White Paper

JSR 170
Overview

Standardizing the Content
Repository Interface

Roy T. Fielding, Ph.D.
Chief Scientist, Day Software

13 March 2005

Global Content Management www.day.com




Table of Contents

1 Introduction 3
2 Advantages of a Standard API 4
3 Content Repository API for Java Technology (JCR) 5
3.1 Repository Model 6
3.2 Level 1 Functionality 7
3.3 Level 2 Functionality 9
3.4 Optional Functionality 10
3.5 Non-features 11
4 Deployment 11
4.1 JSR 170 and the Java Community Process 12
4.2 Open Source Collaboration 12
4.3 Commercial Products 13
5 Conclusions 13

© 2005 Day Management AG, Switzerland www.day.com



Introduction

The World Wide Web is the most pervasive software system ever developed. The Web uses a
simple, standardized interface to encompass information from all over the world regardless of
how that information is created, stored, and processed behind the interface.l*] As a result, Web-
based services can be implemented on any form of computer system, whether or not they are
connected to the Internet.

The Web architecture has a simplifying effect that transcends the complexity of traditional
network-based software. Unfortunately, those simplifying principles are often ignored when it

comes to developing applications behind the Web interface. The .NET and J2EE™

platforms, in
particular, emphasize development of software services through the use of complex, service-
specific interfaces based on proprietary APls. Software developers are encouraged to make each
interface specific to the object being manipulated, resulting in applications that are fragile when
changed and incomprehensible to those tasked with maintaining them. IT departments often find
that it is less expensive to develop a new application from scratch than it is would be to adjust

their existing applications as user requirements change over time.

Application development doesn’t have to mirror the complexity of its applications. The Web has
shown that complex goals can be achieved using a very simple interface based on content-
centric design and a commitment to standardization. The same architectural principles that
made the Web successful can be applied to application development within servers.

A content-centric interface eases the task of application integration by focusing on the uniform
nature of content rather than the specific controls of any given application. To illustrate the
difference between content-centric and control-centric interfaces, consider the task of
integrating with a word processing application. A control-centric approach would be to look at
the functionality provided by the command menus of the word processor, such as
“Format/Paragraph...,” and provide method interfaces that replicate the commands and data-
entry dialogs of the word processor. A content-centric approach would be to focus on the data
managed by the application: in this case, a sequence of paragraphs with associated formatting.

The control-centric approach is able to take advantage of the unique behavior and functionality
built into the word processor, but that comes at great cost: the API will consist of hundreds of
actions that are tied to a specific version of one vendor’s word processor. In contrast, the data-
centric approach limits functionality directly obtainable via the API, but enables an unlimited
number of additional tools to be applied to the common data model, eventually surpassing the
functionality that could be provided by any single vendor.

The clearest differentiation between the two approaches, however, can be seen when multiple
applications are integrated to form a combined application. The interface points of a control-
centric architecture grow as an arithmetic progression (order n?), whereas the interface points of
a data-centric architecture are strictly linear in growth (order n). The application integration task
simply does not scale with control-centric architectures.

© 2005 Day Management AG, Switzerland www.day.com



Following the Web’s architectural principles in designing a content-centric interface does not
imply we are limited to the protocols and data formats that make up the Web interface (e.g.,
HTTP and HTML); instead, we can simply learn from the design principles of the Web and its
focus on uniform identifiers, standard methods, and extensible representation types.?!
Interactions between Web clients and servers consist of course-grained messages exchanged
over high-latency networks. In contrast, application development within a server consists
primarily of fine-grain interactions upon local data stores. Therefore, what is needed is a
simplifying architecture that promotes content-centric design via a uniform interface, and yet
one that is as suitable for tiny data interactions as it is for multi-gigabyte data transfers. We
refer to that interface as a Content Repository API.

