TouchLogger: Inferring Keystrokes On Touch Screen From
Smartphone Motion

Abstract touch screen smartphones. Most of these phones are

_ equipped with a variety of sensors for detecting sound,
Attacks that use side channels, such as sound and eleﬁﬁage location, and motion. Our insight is that motion

tromagnetic emanation, to infer keystrokes on physicglsensors’ such as accelerometers and gyroscopes, may be

keyboards are ineffective on smartphones without phySiy,se 1o infer keystrokes. When the user types on the soft

cal keyboards. We describe a new side channel, motioneyhoard on her smartphone (especially when she holds
on touch screen smartphones with only soft keyboards, g yhone by hand rather than placing it on a fixed sur-
Since typing on different locations on the screen causef‘ace), the phone vibrates. We discover that keystroke vi-

dlfferent. vibrations, motion data can t_’e used to infer they ation on touch screens are highly correlated to the keys
keys being typed. To demonstrate this attack, we develpoing tyned. In our preliminary evaluation, we were able

oped TouchLogger, an Android application that extractsy infer correctly more than 70% of the keys typed on a
features from device orientation data to infer keyStmkeSnumber-only soft keyboard on a smartphone.

TouchLogger correctly inferred more than 70% of the
keys typed on a number-only soft keyboard on a smart-
phone. We hope to raise the awareness of motion as 3.1 Threat model

significant side channel that may leak confidential data. Currently, to read from the motion sensors, the key

logging application needs to be installed on the victim
1 Introduction smartphone. Given the increasing number of malware
applications on the smartphone market [5] and the preva-
Keyboard is the most common input device. We use keylence of untrusted third-party ad code incorporated in ap-
board to input a variety of information, some of which plications, we do not believe that this assumption is over-
are highly valuable, such as passwords, PINs, social septimistic. Also the user needs to grant the key logging
curity numbers, and credit card numbers. It came as n@pplication the privilege to read from motion sensors. We
surprise that keystroke logging is a favorite tool of tradebelieve that most users would have no qualm of granting
by attackers. The attacker can install a Trojan progranthis privilege, as it seems much less risky than other sen-
on the victim computer to log keystrokes, or use out ofsor privileges, such as the microphone or camera.
band channels to infer keystrokes. Acoustic key logger, The assumption that most users would not treat motion
for example, can infer keystroks from acoustic frequencydata as high sensitive is not just our wishful thinking.
signatures [2], timings between two keystroks [4], or lan-W3C has recently publisheBeviceOrientation Event
guage models [11]. Electromaganetic emanations of keySpecificatior{6] to allow web applications to access ac-
boards are also studied for keylogging [8]. celerometer and gyroscope sensors through Javascript,
Touch screen smartphones have changed the paradigwhich both Android 3.0 and i0S4.2 will support. This
of user interaction. Most touch screen smartphones havguggests that our motion-based key logger can be deliv-
no physical keyboard. Instead, the user types on the sofered from a website, without requiring the user to install
ware keyboard on the screen. Since there is neither sourny application.
nor electromagnetic emanation from a virtual keyboard,
the attacker can no longer infer keystrokes ba_sed on theSf_z TouchLogger
signals. Moreover, many smartphone operating systems,
such as Android and iOS, restricts privileges granted torhe primary goal of this paper is to raise the aware-
applications. In most cases, an application cannot readess of the sensitivity of motion sensor data. To demon-
keystrokes unless it is active and receives the focus ostrate the attack, we introduce TouchLogger, which in-
the screen. It seems that key loggers, at least the tradfers keystrokes on touch screen smartphones with motion
tional ones described above, are facing severe obstaclegnsors. Once the user installs TouchLogger and grants it
on touch screen smartphones. the motion sensor privilege, it starts to monitor motions
We investigate a new avenue for keystroke logging orand infer keystrokes.



