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ABSTRACT
Compression reduces both the size of indexes and the time
needed to evaluate queries. In this paper, we revisit the
compression of inverted lists of document postings that store
the position and frequency of indexed terms, considering two
approaches to improving retrieval efficiency: better imple-
mentation and better choice of integer compression schemes.
First, we propose several simple optimisations to well-known
integer compression schemes, and show experimentally that
these lead to significant reductions in time. Second, we ex-
plore the impact of choice of compression scheme on retrieval
efficiency.

In experiments on large collections of data, we show two
surprising results: use of simple byte-aligned codes halves
the query evaluation time compared to the most compact
Golomb-Rice bitwise compression schemes; and, even when
an index fits entirely in memory, byte-aligned codes result
in faster query evaluation than does an uncompressed index,
emphasising that the cost of transferring data from memory
to the CPU cache is less for an appropriately compressed in-
dex than for an uncompressed index. Moreover, byte-aligned
schemes have only a modest space overhead: the most com-
pact schemes result in indexes that are around 10% of the
size of the collection, while a byte-aligned scheme is around
13%. We conclude that fast byte-aligned codes should be
used to store integers in inverted lists.

General Terms
Indexing, query evaluation

Keywords
Inverted indexes, retrieval efficiency, index compression, in-
teger coding
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Search engines have demanding performance requirements.
Users expect fast answers to queries, many queries must be
processed per second, and the quantity of data that must
be searched in response to each query is staggering. The
demands continue to grow: the Google search engine, for
example, indexed around one billion documents a year ago
and now manages more than double that figure1. Moreover,
the increasing availability and affordability of large storage
devices suggests that the amount of data stored online will
continue to grow.

Inverted indexes are used to evaluate queries in all prac-
tical search engines [14]. Compression of these indexes has
three major benefits for performance. First, a compressed
index requires less storage space. Second, compressed data
makes better use of the available communication bandwidth;
more information can be transfered per second than when
the data is uncompressed. For fast decompression schemes,
the total time cost of transfering compressed data and sub-
sequently decompressing is potentially much less than the
cost of transferring uncompressed data. Third, compression
increases the likelihood that the part of the index required
to evaluate a query is already cached in memory, thus en-
tirely avoiding a disk access. Thus index compression can
reduce costs in retrieval systems.

We have found that an uncompressed inverted index that
stores the location of the indexed words in web documents
typically consumes more than 30% of the space required
to store the uncompressed collection of documents. (Web
documents often include a great deal of information that is
not indexed, such as HTML tags; in the TREC web data,
which we use in our experiments, on average around half
of each document is indexable text.) When the index is
compressed, the index size is reduced to between 10%–15%
of that required to store the uncompressed collection; this
size includes document numbers, in-document frequencies,
and word positions within documents. If the index is too
large to fit entirely within main memory, then querying the
uncompressed index is slower: as we show later, it is up to
twice as slow as the fastest compressed scheme.

In this paper, we revisit compression schemes for the in-
verted list component of inverted indexes. There have been a
great many reports of experiments on compression of indexes
with bitwise compression schemes [5, 7, 12, 14, 15], which
use an integral number of bits to represent each integer,
usually with no restriction on the alignment of the integers
to byte or machine-word boundaries. We consider several

1See http://www.google.com/



aspects of these schemes: how to decode bitwise representa-
tions of integers efficiently; how to minimise the operations
required for the most compact scheme, Golomb coding; and
the relative performance of Elias gamma coding, Elias delta
coding, Golomb coding, and Rice coding for storing indexes.

We question whether bitwise compression schemes are the
best choice for storing lists of integers. As an alternative,
we consider bytewise integer compression schemes, which
require that each integer is stored in an integral number of
blocks, where each block is eight bits. The length of each
stored integer can therefore be measured in an exact number
of bytes. An additional restriction is to require that these
eight-bit blocks must align to machine-word or byte bound-
aries. We propose and experimentally investigate several
variations of bytewise schemes.

We investigate the performance of different index com-
pression schemes through experiments on large query sets
and collections of Web documents. We report two surpris-
ing results.

• For a 20 gigabyte collection, where the index is several
times larger than main memory, optimised bytewise
schemes more than halve the average query response
time compared to the fastest bitwise approach.

• For a much smaller collection, where the index fits in
main memory, a bytewise compressed index can still
be processed faster than an uncompressed index.