A content repository is a generic application data “super store.” In addition to being adept at
handling both small and large-scale data interactions, a content repository is expected to
manipulate and store structured and unstructured content, binary and text formats, metadata,
and relationships that vary dynamically. Support for advanced content services are also
desirable, such as uniform access control, locking, transactions, versioning, observation, and
search. In some cases, a content repository will be embedded within the same server as the
application, while in others it will be based on separate servers for the sake of availability and
load balancing.

Advantages of a Standard API

Interface standards clearly benefit application developers, project managers, and the community
that supplies them with tools, training, and infrastructure. The software industry has seen this
pattern of innovation, standardization, and rapid adoption many times in its history. Consumers
of enterprise software find it in their best interests to prefer vendors that produce standards-
based architectures, rather than vendors that leave them stranded on a software island.

Application developers can confidently use a standard interface as the basis of their applications
without fear of becoming subject to the whims of any single vendor (i.e., vendor lock-in). The
interface allows an application to be ported from one implementation of a content repository to
another, based on whatever system provides the most value for that application. Furthermore,
the standard promotes a shared vocabulary for the developers, making it easier to quickly
express design ideas and potential implementations, and eliminating the need to learn dozens of
proprietary APIs that are specific to each application.

Software project managers need standards to reduce risk in project planning. Using a common
interface promotes reuse of both experience and code, reducing future costs and making it
easier to estimate future projects based on past experience. Likewise, adopting technology that
can be supported by multiple vendors reduces the risk that a project will become dependent on
any single supplier. A content repository standard will make it easier to compare repositories
from multiple vendors, achieving a better fit for current applications, while at the same time
providing a greater return on investment by not being limited to a single purpose.

© 2005 Day Management AG, Switzerland www.day.com



Availability of a standard encourages the development of independent documentation,
consulting, and training programs. Software development tools with built-in support for the
interface soon follow, which in turn promotes use of the interface for additional applications. A
multitude of applications creates a market opportunity for infrastructure software development
that far exceeds the value of any single application, thus becoming a focus for performance
optimization.

Day Software, with over a decade of experience building Web applications and enterprise
content management software, developed a uniform interface for content-centric J2SE/J2EE™
application development as part of its Communiqué product platform. However, just defining the
interface is not enough. In order to encourage the same social network-effects that enabled the
Web to be implemented across so many different platforms, the content repository interface
must be standardized.

Content Repository API for Java Technology (JCR)

The Content Repository API for Java Technology (JCR) is an ongoing effort to define a standard
repository interface for the J2SE/J2EE™ platforms.B! The goal of a content repository API is to
abstract the details of application data storage and retrieval such that many different
applications can use the same interface, for multiple purposes, without significant performance
degradation. Content services can then be layered on top of that abstraction to enable software
reuse and reduce application development time.

A traditional application uses multiple data stores during its operation. For example, a typical
email application will store its configuration in a property list, its address book in a table,
messages within indexed files (folders), message properties in separate tables, and search
indices in a binary hash. In most cases, each of those storage formats would have their own
interface. The application developer would spend a significant portion of the development effort
designing, creating, and maintaining those interfaces.

In contrast, a content repository APl separates the issues of content storage and efficient
retrieval. The application developer defines how the content is identified via the interface, writes
the content, and then uses the built-in services of the API to perform efficient retrieval in a
variety of modes: individual reads, traversals of related data, hierarchical search, and full
database query. The real storage format is separated from the application interactions, allowing
the most appropriate storage subsystem to be selected based on observing the actual
performance of the application, rather than by making a premature decision early in the
application’s design. The application developer doesn’t have to worry about parsing file formats,
maintaining search indices for text content, managing transactions, or exporting data between
applications; content services like those can be provided by a repository APl without being
specific to the application.

Designing an API such that it can be independent from both applications and underlying data
stores is a challenge. JCR has met that challenge through a generic, hierarchical data model
based on extensible node types and content properties, levels of functionality to distinguish

© 2005 Day Management AG, Switzerland www.day.com



3.1

read-only from read/write repositories, and optional functionality for higher-level content
services.

