activated, use the extended information obtained from the
IExecuteCommandHost::GetUIMode() method to obtain the current Ul context of the
app or system component where the browser’s activation originated. Use this
information to provide the best browser presentation.

// IExecuteCommandHost
IFACEMETHODIMP GetUIMode(_Out_ EC_HOST_UI_MODE *pUIMode)

{
*pUIMode = ECHUIM_IMMERSIVE;
return S_OK;

}
The enumeration has three values:
¢ ECHUIM_DESKTOP — Desktop application launch
¢ ECHUIM_IMMERSIVE — Metro style application launch

¢ ECHUIM_SYSTEM_LAUNCHER —Start menu launch (includes Tile activation,
typing a URL into the search box in Start, etc.)

VVV A nnnn

Developing a Metro style enabled desktop browser - 11

It's recommended that browsers provide a configurable setting to give users control

over their preferred presentation experience. For example, a setting named “Choose
how you open links”, with options a) Always launch Metro style, b) Always launch in

the desktop, c) Let the browser decide, aka contextual (suggested default).

Follow these steps to implement contextual launch:

¢ Author a DelegateExecute verb handler that implements |IExecuteCommand,
10bjectWithSite, lInitializeCommand, 10bjectWithSelection, and
IExecuteCommandApplicationHostEnvironment.

* Register the handler in the registry under HKCR\{browser desktop AppID}\.exe

¢ Any shortcut that contains a PKEY_AppUserModel_ID value will cause
Windows to first look for a verb handler registered for the shortcut’s target’s
type registered under the AppUserModellD. Browser shortcuts will point at
the browser’s executable file and thus must be registered for the ‘.exe’ type
under the AppUserModellD. When the verb is invoked, it will be provided
with the shortcut’s target and any arguments stored in the link (this includes
arguments specified in secondary tiles).

¢ During launch, the implementation of
IExecuteCommandApplicationHostEnvironment::GetValue is called. The browser
should return which presentation to launch in, but it will likely need more
information in order to make this determination.

¢ Use lUnknown_QueryService(_pSite, SID_ExecuteCommandHost, ...) to
obtain the IExecuteCommandHost implementation.

* Call IExecuteCommandHost::GetUIMode to discover the launch context. Use
this information, along with the user configurable preference and
information such as that provided to lInitializeCommand and
I0ObjectWithSelection, to determine the presentation, either desktop or
Metro-style. Return the value from the
IExecuteCommandApplicationHostEnvironment::GetValue call.

In all launch cases except launch via the browser’s tile(s) on the Start screen, the
browser’s IExecuteCommand::Execute handler will get called and the browser must
fully handle activation. In the case of the tile on the Start screen, if
IExecuteCommandApplicationHostEnvironment::GetValue returns AHE_IMMERSIVE,
Windows finishes activation of the browser in order to provide a consistent launch
animation. IExecuteCommand::Execute will not be called in this case.

Register the DelegateExecute handler.
The following is an example of the registry entry:

HKCR\Example.Browser\.exe\shell\
(Default) = “open”
open\command
(Default) = “”
DelegateExecute = “{1e1946d6-5e51-4548-b7e8-
033c60abffaf}”

VVV A nnnn

Developing a Metro style enabled desktop browser - 12

Launching vs. switching

In the desktop case, it's a common occurrence for the browser to already be running
when a user attempts to activate it via the Start menu tile or file / protocol activation.
Rather than creating a separate new instance of the browser for each activation, you
should use the DelegateExecute handler to communicate with a running instance of
the browser.

It's recommended that browsers support, at a minimum, the “open” verb. Also, when
a user chooses “Open new window”, the browser should open a new tab rather than
a new instance of the browser. Browsers are suggested to implement a verb, e.g.
“open new window”, corresponding to that common user action.

For more information about setting a state or parameter related to a verb or invoking
the verb, see IExecuteCommand interface.