2 Modeling and capturing typing-induced (pitch angle) changes if-180,180).
smartphone motion
P e y. When the device rotates along the Y-axis (usu-
; S ; ally parallel to the longer side of the screep)joll
2.1 Modeling typing-induced motion angle) changes ifr-90,90).
Since the commercial success of the iPhone, typing on ] o )
the soft keyboard on smartphones’ touch screen has be- On Android, an application reads the motion data by
come the most prevalent means of input. Compared tb€distering a motion sensor event listener, so motion data
an earlier input method that uses a stylus to touch th&loes not arrive at a constant interval. Both Android and
screen, typing with a finger causes stronger motion of OS Provide three accuracy levels based on event fre-
the smartphone. When we type, we observe that the reduéncies. The intervals of the motion data also depend
flection of distant objects on the screen shifts, and then the hardware. For example, at the highest accuracy
shift is consistent for each key. This suggests that we calfVel. the average interval of device orientation events on
infer keystrokes by the motion of smartphones. an HTC Evo 4G phone is about 30ms, while that on a
The motion of a smartphone during typing depends orfMotorola Droid phone is about 110ms.
several factors: 1) the striking force of the typing fin-
ger, _2) the re§|stance forcg of t_he supporting hand; 3_) they Inferring keystrokes via device orienta-
landing location of the typing finger; and 4) the location tion
of the supporting hand on the smartphone. The first two

factors mai_nly affect the shift of_the phone, while the lat- We designed and implemented TouchLogger, an Android
ter two mainly affects the rotation. We observe that the, | 1o infer keystrokes on the soft keyboard of smart-

first two factors likely depend on the user, while the lat- hones from the device orientation. More precisely
ter two are likely to be user-independent because (1) 0'gouchLogger infers the landing locations of the typing

each. soft keyboard configyration, each key is at a ﬁxe,qinger based on the device orientation and then looks up
location, and (2) a user typically holds hersmartphonem[he corresponding keys based on the current soft key-
a consistent way. Therefore, we would like to extract theboard configuration

rotation components while filtering out the shift compo-
nents from motion sensor data.
Most modern smartphone operating systems fire aB.1 Set up

least two types of events when certain motion is detected.i_ . . .
) : . ouchLogger collects device orientation data when user
accelerometer event and orientation everinitially we

focused on the accelerometer event because it has hight pes on the soft keyboard. The raw device orientation

X . ) ata consists of tuple@i,af,B/,y),i = 1...N, wheret
frequency than orientation event. However, we discov- : . . ,
. .is the time of the orientation event, angl, 3/ andy are
ered that data in accelerometer event reflect both shi : . X
: . ) . the azimath, pitch and roll angles of the device, &hd
and rotation, while orientation event only reflects rota-.

tion. Since we observe that typing-induced rotation isiS the number of orientation events in the entire typing

: . .~session.
more user independent than shift, we have been using - . :
For training and testing, we also developed an appli-

data in device orientation events for the rest of our study.Cation to collect key touch events. They consist of tuples

) _ ] (Li,t3,t%),i = 1...M, wherelL; is the label of the key®

2.2 Device orientation andt® are the starting and ending time of the touch event,
Data in device orientation measures angles of the deviccraeSp?C:Vely’ andv is the number of keystrokes in the
along three axes. On Android, change in the device ori>€sston:
entation triggers an orientation event, which reports a set
of intrinsic Tait-Bryan angles(-f-y) and the eventtime 3.2 Preprocessing
t[1].

g TouchLogger preprocesses the raw device orientation

e a: When the device rotates along the Z- data before itinfers keystrokes. First, it discards the az-
axis(perpendicular to the screen plare)azimuth  imath angle §) since rotation caused by typing mainly
angle) changes ifd, 360). affects pitch @) and roll (y) angles. Second, it normal-

izes the angles by eliminating the average angles, which

represent the initial orientation of the device and are

therefore irrelevant to the keystrokes. Finally, to idBnti
1Data in orientation events are mainly derived from the ougfut  the starting and ending time of keystrokes, TouchLog-

accelerometer sensor, It is different from the data in gyspscevent. ger calculates the Peak-to-Average ratios of fhand

e [3: When the device rotates along the X-axis (usu-
ally parallel to the shorter side of the screefi),




y angles, as these ratios are much larger during typing3.4  Classification
Then, during each keystroke (TouchLogger detects the . . .

duration of each keystroke based on orientation eventgve use superw;ed Iea_rnmg to infer keystrokes from fea-
rather than keystroke events), TouchLogger converts thiires extracted in Section 3.3.

raw device orientation data into to a series of tuples

t.B =B —B.v =¥ —V¥). We call each tuple theo-  Training During the training phase, we provide
tion signalof a keystroke. TouchLogger with a data set that consists of motion sig-
nals with their corresponding keys. Assuming that the
features of the same key have a Gaussian distribution,
TouchLogger calculates the me@uk g, 1K, 5) and stan-