Repository Model

The heart of JCR is its data model for the repository interface, which we refer to as the
repository model. The repository model defines how data stored within the repository is
identified and structured from the point of view of the client. When the client wishes to perform
an operation on the data, it expresses those operations in terms of their effect on the repository
model. When the client requests a save operation, or commits a transaction that includes a save,
the repository translates the modifications that the client made to its repository model into
actual data storage actions corresponding to its storage subsystems.

The repository model consists of an unbounded set of named workspaces, with each workspace
containing a virtual hierarchy of items in the form of a tree of nodes and properties. Nodes
provide names and structure to the content while properties contain the content. The easiest
way to visualize a JCR workspace is through comparison with the Unix file system structure,
which consists of a tree of directories and files. However, there are some distinct differences.

A repository may contain many workspaces, each with its own name and root node.

Although each workspace is independent in the sense that node hierarchy and content
within that workspace are not directly affected by changes in other workspaces, there
does exist a correspondence relationship between nodes in different workspaces. Node
correspondence enables an application to track changes within other workspaces and
perform comparisons, a feature commonly required by collaborative applications
involving multiple users.

A node is typed using namespaced (extensible) names, which allows content to be
structured according to standardized constraints. For example, some node types may be
similar to a directory, consisting only of a collection of child nodes, while other node
types may be closer to a file (e.g., consisting of a set of child properties for the content,
a creation date, last-modified date, owner, etc.), and still others may consist of a
combination of nodes and properties.

A node may be versioned through an associated version graph of past changes.

It is important to note that the data model for the interface (the repository model) is rarely the
same as the data models used by the repository’s underlying storage subsystems. For example,
a client may traverse a catalog of items stored for an e-commerce store, make some minor
changes to the item descriptions and availability dates, and save those changes as if it were
working on individual files in a file system tree. The repository, however, may have as its
backing storage a hierarchical database for the item descriptions, a separate relational database
for the availability dates, and a backup system for old versions: the client’'s changes are made
persistent by copying the current state to the versioned backup and then performing set
operations on the several database records corresponding to the content changed by the client.

© 2005 Day Management AG, Switzerland www.day.com



The repository knows how to make the client’s changes persistent because that is part of the
repository configuration, rather than part of the application programming task, and thus the
application developer doesn’t need to worry about how the data is actually stored and the
multitude of potential interfaces for those storage subsystems.

Of course, the complexity and work of building interfaces between the repository and its
underlying storage subsystems doesn’t just disappear. Instead, it becomes isolated within the
repository and thus manageable from the point of view of the customer. The repository
implementation can be purchased from an existing vendor, such as Day Software, or constructed
as a separate project. With JCR, the customer has the ability to upgrade to more complex forms
of repository as the application matures and its actual needs become clear. For that reason, JCR
includes two levels of required functionality for a compliant implementation of a repository,
along with a separate list of optional content services that may be accessed through the
standard API but need not be implemented by every repository.

Level 1 Functionality

JCR Level 1 provides for the simplest of repositories: those that only support read-only access.
This makes it possible for a significant number of basic implementations to be deployed quickly,
particularly in those cases where content is stored on a legacy platform and the needs of the
application are supplied by read-only access. In addition, Level 1 includes support for export via
XML, allowing the content to be migrated to other platforms or to a Level 2 repository when that
is eventually desired.

Level 1 includes the following major functionality:

Initiating a session with a workspace (login). A client connects to the repository by
calling a login method with a workspace name and credentials. If the login is successful,
the client receives a session tied to the specified workspace that is filtered according to
the client’s credentials; i.e., the client can access any node or property within the
workspace for which their access is authorized by the session login and can determine if
it has permission to perform a given action prior to performing it. A repository can define
its own access control system or make use of an external mechanism, such as the Java
Authentication and Authorization Service (JAAS).®!