Activating the Metro style enabled desktop browser for file and protocol
contracts

Browsers should implement their file and protocol associations as Execute Command
verbs (see the Execute Command Verb Sample for an example) in a manner similar to
tile launch. When directing the verb invocation into the Metro style user experience,
browsers call a method on IApplicationActivationManager to activate in the Metro
style user experience for the File or Protocol contract. The Application Activation
Manager is a COM component implemented in twinui.dll identified by
CLSID_ApplicationActivationManager.

interface IApplicationActivationManager : IUnknown

HRESULT ActivateForFile(
[in] LPCWSTR appUserModelId,
[in] IShellItemArray *itemArray,
[in, unique] LPCWSTR verb,
[out] DWORD *processId);

HRESULT ActivateForProtocol (
[in] LPCWSTR appUserModelId,
[in] IShellItemArray *itemArray,
[out] DWORD *processId);
b
The ActivateApplicationForFile and ActivateApplicationForProtocol methods accept
an IShellltemArray, which is the input to DelegateExecute verb implementations via

I0ObjectWithSelection::SetSelection.

Note that IAplicationActivationManager APl only works from medium integrity level
processes (High IL will not work). Therefore, it is recommended that this object is
CoCreated with CLSCTX_LOCAL_SERVER as this object is registered to run in the
DLLHOST surrogate at Medium IL.

Invocation into desktop presentation

Metro style enabled desktop browsers must set an AppUserModellD at runtime when
running in desktop mode by calling SetCurrentProcessExplicitAppUserModelld and

VVV A nnnn

Developing a Metro style enabled desktop browser - 13

providing the value specified under PKEY_AppUserModel_ID in the browser’s primary
tile. This ensures that the AppUserModellD “link” between tiles and the Metro style
enabled desktop browser is preserved.

Additionally, it should be noted that since secondary tiles are associated with the
AppUserModellD of the browser’s primary tile, the browser must have the same
runtime AppUserModellD as its primary tile.

When activating into the Metro style presentation,
SetCurrentProcessExplicitAppUserModelld has no effect and therefore should not be
called.

Note: If the Metro style enabled desktop browser is not currently selected as the
user’s default browser, it can only launch in the desktop.

Launching other Apps via protocols

It is common for web browsers to support launching apps through the windows file
and URI protocol scheme association system using the ShellExecuteEx() API. It is
strongly recommended that browsers implement the AssoclsDangerous() API to
safely handle protocol activation of other apps on the system. It is also strongly
recommended that browsers provide a consistent, predictable user experience when
users select protocol links that cause the activation of a different Windows app.

The AssoclsDangerous() APl identifies file types that have potentially dangerous
content, including the ability to execute code. Browsers should discourage users from
launching programs that are identified as dangerous by this API or mitigate the
threats using the attachment execution services (AES) API.

The following steps are best practices:

* Verify the source of the content via signatures
* Verify the reputation of the particular file
¢ Inform the user about what app will be launched to handle the file or protocol

* Require the user to confirm that the source of the launch is allowed to perform
the action

ShellExecuteEx() has been extended to report information to the caller about the
identity of the app that will be activated. The APl provides the name of the process or
CLSID of the handler that will be launched, the name of the app, and the publisher
name and icon. This information should be used when constructing a user consent
dialog, or when evaluating per application policy as managed by browser-specific
settings.

Consistent with the guidance in the Contextual Launch section of this document, it’s
recommended that browsers provide a configurable setting to give users greater
awareness of the presentation experience of the to-be-invoked app. For example, use
the information gathered by the extended ShellExecuteEx() APl to populate a
contextually appropriate dialog. In that dialog, indicate to the user what app will be
launched and whether that app uses Metro style or desktop presentation. The CLSID
can be used to distinguish Metro style apps from desktop apps.

VVV A nnnn

Developing a Metro style enabled desktop browser - 14

Windowing

The Windows 8 Consumer Preview Metro style user experience is designed around a
number of principles related to immersion and consumption:

Metro style apps run only in the Metro style user experience. Using the new
windowing APIs, they cannot create windows in the desktop experience.

The Metro style user experience is focused on a single app at a time, with
multitasking, app switching, and notifications provided by the Metro style
experience.

Metro style apps are sized to fill available space in the Metro style user
experience environment, with a static number of supported “views” (e.g. portrait,
landscape, full screen).

Ongoing activities in the desktop remain in the desktop environment.