These results show that effective use of communication band-
widths is important for not only disk-to-memory transfers
but also memory-to-cache transfers. The only disadvantage
of bytewise compressed indexes is that they are up to 30%
larger than bitwise compressed indexes; the smallest bitwise
index is around 10% of the uncompressed collection size,
while the bytewise index is around 13%.

2. INVERTED INDEXES
An inverted index consists of two major components: the

vocabulary of terms—for example the words—from the col-
lection, and inverted lists, which are vectors that contain
information about the occurrence of the terms [14].

In a basic implementation, for each term t there is an in-
verted list that contains postings < fd,t, d > where fd,t is
the frequency f of term t in the ordinal document d. One
posting is stored in the list for each document that contains
the term t. Inverted lists of this form—along with additional
statistics such as the document length ld, and ft, the num-
ber of documents that contain the term t—are sufficient to
support ranked and Boolean query modes.

To support phrase querying or proximity querying, addi-
tional information must be kept in the inverted lists. Thus
inverted list postings should be of the form

< fd,t, d, [o0,d,t . . . ofd,t,d,t] >

The additional information is the list of offsets o; one off-
set is stored for each of the fd,t occurrences of term t in
document d. Postings in inverted lists are usually ordered
by increasing d, and the offsets likewise ordered within the
postings by increasing o. This has the benefit that differ-
ences between values—rather than the raw values—can be
stored, improving the compressibility of the lists.

Other arrangements of the postings in lists are useful when
lists are not necessarily completely processed in response to

a query. For example, in frequency-sorted indexes [8, 9]
postings are ordered by fd,t, and in impact-ordered indexes
the postings are ordered by quantised weights [1]. These ap-
proaches also rely on compression to help achieve efficiency
gains, and the improvements to compression performance
we describe in this paper are as applicable to these methods
as they are to the simple index representations we use as a
testbed for our compression methods.

Consider an example inverted list with offsets for the term
“Matthew”:

< 3, 7, [6, 51, 117] >< 1, 44, [12] >< 2, 117, [14, 1077] >

In this index, the terms are words, the offsets are word po-
sitions within the documents, and the lists are ordered by d.
This inverted list states that the term “Matthew” occurs 3
times in document 7, at offsets 6, 51, and 117. It also occurs
once in document 44 at offset 12, and twice in document 117,
at offsets 14 and 1077.

Ranked queries can be answered using the inverted index
as follows. First, the terms in the user’s query are located
in the inverted index vocabulary. Second, the correspond-
ing inverted lists for each term are retrieved from disk, and
then processed by decreasing ft. Third, for each posting in
each inverted list, an accumulator weight Ad is increased;
the magnitude of the increase is dependent on the similarity
measure used, and can consider the weight wq,t of term t
in the query q, the weight wd,t of the term t in the docu-
ment d, and other factors. Fourth, after processing part [1,
5] or all of the lists, the accumulator scores are partially
sorted to identify the most similar documents. Last, for a
typical search engine, document summaries of the top ten
documents are generated or retrieved and shown to the user.
The offsets stored in each inverted list posting are not used
in ranked query processing.

Phrase queries require offsets, and can be combined with
both ranked and Boolean queries. Phrase queries require
that a given sequence of words be contiguous in a matching
document. For example, consider a combined ranked and
phrase query:

“Matthew Richardson” Richmond

To evaluate such a query, the same first two steps as for
ranked querying are applied. Then, instead of accumulating
weights, it is necessary to construct a temporary inverted list
for the phrase, by fetching the inverted list of each of the
individual terms and combining them. If the inverted list for
“Matthew” is as above and the inverted list for “Richard-
son” is

< 1, 7, [52] > < 2, 12, [1, 4] > < 1, 44, [83] >

then both words occur in document 7 and as an ordered
pair. Only “Richardson” occurs in document 12, both words
occur in document 44 but not as a pair, and only “Matthew”
occurs in document 117. The list for “Matthew Richardson”
is therefore

< 1, 7, [51] >

After this, the ranking process is continued from the third
step above, where the list for the term “Richmond” and the
newly created list are used to adjust accumulator weights.
Phrase queries can involve more than two words.



3. COMPRESSING INVERTED INDEXES
Special-purpose integer compression schemes offer both

fast decoding and compact storage of inverted lists [13, 14].
In this section, we consider how inverted lists are compressed
and stored on disk. We limit our discussions here to the
special-purpose integer compression techniques that have
previously been shown to be suitable for index compression,
and focus on their use in increasing the speed of retrieval
systems.