Retrieval and traversal of nodes and properties. Once a session is obtained, a client
can retrieve items within the workspace by traversing the tree, by directly accessing a
particular node, or by traversal of a set of query results (discussed below). Traversing
the tree consists of retrieving the root node, requesting its children, and then traversing
its children in turn. Direct retrieval of a node can be accomplished by requesting a path,
such as “/customer/acme/lIrvine/address”, or by requesting the unique identifier (UUID)
of a referenceable node. JCR provides methods for access via traversal of parent/child
relationships, iteration over a set, hierarchical path, and unique identifier because each
method has its advantages and disadvantages, with the “best” form of access depending
on the structure of the content and the operations desired by the client.

© 2005 Day Management AG, Switzerland www.day.com



Reading the values of properties. All content in the repository is ultimately accessed
through properties. JCR does not distinguish between “real” data and metadata, though
it does allow node types to designate a primary child item that can be indirectly
retrieved without knowing its name. Property types define the expected format (and
possible conversions) for the content, with built-in types provided for String, Binary,
Date, Double, Long, Boolean, Name, Path, and Reference. The latter two supply content
indirection via a repository path or UUID.

Export to XML. JCR Level 1 supports two mappings of the JCR data model to XML: the
system view and the document view. The system view mapping provides a complete
serialization of workspace content to XML without loss of information, meaning that the
complete content of a workspace can be exported. The advantage of the system view is
that any valid repository content can be expressed in XML. The disadvantage is that the
resulting format is somewhat difficult for a human to read. The document view, in
contrast, is designed to be more human-readable, though it achieves this at the expense
of completeness. The document view’s value lies primarily in making XPath queries
easier to write and understand.

Query facility with XPath syntax. XPath is a search language originally designed for
selecting elements from an XML document.[* XPath provides a convenient syntax for
searching JCR content because the repository model’s tree of nodes and properties is
analogous to an XML document’s tree of elements, element attributes, and element
content. XPath query expressions can be defined and executed as if they were being
applied to an XML document view of the current workspace, returning a table of property
names and content matching the query.

Discovery of available node types. Every node in a JCR repository must have one and
only one primary node type. The primary node type defines the names, types and other
characteristics of the properties and child nodes that this node is allowed (or required) to
have. A node may also have one or more “mixin” types that mandate additional
characteristics to those enforced by its primary node type (e.g., more child nodes,
properties, and their respective names and types). JCR Level 1 provides methods for
discovering the node types of existing nodes and reading the definitions of node types
that are available in the repository.

Transient namespace remapping. The name of a node or property may have a prefix,
delimited by a single ':* (colon) character, indicating the namespace of the item’s name.
Namespaces in JCR is patterned after XML namespaces: the prefix refers to a
namespace, identified by a URI, which acts as a qualifier to minimize name collisions.™
Every compliant repository has a namespace registry that maps each namespace prefix
to its corresponding URI, including several built-in namespace prefixes that are reserved
by JCR. In Level 1 repositories, the prefix assigned to a registered namespace may be
temporarily overridden by another prefix within the scope of a particular session.

© 2005 Day Management AG, Switzerland www.day.com



3.3

The goal of JCR Level 1 is to support the needs of read-only applications with a simple repository
implementation that remains compliant with the JCR standard. In this way, application
developers can remain within a single APl even when the needs of the particular application
under development do not justify a full-featured repository. For example, read-only applications
typically only need a static configuration. Real content management applications require the
bidirectional features of Level 2.

Level 2 Functionality

JCR Level 2 includes the functionality of reading and writing content, importing from other
sources (including other JCR repositories), and managing content definition and structuring using
extensible node types. In addition to the Level 1 features described above, a Level 2 repository
must support the following major features.

Adding and removing nodes and properties. Level 2 includes methods for adding,
moving, copying, and removing items within the session’s workspace, to be persisted
when the client requests a save, as well as methods for moving, copying, and cloning
items between workspaces. A client can also compare its unsaved changes to the current
workspace state (e.g., to discover changes that may have been saved by some other
client) and either merge the current state into its own changes or discard the changes
altogether.