A Metro style enabled desktop browser, configured as the user’s default, can choose
to participate either in the Metro style user experience or the desktop, but not both
from the same running process.

The browser must first activate itself as a Metro style app; once this has been
done and it is the user’s default browser, it will be identified as such by the
system:

* A Metro style enabled desktop browser, when identified and activated as a
Metro style enabled desktop browser, can create and manage windows in the
Metro style user experience.

¢ Attempting to create a window in the Metro style user experience when not
identified as a Metro style enabled desktop browser will fail.

* Attempting to create a desktop window when identified as a Metro style
enabled desktop browser will succeed, but the Metro style enabled desktop
browser will not be able to change focus (bring to foreground) nor manage
any desktop windows. Any calls to SetForegroundWindow() or
SetActiveWindow() will fail under these conditions. There is no automatic
switching between the Metro style experience and the desktop.

* A Metro style enabled desktop browser may not call
LockSetForegroundWindow(); any calls to the API will fail.

* Any calls to AllowSetForegroundWindow() may succeed if the Metro style
enabled desktop browser is in the foreground, however this call will not
facilitate any attempt to allow a desktop app or another Metro style app to
move to the foreground.

¢ Any calls to EnableWindow() from a Metro style enabled desktop browser
will fail if the target hWnd is not a Metro style user experience window.

* A Metro style enabled desktop browser may not attach input threads with
any desktop app and vice-versa. Any calls to AttachThreadInput(idAttach,
idAttachTo) where the idAttach and IdAttachTo parameters are neither both
viewable in the Metro style user experience nor both desktop will fail.

* A Metro style enabled desktop browser may not change the foreground
(even to a Metro style user experience window) when a desktop app,

VVV A nnnn

Developing a Metro style enabled desktop browser - 15

accessibility app or system component is in the foreground. Any calls to
SetForegroundWindow() or SetActiveWindow() will fail under these
conditions.

¢ Before activating as a Metro style app, it is advised that the browser destroy any
visible desktop windows as these will be unmanageable once identified as a
Metro style enabled desktop browser.

* Should a Metro style enabled desktop browser wish to launch a desktop app and
have that app come to the foreground (for example, downloading and launching
a file such as a PDF reader), it may do so by using ShellExecuteEx() and specifying
the SEE_MASK _FLAG _LOG_USAGE flag in the fMask field. If this flag is not
specified the desktop app will launch, but will not be able to come to the
foreground. There is no automatic switching between the Metro style
experience and the desktop.

Guidance for multi-process browsers

For browsers that have adopted a multi-process architecture—typically, a separation
of the “frame” process from the “tabs” that display webpage content—create a
frame window and host each tab in its own separate top-level ICoreWindow, as
illustrated in the following example:

Frame Process
ICoreWindow

Tab Process Tab Process Tab Process
ICoreWindow ICoreWindow ICoreWindow

There are a few identified limitations with this method of window hosting, and users
may experience the following behavior:

* Flickering of windows on tab switches

* Briefly showing the Start background on tab creation / switching

* Narrator and other accessibility tools having difficulty navigating multiple top-

level windows

Note: Microsoft is investigating a revision to the recommended model: from
multiple top-level ICoreWindows to a single top-level ICoreWindow held by the frame
process. Should this happen, a move from the current guidance to a redesigned
windowing architecture would likely be necessary to achieve the desired level of app
fidelity and correct participation in app contracts.

App contracts

Contracts are like agreements between Windows and Metro style apps, including
Metro style enabled desktop browsers. They support some kind of user interaction

VVV A nnnn

Developing a Metro style enabled desktop browser - 16

and help users complete scenarios. Metro style enabled desktop browsers are
encouraged to participate in app contracts, particularly Search, Sharing, PlayTo, and
Print. Some browser-specific examples of the utility of contracts include playing music
originating from a website on a connected (to the PC) stereo and/or sharing article
content as viewed on a website with another Metro style app.

For more information, see Windows application contracts.

Search contract

Search is unchanged from Windows 7 in terms of defaults. Metro style enabled
desktop browsers that are set as the user’s default may choose to (and are
encouraged to) participate in the Search contract of the Metro style user experience.
When a Metro style enabled desktop browser is not set as the user’s default browser,
a tile entry for the browser will not appear in the search pane.