Without compression, the time cost of retrieving inverted
lists is the sum of the time taken to seek for and then retrieve
the inverted lists from disk into memory, and the time taken
to transfer the lists from memory into the CPU cache be-
fore they are processed. The speed of access to compressed
inverted lists is determined by two factors: first, the com-
putational requirements for decoding the compressed data
and, second, the time required to seek for and retrieve the
compressed data from disk and to transfer it to the CPU
cache before it is decoded. For a compression scheme to
allow faster access to inverted lists, the total retrieval time
and CPU processing costs should be less than the retrieval
time of the uncompressed representation. However, a third
factor makes compression attractive even if CPU process-
ing costs exceed the saving in disk transfer time: compress-
ing inverted lists increases the number of lists that can be
cached in memory between queries, so that in the context of
a stream of queries use of compression reduces the number
of disk accesses. It is therefore important that a compres-
sion scheme be efficient in both decompression CPU costs
and space requirements.

There are two general classes of compression scheme that
are appropriate for storing inverted lists. Variable-bit or
bitwise schemes store integers in an integral number of bits.
Well-known bitwise schemes include Elias gamma and delta
coding [2] and Golomb-Rice coding [3]. Bytewise schemes
store an integer in an integral number of blocks, where a
block is eight bits in size; we distinguish between blocks and
bytes here, since there is no implied restriction that a block
must align to a physical byte-boundary. A simple bytewise
scheme is variable-byte coding [10, 13]; uncompressed inte-
gers are also stored in an integral number of blocks, but we
do not define them as bytewise schemes since, on most ar-
chitectures, an integer has a fixed-size representation of four
bytes. In detail, these schemes are as follows.

Elias coding [2] is a non-parameterised bitwise method of
coding integers. (Non-parameterised methods use static or
fixed codes to store integers.) The Elias gamma code repre-
sents a positive integer k by 1 + blog

2
kc stored as a unary

code, followed by the binary representation of k without its
most significant bit. Using Elias gamma coding, small inte-
gers are compactly represented; in particular, the integer 1
is represented as a single 1-bit. Gamma coding is relatively
inefficient for storing integers larger than 15 [13].

Elias delta codes are suited to coding larger integers, but
are inefficient for small values. For an integer k, a delta
code stores the gamma code representation of 1 + blog

2
kc,

and then the binary representation of k without its most
significant bit.

Golomb-Rice bitwise coding [3] has been shown to offer
more compact storage of integers and faster retrieval than
the Elias codes [13]; indeed, it is bitwise optimal under the
assumption that the set of documents with a given term is
random. The codes are adapted to per-term likelihoods via

a parameter that is used to determine the code emitted for
an integer. In many cases, this parameter must be stored
separately using, for example, an Elias code. For coding of
inverted lists, a single parameter is used for all document
numbers in a postings list, but each posting requires a pa-
rameter for its offsets. The parameters can be calculated as
the lists are decoded using statistics stored in memory and
in the lists, as we discuss later.

Coding of an integer k using Golomb codes with respect
to a parameter b is as follows. The code that is emitted is in
two parts: first, the unary code of a quotient q is emitted,
where q = b(k − 1)/bc + 1; second, a binary code is emitted
for the remainder r, where r = k − q × b − 1. The number
of bits required to store the remainder r is either dlog

2
be or

blog
2
bc. To retrieve the remainder, the value of the “toggle

point” t = 1/((log
2
k)+1))−b is required, where / indicates

a left-shift operation. After retrieving blog
2
bc bits of the

remainder r, the remainder is compared to t. If r > t, then
one additional bit of the remainder must be retrieved. It
is generally thought that caching calculated values of log

2
b

is necessary for fast decoding, with a main-memory penalty
of having to store the values. However, as we show later,
when the standard log library function is replaced with a
fast bit-shifting version, caching is unnecessary.

Rice coding is a variant of Golomb coding where the value
of b is restricted to be a power of 2. The advantage of this
restriction is that there is no “toggle point” calculation re-
quired, that is, the remainder is always stored in exactly
dlog

2
be bits. The disadvantage of this scheme is that the

choice of value for b is restricted and, therefore, the com-
pression is slightly less effective than that of Golomb coding.