Writing the values of properties. Property values, where most of the content (aside
from structuring information) is actually stored, can be set in Level 2 via methods on the
node and property objects. Property types are checked and the value is either converted
to the defined format for that property or an exception is raised if the value is
incompatible with the expected format.

Import from XML. Level 2 allows arbitrary XML documents to be imported into the
repository as a tree of nodes and properties. If the XML document is in the form of JCR’s
system view, then the import is the equivalent of a “restore” operation from backup,
completing a round-trip from the XML export functionality of Level 1. Otherwise, the XML
import is processed as if it were a document view, adding the XML namespace
declarations to the repository’s namespace registry and building a tree of JCR nodes and
properties that match the structure and names within the XML document.

Assigning node types to nodes. Level 2 provides methods for assigning primary and
mixin types to nodes. In some cases, type assignment will be made automatically based
on the type definition of the node’s parent. For example, if a node type requires that all
of its children be of primary type “my:customer”, then any child created for that node
will default to that primary type and any attempt to add a child with some other primary
type will result in an exception. Node types can therefore be used to enforce data type
constraints on content.

© 2005 Day Management AG, Switzerland www.day.com



Persistent namespace changes. Level 2 repositories have the capability to add,
remove and change the set of namespaces stored in the namespace registry, excluding
the built-in namespaces required by JCR.

The goal of Level 2 is to complete the required functionality for a writeable content repository
without creating too much of a burden for implementations. As such, it leaves optional many of
the features that are provided by modern content management and transaction systems.

Optional Functionality

JCR provides a standard interface to additional content services as optional functionality. These
features are independent of one another and do not depend on Level 2 functionality; thus, each
feature may be individually supported by any Level 1 or Level 2 repository.

Locking allows a user to temporarily lock nodes in order to prevent other users from
changing them. This function is typically used to reserve access to a node, since JCR
Level 2 automatically prevents conflicting updates through its independent workspaces.

Transactions may be supported through adherence to the Java Transaction API
(ITA).I1 JTA provides for two general approaches to transactions: container-managed
transactions and user-managed transactions. In container-managed transactions, the
transaction management is taken care of by the application server and is entirely
transparent to the client of the JCR API. In user-managed transactions, the client of the
JCR API may choose to control transaction boundaries from within the application. A JCR
implementation must support both of these approaches if it provides the transactions
feature.

Versioning allows the state of a node to be recorded in such a way that it can later be
viewed or restored. The JCR versioning system is modeled after the Workspace
Versioning and Configuration Management (WVCM) API defined by JSR 147.81 A
versioning repository has a special version storage area consisting of version histories: a
collection of node versions connected to one another by the successor relationship. A
new version is added to the version history of a versionable node when one of its
workspace instances is checked-in. Each new version is attached to the version history
as the successor of one (or more) of the existing versions. The resulting version history
is a directed acyclic graph of node state as it has changed over time.

Observation enables applications to register interest in events that describe changes to
a workspace and then monitor and respond to those events. The observation mechanism
dispatches events when a persistent change is made to the workspace.

SQL search provides an additional query language beyond the XPath search of Level 1.

Optional features allow for a variety of repository implementations while retaining a single API
for application development. Application deployment specialists can select repository capacity
and feature sets based on the application’s needs, rather than some pre-determined level of
functionality, thereby reducing costs and minimizing complexity.

© 2005 Day Management AG, Switzerland www.day.com



3.5

Non-features

As with any well-designed API, the JCR interface only defines what is needed for interoperability
between independently developed systems. It does not define how vendors must implement
applications that use the repository, including many of the management applications that
repository vendors will need to implement to manage the repository itself. Some of these “non-
features” include:

Managing workspace creation, deletion, and naming. JCR does not provide a means for
creating a named workspace, changing the name of a workspace, or deleting a
workspace. Administrative tasks are usually specific to a repository’s implementation and
outside the scope of an application interface, for the same reason that file system
creation (disk format) is outside the scope of a file API.