For more information, see Quickstart: Adding Search.

Share contract

Metro style enabled desktop browsers are encouraged to help users share website
content with other Metro style apps on the system. A typical flow starts with the user
selecting some content displayed in the browser — a video, a block of text, an image —
and choosing the share charm to share the content with another app. When the user
has selected an object and chosen to share, the browser should share that selection.
In the absence of a currently selected object, the browser should share the URL to
the webpage along with metadata such as the page title and description. Browsers
should also consider implementing and sharing custom formats. For example, a
differentiating feature (that would also enhance the user experience) might be to add
extra entities to a user selection, such as a movie, and share that data as a custom
format.

For more information, see Quickstart: Sharing Content.

Play To contract

The Play To contract provides the ability to stream HTML audio, video and images
from websites to certified Play To devices. The typical scenarios are streaming a
single video from a website, or streaming a playlist of audio/video elements. It’s up to
the browser to identify and specify/update the media element that should be set as
the Play To source.

The algorithm to set the Play To source is up to the browser and could rely on a
combination of user input/selection, site developer specifying the source using a
media element attribute, and/or other disambiguation heuristic when multiple media
elements are present on the same page. For example, Internet Explorer 10 enables
webpage developers to use the x-ms-xPlayToPrimary attribute to indicate an audio,
video, or image is the default media source. Also, because Play To is enabled by
default in Internet Explorer 10, the x-ms-xPlayToDisabled attribute can be used by a
webpage developer to disable the functionality on the page. Other browser vendors
may choose to provide similar vendor-specific attributes.

VVV A nnnn

Developing a Metro style enabled desktop browser - 17

The typical flow starts with the user swiping the charms and selecting Devices. At this
point the browser is asked to provide a Play To source. If a source is specified,
available Play To target devices are shown in the Device charm. To synchronize device
events with the media elements, the browser must register for device events from
the Play To Manager.

For more information, see Streaming Media to Devices using Play To and the related
Quickstart: Using Play To in apps.

Print contract

Browsers are encouraged to implement the print contract, to support simple and
predictable printing experiences within the Metro style user experience. For more
information, see: Quickstart: Adding simple print capability.

Process Lifetime Management

Metro style enabled desktop browsers are subject to the same Process Lifetime
Management (PLM) rules as other Metro style apps. When drawing desktop windows
and managing background downloads, browsers are subject to the process lifetime
standards of desktop apps.

Close gesture

Users may choose to close a Metro style enabled desktop browser via operating
system features such as the keyboard combination ALT+F4 or by using the close
gesture. Users invoke the close gesture by “dragging” a representation of the window
from the top of the app to the bottom of the screen. When the Metro style enabled
desktop browser is active (not suspended, not in the background), painting via
ICoreWindow, it will be sent a registered window message with the string
“DefaultBrowserClosing” as it moves off screen during window close. The browser
should use this message as a signal to prepare for termination after suspension is
complete.

For example, a browser may send events to the active webpage, such as
BeforeUnload and Unload when the DefaultBrowserClosing message is received.
Some websites rely on events such as these to trigger specific behaviors, such as
sending data back to a server to mark the end of a user session.

Note: Open browser dialogs, such as those originating from webpages, should not
prevent the user from closing the browser. For instance, confirmation dialogs that
sometimes show when a page handles the BeforeUnload event should be suppressed
and not allowed to interfere with closing the browser. For more information, see
Managing the Application Lifecycle.

Completing downloads and uploads prior to suspend

Metro style enabled desktop browsers suspend when the user switches away from
the browser and resume when the user switches back to it. There are a limited
number of cases where the browser may postpone the act of suspension in order to
complete a long running user task:

VVV A nnnn

Developing a Metro style enabled desktop browser - 18

* Completing file uploads, such as an active upload via POST with a file attached or
via XMLHttpRequest

¢ Completing file downloads

Browsers are strongly encouraged to leverage the background APIs in a manner
consistent with Metro style apps. Doing so improves battery life by more efficiently
consuming system resources. For more information, see Quickstart: Downloading and
uploading files. Alternatively, Metro style enabled desktop browsers may use the
PowerCreateRequest, PowerSetRequest, and PowerClearRequest functions as
documented in the Power Availability Requests whitepaper. Note that these APIs are
only callable from medium integrity level (or higher) processes. For more
information, see Guidelines for managing app lifecycle.