3.3 Basic feature extraction dard deviatior( UXUB» ok o) for each keyk.

TouchLogger infers keystrokes basedfeaturesin mo- - _ o
tion signals. A good feature should be consistent among-lassification - During classification, TouchLogger ex-
motion signals caused by the same keystroke while befractsAUB andALB from each motion signal and calcu-

ing distinctive between motion signals caused by differ-lates the probabilities that the signal corresponds to each
ent keystrokes. key using theprobability density functiorior Gaussian

Because we observed that keystrokes affect the rotedistribution:

tion angle of the screen, a naive feature would be the
ratio of maximum pitch angle over the maximum roll an-

- k 1 (AUB— f5)°
gle max3)/maxy). However, our experiments showed PAUB = — ﬁexﬂ— 2 ) @
that this feature is inconsistent among motion signals for OaupV <Mt 20p,8

the same keystroke. We found that pitch angle and roll

angle do not reach their peaks simultaneously. Figure 1 p}&LB _ 1 exp— (ALB— I*l/l-(\LB)Z) )
illustrates the paths of the pitch and roll angles as the de- ox gV2m 2cr',§,_B2

vice vibrates during typing. Each path exhibits a pattern C .

with two lobes, each on one side of the horizontal axis. P" = PauB X PaLB 3)

During a keystroke, the pitch and roll angles move from
the center of the pattern to the vertergx /32 + y2)) .
on the upper lobg{ > 0) through one path, and then to €valuation shows an accuracy rate ofe3.
the vertex on the lower lobg(< 0) via another path, and

finally back to the center of the pattern. 3.5 Advanced feature extraction
We observed that the lobes of the patterns produced b

the same key point to similar directions, while the anglesﬁeSide lobe direction, we observed that the width of the
of the lobes vary for different keys. Figure 1 shows that'obes can also be used to distinguish keystrokes. There-

the upper lobes of the patterns point to up left for keysfore we ad.ded two more pairs of features to improve the
1, 4, and7, to straight up for key®, 5, ands, and to  KeyStroke inference.

up right for keys3, 6, and9. This observation is consis- The first pair of feature; are the angles of the two dom-
tent with the position of these keys on the soft keyboard"ating edgesAU andAL in Figure 1). We calculate the
(Figure 3). The directions of the lower lobes also demonM€aN,, K, and standard deviatior®,;, ox in the
strate similar patterns. Therefore, we use lobe directioff@ining phase. During classification, TouchLogger de-

TouchLogger determines the key as alig rp‘éx Our

as the feature for inferring keystrokes. termines the key as arq(mﬁ&where
Each lobe consists of two path segments, one from the
i i P = pus x Pics x Py * P (@)
horizontal axis up to the vertex, and the other one from AUB & FALB & FAU & FAL

the vertex down to the horizontal axis. To measure the Our evaluation shows that these features improve the

direction of a lobe, TouchLogger searches for dloen-  ¢|assification accuracy to @0b.

inating edgeon each path, and the direction of the lobe  The second pair of features are the average width of

iS the bisector Of the angle betWeen the two dominatinghe upper (and |0\Ner) |0be, deﬁned as the area Of the

edges. polygon formed by the upper (and lower) lobes and the
For each pattern, we extract two features: the angldorizontal axis divided by the pitch angle (y axis value)

between the direction of the upper lobe and the x-axiof the upper (or lower) vertex. Combining all these three

(AUB, or Angle of Upper Bisectdr and the angle be- pairs of features (two from this section and one from Sec-

tween the direction of the lower lobe and the x-a§&B,  tion 3.3), TouchLogger successfully inferred.5% of

or Angle of Lower BisectQras shown in Figure 1. all keystrokes.
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Figure 1: Typical patterns of patch angles and roll anglesmiifferent digit keys are pressed. We extract features
from these patterns.

Figure 2 shows the means and standard deviations %4 R 4 1 12:58
all three pairs of features. The x axis represents featur Qi
associated with the upper lobe while the y axis represen PSR a0t
features associated with the lower lobe. The boxes repr
sent the range of features in the training data, where t
center of each box represents the mean of each feat
while the width and height represent half of the standar|
deviations. The distances between the boxes reflect t
quality of the features. For example, Figure 2 shows th
the first pair of features are a good discriminator betwee
keys1, 2 and3 or keys4, 5 andsé, but not between keys
and4 or keys3 and9. The other two pairs of features are
inferior to the first pair on most keys (because the boxes
are much closer to each other), but they complement the
first feature pair as they can distinguish keyand4 or
keys3 and9 better.

