
Imendio's Vision on GTK+Imendio's Vision on GTK+
March 10, 2008 Berlin GTK+ HackfestMarch 10, 2008 Berlin GTK+ Hackfest

GTK+ State of the UnionGTK+ State of the Union

22//1616

Introduction

● People like GTK+; GTK+ has a large user base
● These users expect GTK+ to move forward
● Moving forwards means having vision

GTK+ State of the UnionGTK+ State of the Union

33//1616

Imendio's vision?

● So what is our long-term vision for GTK+?
● Looks nicer

– Animations, physics, stack UI, non-standard UI, 2.5d/3d
effects

● Easier to develop for
– Better UI builders, data abstraction layer, easier to create

new widgets, easier to maintain language bindings
● Write once, deploy everywhere

– Improved back-ends, even more integration with OS
specific services

GTK+ State of the UnionGTK+ State of the Union

44//1616

And short-term?

Short-term accomplishments
● Alpha transparency, widget stacking
● Easier layouting (sane defaults, “spreading”)
● Transitions, physics, animations
● Usage of an IDL
● Improved and more powerful theming

GTK+ State of the UnionGTK+ State of the Union

55//1616

Sounds nice, but how?

● We believe, together with many others, that GTK+
2.x is currently a dead-end (by policy)

● This is because of the promise of not breaking ABI
● The code base is large and contains a lot of unneeded

things
● Refactoring GTK+ is very hard and in some cases

impossible
● This affects all GTK+ applications

GTK+ State of the UnionGTK+ State of the Union

66//1616

Can we change this?

● We need to have the possibility to break ABI/API in
defined intervals

● Really remove deprecated code, don't accumulate it
● Avoid exposing structure fields
● Have very clear policies about this
● Ensure that the entire library stack is parallel

installable

GTK+ State of the UnionGTK+ State of the Union

77//1616

Really break ABI compatibility?

● We explored two other approaches, but there are issues
with both of them.

● 1) Simply changing namespace (symbol prefix)
– Causes dual X connections, dual main loops and unsolvable

library initialization problems.
● 2) Moving to a new widget system (have two in parallel)

– Tremendous effort to develop, maintain, integrate a parallel
widget hierarchy compatibly; ABI problems remain.

– Might be easier to write a new toolkit, but then we leave huge
user-base and brand behind.

GTK+ State of the UnionGTK+ State of the Union

88//1616

New development policy

● Break API/ABI with every major release (every 4-5
years)

● All depending libraries must be parallel installable
● Remove deprecated API and deprecated code after a

defined period of time
● API is deprecated in minor releases and removed in

next major release
● Configurable run-time warnings of deprecated code

usage to help migration

GTK+ State of the UnionGTK+ State of the Union

99//1616

New development policy (continued)

● Have strict guidelines for new API:
– No public structure fields
– Only functions are public API (IDL)
– Property setters/getters (generated)

● Document valid ABI alterations:
– Allowed to append functions to interfaces
– Allowed to change void return values of functions

● Deprecated functions are disabled by default

GTK+ State of the UnionGTK+ State of the Union

1010//1616

Roadmap to 3.0 and beyond in short

● Migrating 2.x to 3.0 is not trivial and needs careful
planning!

● 2.x will prepare for painless 3.0 migration
● 3.0 puts the new development policy into place,

removes all deprecated code.
● 3.x and beyond bring new features

GTK+ State of the UnionGTK+ State of the Union

1111//1616

2.x Roadmap

● Provide accessors for all but deprecated public
structure fields.

● Provide accessors for the current macro versions of
getters/setters (GTK_WIDGET_SET_FLAGS)

● Implement private class data
● Have a diagnostic mode that warns about abuse
● Use GSEAL() to seal public structure fields

– Rename 2.x fields with GSEAL()
– Make sealed fields private in 3.0

GTK+ State of the UnionGTK+ State of the Union

1212//1616

3.0 Roadmap

● Remove all public structure fields
● Remove all deprecated code
● Applications that have been properly ported to the

last 2.x releases will work after a simple recompile

GTK+ State of the UnionGTK+ State of the Union

1313//1616

3.x Roadmap

● Look into deprecating more API like non-multihead
GDK things, gdk_draw_*, etc

● Add new cool features (short-term accomplishments)
● Incrementally deprecate stuff obsoleted by new

features

GTK+ State of the UnionGTK+ State of the Union

1414//1616

In General

● This gives us an ecosystem where we can
incrementally realize long-term visions

● Subcomponents can be replaced step-by-step
● API can be fixed up later, we know that we will be

able to get rid of mistakes in the future

GTK+ State of the UnionGTK+ State of the Union

1515//1616

Conclusions

● Current GTK+ is a dead-end
● We all have lots of ideas and visions
● We think a new development policy will help us here

and is the best way to move forward
● Our takes on a development policy and roadmap to

3.0 and beyond have been presented
● Future GTK+ will be alive and kicking

GTK+ State of the UnionGTK+ State of the Union

1616//1616

Questions / discussion