Roaming browser application data

Users can easily keep their browser’s application data in sync across multiple devices
when you support roaming. Doing so benefits the user by:

¢ Reducing the amount of setup work that the user needs to do for your browser
on their second device.

* Enabling users to continue a task, such as composing a list, right where they left
off, even on a different device. Windows replicates roaming data to the cloud and
synchronizes the data to other devices where the user has installed the browser.

Windows limits the size of the application data that each app may roam. For this
reason, it is a best practice to use roaming data only for user preferences such as
favorites and browser history. For more information, see Guidelines for roaming app
data.

Metro style enabled desktop browsers can sync the following:

* Favorites / Shortcuts

* Typed URLs

* History

¢ Upto 5other registry based settings

Register for roaming

The following registrations are required in order to roam data:

¢ HTTP and HTTPS protocol registration.

* Aregistry key HKLM\Software\RegisteredApplications with the browser name
and the path to Capabilities Registry Key (of type REG_SZ For example:
Software\Example Company\Example Browser\Capabilities).

¢ AStart shortcut with PKEY_AppUserModel_IsDualMode set to TRUE (VT_BOOL).

* Aregistry key under
HKLM\Software\Microsoft\Windows\CurrentVersion\SettingsSync\BrowserSettin
gs. The key name should be the same as the browser name. No sub keys and
values are needed under this.

VVV A nnnn

Developing a Metro style enabled desktop browser - 19

* The Capabilities Registry Key should contain a subkey named “Roaming”. This
is the location where data stores are registered.

Sync behavior

Under normal circumstances, application data will be uploaded within a few minutes
of receiving a change notification. For performance reasons, however, the sync
framework may delay upload of new history entries, in some cases up to 24 hours.
When a sync causes a conflict the “last writer wins”.

Syncing favorites / Internet shortcuts

In order to roam favorites, create a registry key with the name “Favorites” under the
browser’s roaming capabilities registry key. For example: HKLM\Software\Example
Company\Example Browser\Capabilities\Roaming\Favorites. Then, create a registry
value with name “KnownFolderID” of type REG_SZ that specifies the GUID for the
known folder where the user’s favorites are stored. Internet shortcuts within this
folder and subfolder are roamed. The shortcuts must be created using the APIs as
explained in Internet Shortcuts.

Optionally, you can register to roam the order of shortcuts. To accomplish this, create
a registry value under “Favorites” capabilities with name “OrderRegPath” that
specifies the root registry key under HKCU containing the order information for the
top level “Favorites” folder and all sub folders. For example: Software\Example
Company\Example Browser\FavoritesOrder.

For the order of shortcuts in the top level “Favorites” folder, the above registry key
can contain a registry value with the name “Order” and type REG_BINARY with a
value of the browser’s choosing. For the order of shortcuts in any subfolders, this
registry key must contain corresponding sub keys mirroring the folder hierarchy
(again, with the name “Order” and type REG_BINARY).

For example, if the favorites folder is %LOCALAPPDATA%\Example Company\Example
Browser\Favorites\Sub Folder1\Sub Folder2, then the order information for the root
favorites folder must be in a registry value under HKCU\Software\Example
Company\Example Browser\FavoritesOrder, the order information for the first sub-
folder (...\Favorites\Sub Folder1) must be in a registry value under
HKCU\Software\Example Company\Example Browser\FavoritesOrder\Sub Folder1,
and so on.

Watch for changes to the favorite’s folder before refreshing the browser Ul
representation of the user’s favorites. When a shortcut is roamed for the first time,
an additional property {FMTID_Intshcut, PID_IS ROAMED } of type VT_BOOL and
value VARIANT_TRUE is added. Set the value to VARIANT_FALSE once the browser
has processed the update.

Additionally, Windows sends an extended shell change notification
SHCNE_EXTENDED_EVENT with the SHCNEE_ ORDERCHANGED flag set and the PIDL of
the folder in which the shortcut was changed. Browsers can listen for this notification
to refresh the favorites order following roaming.