Managing node types. JCR does not supply methods for defining, creating or managing
node types. The wide range of approaches used to type entities in existing repositories
makes it very difficult to define a single mechanism for node type configuration.
Therefore, JCR limits itself to node type assignment and discovery.

Managing users and access control lists. JCR is designed to make use of existing access
control systems rather than invent one that is particular to the repository APl. However,
we won’t be surprised if some access control implementations decide to use JCR for their
own content (just like other applications).

Workflow. Workflow (a.k.a., business process automation) is an application feature
commonly found in advanced content management systems. Many of the features
supported by JCR (e.g., observation) are particularly useful to workflow engines, but the
engine itself and its associated management functions are not part of the JCR interface.

Semantic information model. JCR does not assume or require anything about the content
exchanged via the interface. Applications may create such models and may constrain
themselves (and their node types) to obey those models, but JCR is agnostic.

In addition to the non-features noted above, JCR is also frequently mistaken to be a network
protocol or a replacement for the likes of HTTP or WebDAV. JCR’s interactions take place within
the J2SE/J2EE™ environment and, though they could be mapped to an application-layer network
protocol, such is not a goal of the repository API. When WebDAV is used as an alternative
interface to a JCR-based repository, JCR’s role in relation to the WebDAYV protocol is similar to
the role of the Java™ Servlet interface in relation to HTTP.

Deployment

An API can only be innovative if it gets deployed. Day Software has carefully planned and
promoted use of the JCR interface through its leadership in the Java Community Process,
collaboration with the Apache Software Foundation’s open source communities, and development
of its own next generation commercial products based on JCR.

© 2005 Day Management AG, Switzerland www.day.com



4.1

4.2

JSR 170 and the Java Community Process

Industry standards for the Java™ language and J2SE/J2EE™ platforms are created within the
Java Community Process (http://jcp.org/). Members of the JCP participate in the proposal and
development of community specifications, referred to as Java Specification Requests (JSRs). In
February 2002, Day Software proposed the creation of an expert group to define a standard
content repository APIl. The proposal was accepted, with JSR 170 formed as a result and David
Nuscheler (Day Software’s CTO) appointed as specification lead. The expert group has included
members from 21 different companies.

The JSR 170 expert group are now in the final stages of producing a first version of the Content
Repository API for Java™ Technology, having published a proposed final draft for public review
and anticipating only minor changes before submission for final approval.

The JCR specification is a collaborative product of the specification lead, David Nuscheler (Day
Software), the author, Peeter Piegaze (Day Software), and other members of the JSR 170 expert
group, including Tim Anderson (Intalio), Gordon Bell (Hummingbird), Geoff Clemm (IBM), David
Choy (IBM), Jeff Collins (Vignette), Stefan Guggisberg (Day Software), Stefano Mazzocchi
(Apache Software Foundation), James Myers (Pacific Northwest National Laboratories), James
Owen (BEA), Franz Pfeifroth (Fujitsu), Corprew Reed (FileNet), Victor Spivak (Documentum),
David B. Victor (IBM), as well as many others who contributed with corrections and suggestions.

Open Source Collaboration

As specification lead, Day Software is responsible for licensing the JCR specification, its reference
implementation (RI), and technology compatibility kit (TCK) in a form that allows other
organizations to create independent implementations of the standard once it has been accepted.
In order to promote deployment and use of the interface, Day Software decided early in the
process to license the specifications under the most liberal terms possible, such that open source
projects can implement to the specification without concern.