For compression of inverted lists, a value of b is required.
Witten et al. [14] report that for cases where the probability
of any particular integer value occurring is small—which is
the usual case for document numbers d and offsets o—then
b can be calculated as:

b = 0.69 × mean(k)

For each inverted list, the mean value of document numbers
d can be approximated as k = N/ft where N is the number
of documents in the collection and ft is the number of post-
ings in the inverted list for term t [14]. This approach can
also be extended to offsets: the mean value of offsets o for
an inverted list posting can be approximated as k = ld/fd,t

where ld is the length of document d and fd,t is the number
of offsets of term t within that document. As the statistics
N , ft, and l are often available in memory, or in a simple
auxiliary structure on disk, storage of b values is not required
for decoding; approximate values of l can be stored in mem-
ory for compactness [6], but use of approximate values has
little effect on compression effectiveness as it leads to only
small relative errors in computation of b.

In bytewise coding an integer is stored in an integral num-
ber of eight-bit blocks. For variable-byte codes, seven bits
in each block are used to store a binary representation of
the integer k. The remaining bit is used to indicate whether
the current block is the final block for k, or whether an ad-
ditional block follows. Consider an example of an integer k
in the range of 27 = 128 to 214 = 16, 384. Two blocks are
required to represent this integer: the first block contains
the seven least-significant bits of the integer and the eighth
bit is used to flag that another block follows; the second
block contains the remaining most-significant bits and the



eighth bit flags that no further blocks follow. We use the
convention that the flag bit is set to 1 in the final block and
0 otherwise.

Compressing an inverted index, then, involves choosing
compression schemes for the three kinds of data that are
stored in a posting: a document number d, an in-document
frequency fd,t, and a sequence of offsets o. A standard choice
is to use Golomb codes for document numbers, gamma codes
for frequencies, and delta codes for offsets [14]. (We explore
the properties of this choice later.) In this paper, we describe
such a choice as a GolD-GamF-DelO index.

3.1 Fast Decoding
We experiment with compression of inverted lists of post-

ings that contain frequencies fd,t, documents numbers d, and
offsets o. For fast decompression of these postings, there are
two important considerations: first, the choice of compres-
sion scheme for each component of the posting; and, second,
modifications to each compression scheme so that it is both
fast and compatible with the schemes used for the other
components. In this section, we outline the optimisations
we use for fast decompression. Our code is publically avail-
able and distributed under the GNU public licence.2

Bitwise Compression
We have experimented with a range of variations of bitwise
decompression schemes. Williams and Zobel [13] reported
results for several efficient schemes, where vectors that con-
tain compressed integers are retrieved from disk and subse-
quently decoded.3 In their approach, vector decoding uses
bitwise shift operations, bit masks, multiplication, subtrac-
tion, and function calls to retrieve sequences of bits that
span byte boundaries. In our experiments on Intel Pentium-
based servers running the Linux operating system, we have
found that bitwise shift operations are faster than bit masks
in all cases, and that the function calls are slow. By opti-
mising our code to use bitwise shifts and to remove nested
function calls, we have found that the overall time to decode
vectors—regardless of the compression scheme used—is on
average around 60% of that using the code of Williams and
Zobel.

Other optimisations that are specific to Golomb-Rice cod-
ing are also of value. Golomb-Rice decoding requires that
log

2
b is calculated to determine the number of remainder

bits to be retrieved. It is practicable to explicitly cache
values of log

2
b in a hash table as they are calculated, or

to pre-calculate all likely-to-be-used values as the retrieval
query engine is initialised. This saves recalculation of loga-
rithms when a value of b is reused in later processing, with
the penalty of additional memory requirements for storing
the lookup table.

We measured the performance of Golomb coding with and
without caching. Timings are average elapsed query evalu-
ation cost to process 25,000 ranked queries on a 9.75 gi-
gabyte (Gb) collection of Web data using our prototype re-
trieval engine on a GolD-GamF-GolO index (that is, Golomb
document numbers, gamma frequencies, Golomb offsets); we

2The URL for our fast decompression code will be provided
in the camera-ready copy. We have removed the URL to
preserve the anonymity of this manuscript.
3The code used by Williams and Zobel in their ex-
periments is available from http://www.cs.rmit.edu.au/
~hugh/software/

discuss collection statistics and experimental design further
in Section 4. (Note that Golomb coding of offsets is both
faster and more compact than delta coding, but this may not
apply with numbers of documents such that tables of docu-
ment lengths cannot be held in memory.) The cache lookup
table size is unrestricted. We found that, without caching of
log

2
b values, the average query evaluation time is 0.961 sec-

onds. Caching of log
2
b values as they are calculated during

query processing roughly halves the average query evalua-
tion time, to 0.494 seconds. Pre-calculating and storing the
values offers almost no benefit over caching during query
processing, reducing the time to 0.491 seconds; this reflects
that only limited b values are required during query eval-
uation. Caching of toggle points yields 0.492 seconds. As
toggle points are calculated using bitwise shifts, addition,
and subtraction, this is further evidence that bitwise shifts
are inexpensive on our hardware.