VVV A nnnn

Developing a Metro style enabled desktop browser - 20

Syncing typed URLs

In order to sync typed URLs, create a registry key with the name “TypedURLs” under
the browser’s roaming capabilities registry key. For example:
HKLM\Software\Example Company\Example
Browser\Capabilities\Roaming\TypedURLs. Then, create a registry value with the
name “URLsRegPath” of type REG_SZ that specifies the path (within HKCU) that
contains the URLs in key value format. For example:

HKCU\Software\Example Company\Example Browser\TypedURLs

Name Type Value
urll REG_SZ http://www.microsoft.com
url2 REG_SZ http://msdn.microsoft.com

Windows roams 50 of the user’s most recently accessed URLs. If a user has more
recent entries, browsers may choose to store the time when each of the URLs was
typed; Windows uses this information to ensure that the most recently typed URLs
sync first. To do this, create a registry value with the name “URLsTimeRegPath” of
type REG_SZ that specifies the path (within HKCU) that contains the URL’s typed time.
For example:

HKCU\Software\Example Company\Example Browser\TypedURLsTime

Name Type Value

urll REG_BINARY = FILETIME, in UTC, of the time when the URL
was typed in the browser

url2 REG_BINARY = FILETIME, in UTC, of the time when the URL

was typed in the browser

Windows notifies the browser of an update to the list of typed URLs by sending a
message to the app’s top level window with a LPARAM value “TypedUrlsRoamed”.
Specify the window class Windows should send the message to by creating a registry
value of name “WindowClassesToNotify” of type REG_SZ and value equal to the
name of the window classes, separated by comma.

Syncing browser history

The following registrations are required in order to sync browser history:

* Implement a shell folder and register it as a KNOWNFOLDER. When the user’s
browsing history changes, call SHChangeNotify to indicate that the folder
contents have changed.

¢ Store URL history in a WinlInet cache using a browser-specific prefix ending with a
colon. For example, the Contoso browser might use the prefix “Contoso:” when
storing URLs in a WinlInet cache.

In order to sync browser history, create a registry key with the name “Winlnet” under
the browser’s roaming capabilities registry key. For example:
HKLM\Software\Example Company\Example Browser\Capabilities\Roaming\Winlnet.
Then, create a registry value with the name “KnownFolderID” of type REG_SZ that
specifies the shell folder GUID. Also, create a registry key value with the name

VVV A nnnn

Developing a Metro style enabled desktop browser - 21

“WinlnetPrefix” of type REG_SZ and value equal to the name of the browser-specific
prefix, ending with a colon (:).

For more information about using WinlInet caching APIs, see Caching.

Store the URL in the format “Prefix: username@URL” where “username” is the value
returned by the GetUserName() function. For example,

Contoso: user@http://www.microsoft.com/en-us/default.aspx

The CommitUrlCacheEntry function allows a browser to store a list of URLs that have
been accessed and associate each with a local copy of the data that was last received.
It also allows the browser to store header information (in the IpHeaderInfo
parameter). In order to roam history data, the IpHeadInfo parameter must contain a
serialized property store instead of the header info. This is done by using
PSCreateMemoryPropertyStore to create a store and saving the browser’s properties
into it. Then, use IPersistStream::Save to serialize the property store into a byte array
in memory. Finally, call CommitUrlCacheEntryA and pass the byte array for the
IpHeaderlInfo field to store the property store for that URL.

Note: A browser can append arbitrary bytes to the end of the IpHeadInfoStream to
store local data that should not be altered or roamed by Windows.

Retrieve binary history data by performing the inverse: use GetUrlCacheEntryIinfoA,
remove the prefix and username from the returned URL, and then use
PSCreateMemoryPropertyStore and IPersistStream::Load to convert the IpHeaderInfo
back into an IPropertyStore. The ANSI versions of other WinINet caching APIs such as
FindFirstUrlCacheEntryA and FindNextUrlCacheEntryA can also be used to enumerate
the cache in a similar manner.