In order to further promote application development and ensure that the JCR reference
implementation and TCK receive the open review, testing, and collaboration that only a true
open source community can provide, Day Software licensed the initial Rl and TCK
implementations to The Apache Software Foundation (http://www.apache.org/) for use in the

Jackrabbit project.
http://incubator.apache.org/projects/jackrabbit.html

Jackrabbit is currently under incubation and will most likely remain so until the final JCR
specification is released and the JCP’s constraints on independent implementations are lifted.
Several Apache veterans have been members of the JCR expert group since its inception and
many other Apache projects are investigating use of JCR as their primary content repository
interface. Day Software continues to participate in the Jackrabbit project and will use the code
within the official (binary) Rl and TCK releases, thereby allowing developers to beta test against
the open source versions as well as the official versions.

© 2005 Day Management AG, Switzerland www.day.com


http://jcp.org/
http://www.apache.org/

4.3

Commercial Products

JCR's design is based on experience gained from Day Software's Communiqué family of products
for enterprise content management. Future versions of Communiqué will continue that
leadership through its combination of the first full-featured implementation of a JCR-based
repository along with the complete suite of applications and tools needed for enterprise content
management.

In addition, Day Software has produced a standalone release of its JCR implementation, Content
Repository Extreme (CRX), designed for embedded applications and OEM licensing. CRX allows
for the storage, retrieval and management of content across large-scale enterprises, while
protecting technology investment in content and applications, thus providing a content
infrastructure that is future-proof and sustainable.

In addition to the complete feature set of the JCR API, CRX provides a number of useful tools
beyond the specification to help create and maintain repositories.

User tools that enable easy browsing of the repository (Content Explorer), import of
content in original form or with automated decomposition into hierarchical nodes
(Content Loader), and export of content into XML or ZIP format (Content Zipper) for
dissemination of content to remote systems and transfers between repository
implementations.

Administrative tools for user, node type, and namespace management, as well as cluster
management for high availability installations.

Integration with existing Internet standards, such as remote access via WebDAYV and
external user authentication via LDAP.

Other commercial implementations, tools, and applications based upon JCR are anticipated once
the specification has been formally approved.

Conclusions

The Content Repository API for Java™ Technology (JCR) is poised to revolutionize the
development of J2SE/J2EE™ applications in the same way that the Web has revolutionized the
development of network-based applications. JCR’s interface designers have followed the guiding
principles of the Web to simplify the interactions between an application and its content
repository, thus replacing many application-specific or storage-specific interfaces with a single,
generic API for content repository manipulation.

JCR is a boon for application developers. Its multipurpose nature and agnostic content model
encourages reuse of the same code for many different applications, reducing both the effort
spent on development per application and the number of interfaces that must be learned along
the way. Its clean separation between content manipulation and storage management allows the
repository implementation to be chosen based on the actual performance characteristics of the
application rather than some potential characteristics that were imagined early in the application

© 2005 Day Management AG, Switzerland www.day.com



design. JCR enables developers to build full-featured applications based on open source
implementations of a repository while maintaining compatibility with the proprietary repositories
that are the mainstay of large data centers.

Application owners will gain control over their investment in repository infrastructure by
leveraging the market created by an industry standard interface. Purchasing managers can
compare repository implementations on the basis of tested performance and standard feature
sets, rather than artificial benchmarks. And, when their needs eventually change, the content
can be migrated from one repository to another, using a standard XML format, without changing
any of the applications that have been built to create, manage, and manipulate that content.

Most significantly, however, JCR holds great promise for eliminating the information silos created
by application-specific storage mechanisms and proprietary APls. Content management systems
based on the JCR interface, such as Day Software’s Communiqué, will be able to manage all of
the content within all of the applications that make use of the repository, thus unifying
information access, workflow, and presentation across the entire enterprise.