An alternative approach to managing log computations
is to replace the standard library log function with a loop
that determines blog

2
bc using bitwise shifts and equality

tests; the logarithm value can be determined by locating
the position of the most-significant 1-bit in b. We found
that this led to slight additional improvements in the speed
of decoding Golomb codes, outperforming explicit caching.
All Golomb-Rice coding results reported in this paper are
computed in this way.

Bytewise Compression
We have experimented with improvements to variable-byte
coding. As with bitwise coding, we have found that bit-
wise shift operations should be used in preference to bitwise
mask operations where possible. For example, to test if the
most-significant bit is set in a variable-byte integer, the fol-
lowing process is used: first, the original value of the byte
is assigned to a temporary variable; second, a left-shift is
used to clear the most-significant bit of the temporary vari-
able; third, a right-shift of the temporary variable returns
it to byte alignment; last, if an equality test between the
values of the original and temporary variables is false, then
the most-significant bit in the original value is set. We have
replaced all masks in variable-byte schemes with shifts.

Perhaps the most obvious way to increase the speed of
variable-byte decoding is to align the eight-bit blocks to byte
boundaries. Alignment with byte boundaries limits the de-
coding to only one option: the flag bit indicating if this is the
last byte in the integer is always the most significant bit, and
the remaining seven bits contain the value. Without byte
alignment, additional conditional tests and operations are
required to extract the flag bit, and the seven-bit value can
span byte boundaries. We would expect that byte alignment
would improve the speed of decoding variable-byte integers.

Figure 1 shows the effect of byte alignment of variable-
byte integers. In this experiment, variable-byte coding is
used to store the offsets o in each inverted list posting. The
optimised Golomb coding scheme described in the previ-
ous section is used to code document numbers d and Elias
gamma coding is used to store the frequencies fd,t. We refer
to this as a GolD-GamF-VbyO index.

The graph at the left of Figure 1 shows total index size
as a percentage of the uncompressed collection being in-
dexed. The first bar shows that, without byte alignment,
the GolD-GamF-VbyO index requires almost 13% of the
space required by the collection. The second bar shows that
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Figure 1: Variable-byte schemes for compressing off-

sets in inverted lists in a GolD-GamF-VbyO index.

Four different compression schemes are shown and,

for each, both original and scanning decoding are

shown. Scanning decoding can be used when offsets

are not needed for query resolution.

padding to byte alignment after storing the Gamma-coded
fd,t values increases the space requirement to just over 13.5%
of the collection size. We discuss the other schemes in this
figure later in this section.

The graph at the right of Figure 1 shows elapsed query
evaluation times using different index designs. Timings are
the average elapsed query evaluation cost to process 25,000
ranked queries on a 20 Gb collection of Web data using
our prototype retrieval engine. The first bar shows that
the average time is around 0.7 seconds for the GolD-GamF-
VbyO index without byte alignment. The second bar shows
that the effect of byte alignment is a 25% reduction in av-
erage query time. Therefore, despite the small additional
space requirement, byte-alignment is beneficial when stor-
ing variable-byte integers.

A second optimisation to variable-byte coding is to con-
sider the query mode when processing the index. For query-
ing that does not use offsets—such as ranked and Boolean
querying—decoding of the offsets in each posting is unneces-
sary. Rather, all that is required are the document numbers
d and document frequencies fd,t. An optimisation is there-
fore to only examine the flag bit of each block and to ignore
the remaining seven bits that contain the value. The value
of fd,t indicates the number of offsets o stored in the post-
ing. By examining flag bits until fd,t 1-bits are processed,
it is possible to bypass the offsets with minimal processing.

We call this approach scanning.
Scanning can also be used in query modes that do require

offset decoding. As we discussed earlier, phrase querying
requires that all terms are present in a matching document.
After processing the inverted list for the first term that is
evaluated in a phrase query, a temporary inverted list of
postings is created. This temporary list has a set D of doc-
uments that contain the first term. When processing the
second term in the query, a second set of document num-
bers D′ are processed. Offsets for the posting associated
with document d ∈ D′ can be scanned, that is, passed over
without decoding, if d is not a member of D. (At the same
time, document numbers in D that are not in D′ are dis-
carded.)