Figure 3: Data collection application.

4 Evaluation digit keys, and TouchLogger correctly inferred 71.5% of
them. Table 1 shows the inference result on each key.
We conducted a preliminary evaluation of TouchLoggerThe keys with highest accuracy rates are digits 1 and 9,
on an HTC Evo 4G smartphone. Figure 3 shows theboth located on the corner of the soft keyboard. This is
user interface of the data collecting application. We col-consistent with Figure 2, which shows that the feature
lected three datasets of keystrokes on a number-only soBoxes for keys 1 and 9 are separated further than those
keyboard in the landscape mode. Each dataset includder the other keys. Among all the 90 false inference rates
multiple sessions containing from 4 to 25 consecutive(all the rates not on the diagonal) in Table 1, 12 of them
keystrokes. The datasets cover all the 16 keys on the sofire larger than or equal to 10%. Out of these 12 worse
keyboard, but we use only the data on the digit keys tccases, in 9 cases the inferred key is in the same column
train and evaluate TouchLogger. as the actual key, and in 7 cases the inferred key is next
TouchLogger achieves an accuracy rate of over 70%o the actual key in the same column. This suggests that
on each datasets. The largest data set has 449 strokespifysical proximity decreases inference accuracy.
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Figure 2: The distribution of three pairs of features extreddrom the device orientation data over different digike
Each pair has one value for the upper lobe of the pattern amfboithe lower lobe. The horizontal and vertical centers
of each box represent the means of one feature pair whilddthand length represent the standard deviations. The
digits around the boxes are their corresponding keys.

Size of training dataset The smaller the required 5 Discussions

training dataset, the easier it is for the attacker. We exam-

ined the convergence of the mean and standard deviatidractors affecting accuracy rate The motion of the

of the features used in classification as the training sesmartphone during keystroke is affected by many fac-
size increases. Figure 4 shows t#tB and ALB for tors, such as the typing force, the resistance force of the
one key converge decently after 5 keystrokes. holding hand, the original orientation of the device, and
the location where the supporting hand holds the device.
Among these factors, only the last one may have signifi-
cant impact on TouchLogger, because it may change the
pivot points of the device. However, our evaluation sug-

40 T 2.0 .
— AUB-:10 gests that a user usually supports his smartphone at the
35 — ﬁbBTm same location. The datasets presented in Section 4 are
= AU collected from the same user on multiple days, where the

w
(=)
T
1

1
=
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user held his device in his naturally way each time rather
than striving to be consistent.
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Application to other devices We believe that

,_.
o
Mean of lobe width

Mean of AUB/ALB and AU/AL
N
o

15 TouchLogger can be applied to other devices. Particu-
10l los Iarly, we e_xpect TouchLogger to perform even better on
devices with larger screens, such as tablet computers.
3 ®—e Upper lobe width
® -® |ower lobe width . .
% % 50 39 20 290 Other motion sensors TouchLogger uses data in de-
Size of training set for key '0' vice orientation events, which are mainly derived from

the accelerometer. We could try other sensors that cap-
Figure 4: The relationship between the means of signature motion. Gyroscope, for instance, measures the rate
tures and the size of the training set. of rotation around the X,Y and Z axises, and its output

can be easily converted to device orientation through in-

tegral. Camera could also be used to detect motion.



| Actual key |

Result by inferring \

0 1 2 3 4 5 6 7 8 9
0 64% - 6% 10% - 12% - - 8% -
1 - 86.3% - - 13.7% - - - - -
2 8.3% | 4.2% | 68.8% | 4.2% - 21% | 3.1% | 4.2% | 6.2% -
3 18% - - 70% - - 6% - - 6%
4 - 10% 8% - 2% | 2% - 8% - -
5 8% 4% 4% 8% - 60% - 4% | 12% -
6 - - 1.9% | 7.5% - 1.9% | 77.4% - - 11.3%
7 2% - 4% - 16% | 14% - 56% | 8% -
8 - - 10% - - 15% - - 75% -
9 - - - 3.8% - 3.8% | 11.5% - - 80.8%

Table 1: Distribution of inference results. 321 (71.5%) of#49 keystrokes are correctly inferred.

6 Related works

Key logging based on side channels Researchers have
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