© 2005 Day Management AG, Switzerland www.day.com



References

[1] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.
<http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm=>

[2] W3C Technical Architecture Group. Architecture of the World Wide Web, Volume One. W3C
Recommendation, 15 December 2004. <http://www.w3.orqg/TR/webarch/>

[3] Day Software. Content Repository API for Java™ Technology Specification. Java Specification
Request 170, version 0.16.1, 24 December 2004.
<http://www.jcp.org/en/jsr/detail?id=170>

[4] DeRose, S. and J. Clark, eds. XML Path Language (XPath), Version 1.0. W3C
Recommendation, 16 November 1999. <http://www.w3.org/TR/Xpath>

[5] Bray, T., Hollander, D., and A. Layman, eds. Namespaces in XML. W3C Recommendation,
14 January 1999. <http://www.w3.0rg/TR/REC-xml-names=>

[6] Sun Microsystems. Java Authentication and Authorization Service (JAAS).
<http://java.sun.com/products/jaas/>

[7] Sun Microsystems. Java Transaction APl (JTA) Specification.
<http://java.sun.com/products/jta/index.htm|>

[8] IBM. Workspace Versioning and Configuration Management (WVCM) API. Java Specification
Request 147. <http://www.jcp.org/en/jsr/detail?id=147>

Author

Roy T. Fielding is chief scientist at Day Software. Dr. Fielding is best known for his work in
developing and defining the modern World Wide Web infrastructure as architect of the current
Hypertext Transfer Protocol (HTTP/1.1), co-author of the Internet standards for HTTP and
Uniform Resource ldentifiers (URI), co-founder the Apache HTTP Server Project, and former
chairman of the Apache Software Foundation. His research interests include the World Wide
Web, software architecture for network-based applications, application-layer network protocols,
collaborative software development methods, and global software engineering environments. His
dissertation, Architectural Styles and the Design of Network-based Software Architectures,
defines the REST architectural style as a model for the design principles behind the modern Web
architecture. Dr. Fielding was honored with the 1999 ACM Software System Award—the
computing society's most prestigious award for software—for his work on the Apache HTTP
server project. He has also been honored by MIT Technology Review as a member of the first
TR100 (the top 100 young innovators for 1999) and by the O'Reilly Open Source 2000 with the
Appaloosa Award for Vision. He continues to serve as a member of the Apache Software
Foundation, an elected member of the W3C Technical Architecture Group, and an external
advisor for the University of California’s Institute for Software Research. Dr. Fielding received his
Ph.D. in Information and Computer Science from the University of California, Irvine.

© 2005 Day Management AG, Switzerland www.day.com


http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.w3.org/TR/webarch/
http://www.jcp.org/en/jsr/detail?id=170
http://www.w3.org/TR/xpath
http://www.w3.org/TR/REC-xml-names
http://java.sun.com/products/jaas/
http://java.sun.com/products/jta/index.html
http://www.jcp.org/en/jsr/detail?id=147

Day Software is a leading provider of integrated content, portal and digital asset management
software. Day's technology Communiqué offers a comprehensive, rapidly deployable framework
to unify and manage all digital business data, systems, applications and processes through the
web. Communiqué's content-centric architecture, and its innovative ContentBus, turns the entire
business into a virtual repository, bringing together content from any system, regardless of
location, language or platform.

Day is an international company, founded in 1993, and listed on the SWX Swiss Exchange (SWX:
DAYN) since April 2000. Day's customers are some of the largest global corporations and include
Audi, DaimlerChrysler, Deutsche Post World Net, General Electric, Intercontinental Hotels Group,
McDonald’s, UBS and Volkswagen.

For more information

Day Software AG
Barfusserplatz 6

4001 Basel, Switzerland
T +41 61 226 55 85

E-Mail info@day.com

© 2005 Day Management AG, Switzerland.

Day, the Day logo, Communiqué and ContentBus are registered trademarks and service marks,
or are trademarks and service marks of Day Management AG, Switzerland, in various countries
around the world. Java™, J2SE™, and J2EE™ are trademarks, trade names, or service names of
Sun Microsystems, Inc. All other product names and company logos mentioned in the
information, documents or other items provided or available herein may be the trademarks of
their respective owners.

© 2005 Day Management AG, Switzerland www.day.com


mailto:info@day.com