We show the performance of scanning in ranked query pro-
cessing in Figure 1. The fifth and sixth bars show how scan-
ning affects query evaluation time for variable-bytes that
are either unaligned and aligned to byte boundaries in the
GolD-GamF-VbyO index. Scanning removes the process-
ing of seven-bit values. This reduces the cost of retriev-
ing unaligned variable-bytes to less than that of the aligned
variable-byte schemes; the small speed advantage is due to
the retrieval of smaller lists in the unaligned version. Scan-
ning has little effect on byte-aligned variable bytes, reflecting
that the processing of seven-bit values using shift operations
has a low cost. Overall, however, byte-alignment is preferred
since the decoding cost of offsets is expensive in an unaligned
scheme.

A third optimisation is an approach we call signature

blocks, which are a variant of skipping. Skipping is the ap-
proach of storing additional integers in inverted lists that
indicate how much data can be skipped without any pro-
cessing [14]. Skipping has the disadvantage of an additional
storage space requirement, but has been shown to offer sub-
stantial speed improvements [14]. A signature block is an
eight-bit block that stores the flag bits of up to eight blocks
that follow. For example, a signature block with the bit-
string 11100101 represents that five integers are stored in
the eight following eight-bit blocks: the string 111 repre-
sents that the first three blocks store one integer each; the
string 001 represents that the fourth integer is stored over
three blocks; and, the string 01 represents that the final in-
teger is stored over two blocks. As all flag bits are stored
in the signature block, the following blocks use all eight bits
to store values, rather the seven-bit scheme in the standard
variable-byte integer representation.

The primary use of signature blocks is skipping. To skip
offsets, fd,t offset values must be retrieved but not processed.
By counting the number of 1-bits in a signature block, the
number of integers stored in the next eight blocks can be
determined. If the value of fd,t exceeds this, then a second
or subsequent signature block is processed until fd,t offsets
have been skipped. The last signature block is, on average,
half full. As with the other optimisations described in this
section, we have found that bitwise shifts afford the fastest
processing of signature blocks.

The speed and space requirements are also shown in Fig-
ure 1. Not surprisingly, the signature block scheme requires
more space than the previous variable-byte schemes. This
space requirement is further increased if byte alignment of
blocks is enforced. In terms of speed, the third and fourth
bars in the right-hand histogram show that signature blocks
are slower than the original variable-byte schemes when off-



sets are processed in the GolD-GamF-VbyO index. These
results are not surprising: signature blocks are slow to pro-
cess when they are unaligned, and the byte-aligned version
is slow because processing costs are no less than the original
variable-byte schemes and longer disk reads are required.

As shown by the seventh bar, when offsets are skipped the
unaligned signature block scheme is slower than the original
variable-byte scheme. The savings of skipping with signa-
ture blocks are negated by more complex processing when
blocks are not byte-aligned. In contrast, the right-most bar
shows that the byte-aligned signature block scheme with
skipping is slightly faster on average than all other schemes.
However, we conclude—given the compactness of the in-
dex and good overall performance—that the best all-round
scheme is the original variable-byte scheme with byte align-
ment. Therefore, all variable-byte results reported in the
Section 4 use the original byte-aligned variable-byte scheme
with scanning.

Customised Compression
Combinations of bitwise and bytewise compression schemes
are also possible. The aim of such approaches is to com-
bine the fast decoding of bytewise schemes with the com-
pact storage of bitwise schemes. For example, a simple and
efficient custom scheme is to store a single bit that indicates
which of two compression schemes is used, and then to store
the integer using the designated compression scheme. We
have experimented with several approaches for storing off-
sets. The simplest and most efficient approach we tested
is as follows: when fd,t = 1, we store a single bit indicat-
ing whether the following offset is stored as a bitwise Elias
delta code or as a bytewise eight-bit binary representation.
When storing values, we use Elias delta coding if the value
is greater than 256 and the binary scheme otherwise. This
scheme has the potential to reduce space because in the me-
dian posting fd,t is 1 and the average offset is around 200.
Selective use of a fixed-width representation can save stor-
age of the 6-bit prefix used to indicate magnitude in the
corresponding delta code.

We report the results with this scheme, which we call cus-

tom, in the next section. This was the fastest custom scheme
we tested. Other approaches we tried included switching be-
tween variable-byte and bitwise schemes, using the custom
scheme when fd,t is either 1 or 2, and other simple varia-
tions. We omit results for these less successful approaches.

4. RESULTS
All experiments described in this paper are carried out on

an Intel Pentium III based machine with 512 Mb of main-
memory running the Linux operating system. Other pro-
cesses and disk activity was minimised during timing exper-
iments, that is, the machine was under light-load.