Note: Roaming history requires use of the ANSI Winlnet cache APIs to persist binary
data. If a URL contains non-ANSI characters, encode the URL using well-known
schemes such as percent-encoding.

Detect that new URLs have been added to the cache via roaming by checking the
{FMTID_InternetSite, PID_INTSITE_ROAMED} property.

Value of PID_INTSITE_ROAMED Description

Value not set or PIDISR_UP_TO_DATE This cache entry has not been modified by
roaming.

PIDISR_NEEDS_ADD This cache entry was added to the cache by

roaming. Set PIDISR_UP_TO_DATE once
processing of the entry is complete.

PIDISR_NEEDS_UPDATE This cache entry already existed on the local
machine, but it was updated by roaming. Set
PIDISR_UP_TO_DATE once processing of the
entry is complete.

PIDISR_NEEDS_DELETE Roaming detected that this cache entry
should be deleted. For example, the user
may have cleared his or her browser history.
Delete the entry using DeleteUrlCacheEntry.

The following rules govern conflict resolution for roaming browser history:

VVV A nnnn

Developing a Metro style enabled desktop browser - 22

* The property stores in the IpHeaderInfo stream are merged such that the most
recently changed values are preserved.

¢ Ifthe property store contains the public “visit count” property
{FMTID_InternetSite, PID_INTSITE_VISITCOUNT}, the largest of the values is
preserved.

¢ Ifthere is additional data in the local cache entry’s stream after the serialized
property store, the local data is preserved.

The following rules govern what history entries roam:

* Roam: URLs with http:// or https:// schemes; Cache entries of type
“URLHISTORY_CACHE_ENTRY | NORMAL_CACHE_ENTRY”; The 1000 most recent
updated history entries

* Not Roam: URLs to images; Cache entries that do not contain a serialized
property store in their IpHeaderInfo; Properties in the serialized property store
that would require deserialization (such as VT_UNKNOWN, VT_STREAM, or
VT_STORAGE); History entries with more than 2KB in their IpHeaderInfo structure

When the browser has updated or added any history data, use the
SHChangeNotifyAPl and send a change notification for the registered known folder.
Conversely, when Windows has concluded roaming a user’s history, a timestamp of
the most recent operation is written to the registry at
HKCU\Software\Microsoft\Windows\CurrentVersion\SettingsSync\Namespace\Brow
serSettings\WinInet-browsername!LastRoamed. Compare this value with the last
known time that entries were detected to determine if history has changed.
Alternatively, running instances of the browser will receive a window message
“WM_SETTINGCHANGE” with a wParam value of “0” and an IParam value of
“WinINetRoamed”. Specify the window class Windows should send the message to
by creating a registry value of name “WindowClassesToNotify” of type REG_SZ and
value equal to the name of the window classes, comma separated, in the
\Capabilities\Roaming\WinInet registry key.

Roaming other registry settings

In addition to roaming user favorites, typed URLs, and browser history, browsers may
also sync up to a maximum of five other registry keys. Create a registry key with the
name of your choosing under the browser’s roaming capabilities registry key. For
example: HKLM\Software\Example Company\Example
Browser\Capabilities\Roaming\NewKey. Then, create a registry value named
“RegistryRoot” of type REG_SZ that specifies the path to the key under HKCU that
should be roamed.

Creating a registry value of name “FilterIn” of type REG_SZ and value containing a
comma separated list of registry values lets you specify an inclusion list for roaming.
Any values not specified that appear under the “RegistryRoot” will not be roamed.
Conversely, creating a registry value of name “FilterOut” type REG_SZ and value
containing a comma separated list of registry values to exclude lets you specify an
exclusion list for roaming. All values under the “RegistryRoot” will be roamed except
for those specified in the “FilterOut” value.

VVV A nnnn

Developing a Metro style enabled desktop browser - 23

Each time a registry key is roamed, Windows sends a message to the browser’s
window with LPARAM value “<SettingName>Roamed”. Specify the window class
Windows should send the message to by creating a registry value of name
“WindowClassesToNotify” of type REG_SZ and value equal to the name of the
window classes, comma separated, in the \Capabilities\Roaming\<SettingName>
registry key.

For more information, see Application Data.

VVV A nnnn