A theme throughout these experiments and greatly im-
pacting on the results is the importance of caching. On a
modern machine, caching takes place at two levels. One level
is the caching of recently-accessed disk blocks in memory, a
process that is managed by the operating system. When
the size of the index significantly exceeds memory capac-
ity, to make space to fetch a new inverted list, the blocks
containing material that has not been accessed for a while
must be discarded. One of the main benefits of compression
is that a much greater volume of index information can be
cached in memory. For this reason, we test our compression
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Figure 2: Performance of integer compression

schemes for offsets in inverted lists, in an index with

Golomb document numbers and gamma frequencies.

In this experiment, the index fits in main memory.

A 500 Mb collection is used, and results are aver-

aged over 10,000 queries.

schemes with streams of 10,000 or 25,000 queries extracted
from a query log [11], where the frequency distribution of
query terms leads to beneficial use of caching.

The other level at which caching takes place is the reten-
tion in the CPU cache of small blocks of data, typically of
128 bytes, recently accessed from memory. CPU caching
is managed in hardware. In current desktop computers, as
many as 150 instruction cycles are required to fetch a sin-
gle machine-word into the CPU. It is for this reason that
repeated shifting can outperform a single mask operation:
a great number of shifts and comparisons can be executed
while waiting for the mask to arrive. At a coarser level, com-
pression of postings lists means that the number of fetches
from memory to cache during decompression is halved.

Small collection
Figure 2 shows the relative performance of the integer com-
pression schemes we have described for storing offsets, on
a 500 Mb collection of 94,802 Web documents drawn from



the TREC Web track data [4]; timing results are averaged
over 10,000 ranked queries drawn from an Excite search en-
gine query log [11]. The index contains 703, 518 terms.

These results show the effect of varying the coding scheme
used for document numbers d, frequencies fd,t, and offsets o.
In all cases where both bitwise and variable-byte codes are
used, the bitwise codes are padded to a byte boundary before
a variable-byte code is emitted; thus, for example, in a GolD-
GamF-VbyO index, there is padding between the gamma
frequency and the sequence of variable-byte offsets. Not
all code combinations are shown; for example, given that
the speed advantage of using variable-byte document num-
bers is small, we have not reported results for index types
such as VbyD-GamF-RicD, and due to the use of padding
a choice such as VbyD-GamF-VbyD. Given the highly skew
distribution of fd,t values, Golomb or Rice are not suitable
coding methods, so these have not been tried. In the last
“no compresson” case, fixed-width fields are used to store
postings. Document numbers are stored in 32 bits, frequen-
cies in 16 bits, and offsets in 24 bits; these were the smallest
multiples of bytes that would not overflow for reasonable
assumptions about data properties.

The relative performance of Elias delta and gamma, Rice,
and Golomb coding is as expected. The non-parameterised
Elias coding schemes result in larger indexes than the param-
terised Golomb-Rice schemes that, in turn, result in slower
query evaluation. The average difference between offsets is
greater than 15, making Elias delta coding more appropri-
ate overall than gamma coding; the latter is both slower and
less space-efficient.

On the lower graph in Figure 2, comparing the fourth and
fifth columns and comparing the fifth and eighth columns,
it can be seen that choice of Golomb or Rice codes for either
offsets or document numbers has virtually no impact on in-
dex size. Comparing the fifth and eighth columns on the up-
per graph, the schemes yield similar decoding times for docu-
ment numbers. However, Rice codes are markedly faster for
decoding offsets, because no toggle point calculation is re-
quired. Among the bitwise schemes, we conclude that Rice
coding should be used in preference to other schemes for
coding document numbers and offsets.

The most surprising result is the effect of using the op-
timised byte-boundary variable-byte scheme for coding off-
sets. Despite the variable-byte index being 26% larger than
the corresponding Rice-coded index, the overall query evalu-
ation time is 62% less. Further speed gains are given by cod-
ing all values in variable-byte codes. Indeed, variable-byte
decoding is faster even than processing uncompressed lists.
This result is remarkable: the cost of transfering variable-
byte coded lists from memory to the CPU cache and then
decoding the lists is less than the cost of transferring un-
compressed lists. To our knowledge, this is the first practi-
cal illustration that compression improves the efficiency of
an in-memory retrieval system. We conclude from this that
variable-byte coding should be used to store offsets to reduce
both disk retrieval and memory retrieval costs.

In experiments with integers, Williams and Zobel found
that variable-byte coding is faster than the bitwise schemes
for storing large integers of the magnitude stored in inverted
lists [13]. Our result confirms this observation for retrieval
systems, while also showing that the effect extends to fast
retrieval from memory and that improvements to variable-
byte coding can considerably increase decoding speed.
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Figure 3: The performance of integer compression

schemes for compressing offsets in inverted lists,

with Golomb-coded document numbers and gamma-

coded offsets. In this experiment, the index is sev-

eral times larger than main memory. A 20 Gb col-

lection is used, and results are averaged over 25,000

queries.

The custom scheme uses both Elias delta and a binary
bytewise scheme, reducing query evaluation to around 58%
of the time for the Elias delta scheme. However, the custom
scheme is almost twice as slow as the variable-byte scheme
and, therefore, has little benefit in practice.

Large collection
Figure 3 shows the results of a larger experiment with an
index that does not fit within the main-memory of our ma-
chine. Exactly the same index types are tried as for the
experiment above. A 20 Gb collection of 4,014,894 Web doc-
uments drawn from the TREC Web track data [4] is used
and timing results are averaged over 25,000 ranked queries
drawn from an Excite search engine query log [11]. The
index contains 9,574,703 terms. We include only selected
schemes in our results.

We again note that we have not used heuristics to reduce
query evaluation costs such as frequency-ordering or early



termination. Indeed, we have not even used stopping; with
stopwords removed, query times are greatly impoved. Our
aim in this research is to measure the impact on index de-
coding time of different choices of compression method, not
to establish new benchmarks for query evaluation time. Our
improvements to compression techniques could, however, be
used in conjunction with the other heuristics, in all likeli-
hood further reducing query evaluation time compared to
the best times reported previously.

The relative speeds of the bitwise Golomb, Elias delta, and
variable-byte coded offset schemes are similar to that of our
experiments with the 500 Mb collection. Again, variable-
byte coding results in the fastest query evaluation. Perhaps
unsurprisingly given the results described above, an uncom-
pressed index that does not fit in main-memory is relatively
much slower than the variable-byte scheme; the disk trans-
fer costs are a larger fraction of the overall query cost when
the index does not fit in memory, and less use can be made
of the memory cache. Indexes with variable-byte offsets are
twice as fast as indexes with Golomb, delta, or gamma off-
sets, and one-and-a-half times as fast as indexes with Rice
offsets. VbyD-VbyF-VbyO indexes are twice as fast as any
index type with non-variable-byte offsets.

In separate experiments we have observed that the gains
demonstrated by compression continue to increase with col-
lection size, as the proportion of the index that can be held
in memory declines. Despite the loss in compression with
variable-byte coding, indexes are still less than one-seventh
of the size of the indexed data, and the efficiency gains are
huge.

5. CONCLUSIONS
Compression of inverted lists can significantly improve the

performance of retrieval systems. We have shown that an ef-
ficiently implemented variable-byte bytewise scheme results
in query evaluation that is twice as fast as more compact
bitwise schemes. Moreover, we have demonstrated that the
cost of transferring data from memory to the CPU cache
can also be reduced by compression: when an index fits in
main memory, the transfer of compressed data from mem-
ory to the cache and subsequent decoding is less than that
of transferring uncompressed data. Using byte-aligned cod-
ing, we have shown that queries can be run more than twice
as fast as with bitwise codes, at a small loss of compression
efficiency. These are dramatic gains.

Modern computer architectures create opportunities for
compression to yield performance advantages. Once, the
main benefits of compression were to save scarce disk space
and computer-to-computer transmission costs. An equally
important benefit now is to make use of the fact that the
CPU is largely idle. Fetching a single byte from memory in-
volves a delay of 12 to 150 CPU cycles; a fetch from disk in-
volves a delay of 10,000,000 cycles. Compression can greatly
reduce the number of such accesses, while CPU time that
would otherwise be unused can be spent on decoding. With
fast decoding, overall costs are much reduced, greatly in-
creasing query evaluation speed. In current computers such
architecture considerations are increasingly important to de-
velopment of new algorithms for query processing. Poor
caching has been a crucial shortcoming of existing algo-
rithms investigated in this research.

There are several possible extensions to this work. We
plan to investigate nibble-coding, a variant of variable-byte

coding where two flag bits are used in each variable-byte
block. It is likely that this approach may improve the per-
formance of signature blocks. We will also experiment with
phrase querying in practice and to explore the average query
evaluation speed when partial scanning is possible. Last,
we plan further investigation into why shift operations are
preferable to simple masks, and to study the impact of
pipelining on index processing performance.
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