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Abstract—Scaling data centers to handle task-parallel work-
loads requires balancing the cost of hardware, operations,
and power. Low-power, low-core-count servers reduce costs in
one of these dimensions, but may require additional nodes to
provide the required quality of service or increase costs by
under-utilizing memory and other resources.

We show that the throughput, response time, and power
consumption of a high-core-count processor operating at a low
clock rate and very low power consumption can perform well
when compared to a platform using faster but fewer commodity
cores. Specific measurements are made for a key-value store,
Memcached, using a variety of systems based on three different
processors: the 4-core Intel Xeon L5520, 8-core AMD Opteron
6128 HE, and 64-core Tilera TILEPro64.

Keywords-Low-power architectures; Memcached; Key-Value
store; Many-core processors

I. INTRODUCTION

Key-value (KV) stores play an important role in many
large websites. Examples include: Dynamo at Amazon
[1]; Redis at Github, Digg, and Blizzard Interactive 1;
Memcached at Facebook, Zynga and Twitter [2], [3];
and Voldemort at Linkedin2. All these systems store or-
dered (key, value) pairs and are, in essence, a distributed
hash table.

A common use case for these systems is as a layer in
the data-retrieval hierarchy: a cache for expensive-to-obtain
values, indexed by unique keys. These values can represent
any data that is cheaper or faster to cache than re-obtain,
such as commonly accessed results of database queries or
the results of complex computations that require temporary
storage and distribution.

Because of their role in data-retrieval performance, KV
stores attempt to keep much of the data in main memory,
to avoid expensive I/O operations [4], [5]. Some systems,
such as Redis or Memcached, keep data exclusively in
main memory. In addition, KV stores are generally network-
enabled, permitting the sharing of information across the ma-
chine boundary and offering the functionality of large-scale
distributed shared memory without the need for specialized
hardware.

1http://redis.io
2http://project-voldemort.com

This sharing aspect is critical for large-scale web sites,
where the sheer data size and number of queries on it far
exceed the capacity of any single server. Such large-data
workloads can be I/O intensive and have no obvious access
patterns that would foster prefetching. Caching and sharing
the data among many front-end servers allows system ar-
chitects to plan for simple, linear scaling, adding more KV
stores to the cluster as the data grows. At Facebook, we
have used this property grow larger and larger clusters, and
scaled Memcached accordingly3.

But as these clusters grow larger, their associated oper-
ating cost grows commensurably. The largest component of
this cost, electricity, stems from the need to power more
processors, RAM, disks, etc. Lang [6] and Andersen [4]
place the cost of powering servers in the data center at up
to 50% of the three-year total ownership cost (TCO). Even
at lower rates, this cost component is substantial, especially
as data centers grow larger and larger every year [7].

One of the proposed solutions to this mounting cost is
the use of so-called “wimpy” nodes with low-power CPUs
to power KV stores [4]. Although these processors, with
their relatively slow clock speeds, are inappropriate for
many demanding workloads [6], KV stores can present
a cost-effective exception because even a slow CPU can
provide adequate performance for the typical KV operations,
especially when including network latency.

In this paper, we focus on a different architecture: the
Tilera TILEPro64 64-core CPU [8], [9], [10], [11], [12]. This
architecture is very interesting for a Memcached workload
in particular (and KV stores in general), because it com-
bines the low-power consumption of slower clock speeds
with the increased throughput of many independent cores
(described in detail in Sections II and III). As mentioned
above, previous work has mostly concentrated on mapping
KV stores to low-core-count “wimpy” nodes (such as the
Intel Atom), trading off low aggregate power consumption
for a larger total node count [4]. This trade-off can mean
higher costs for hardware, system administration, and fault
management of very large clusters. The main contribution
of this paper is to demonstrate a low-power KV storage

3For example, see http://facebook.com/note.php?note id=39391378919
for a discussion of Facebook’s scale and performance issues with Mem-
cached.
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solution that offers better performance/Watt than comparable
commodity solutions, without increasing the overall server
count and associated operating cost. A secondary contribu-
tion is the detailed description of the adjustments required
to the Memcached software in order to take advantage
of the many-core Tilera architecture (Sec. IV). The third
main contribution is a thorough experimental evaluation
of the Tilera TILEPro64 system under various workload
variations, and an exploration of its power and performance
characteristics as a KV store, compared to typical x86-based
Memcached servers (Sec. V).

II. MEMCACHED ARCHITECTURE

Memcached4 is a simple, open-source software package
that exposes data in RAM to clients over the network. As
data size grows in the application, more RAM can be added
to a server, or more servers can be added to the network.
In the latter case, servers do not communicate among
themselves—only clients communicate with servers. Clients
use consistent hashing [13] to select a unique server per key,
requiring only the knowledge of the total number of servers
and their IP addresses. This technique presents the entire
aggregate data in the servers as a unified distributed hash
table, keeps servers completely independent, and facilitates
scaling as data size grows.

Memcached’s interface provides all the basic primi-
tives that hash tables provide—insertion, deletion, and
lookup/retrieval—as well as more complex operations built
atop them. The complete interface includes the following
operations:

• STORE: stores (key, value) in the table.
• ADD: adds (key, value) to the table iff the lookup for
key fails.

• DELETE: deletes (key, value) from the table based on
key.

• REPLACE: replaces (key, value1) with (key, value2)
based on (key, value2).

• CAS: atomic compare-and-swap of (key, value1) with
(key, value2).

• GET: retrieves either (key, value) or a set of
(keyi, valuei) pairs based on key or {keyi s.t. i =
1...k}.

The first four operations are write operations (destructive)
and follow the same code path as for STORE (Fig. 1). Write
operations are always transmitted over the TCP protocol to
ensure retries in case of a communication error. STORE
requests that exceed the server’s memory capacity incur
a cache eviction based on the least-recently-used (LRU)
algorithm.

GET requests follow a similar code path (Fig. 2). If the
key to be retrieved is actually stored in the table (a hit),
the (key, value) pair is returned to the client. Otherwise

4http://memcached.org/
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Figure 1: Write path: The client selects a server (1) by computing
k1 = consistent hash1(key) and sends (2) it the (key, value) pair.
The server then calculates k2 = hash2(key) mod M using a different
hash function and stores (3) the entire (key, value) pair in the appropriate
slot k2 in the hash table, using chaining in case of conflicts. Finally, the
server acknowledges (4) the operation to the client.
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Figure 2: Read path: The client selects a server (1) by computing k1 =
consistent hash1(key) and sends (2) it the key. The server calculates
k2 = hash2(key) mod M and looks up (3) a (key, value) pair in the
appropriate slot k2 in the hash table (and walks the chain of items if there
were any collisions). Finally, the server returns (4) the (key, value) to the
client or notifies it of the missing record.

(a miss), the server notifies the client of the missing key.
One notable difference from the write path, however, is
that clients can opt to use the faster but less-reliable UDP
protocol for GET requests.

It is worth noting that GET operations can take multiple
keys as an argument. In this case, Memcached returns all the
KV pairs that were successfully retrieved from the table. The
benefit of this approach is that it allows aggregating multiple
GET requests in a single network packet, reducing network
traffic and latencies. But to be effective, this feature requires
that servers hold a relatively large amount of RAM, so that
servers are more likely to have multiple keys of interest
in each request. (Another reason for large RAM per server
is to amortize the RAM acquisition and operating costs
over fewer servers.) Because some clients make extensive
use of this feature, “wimpy” nodes are not a practical
proposition for them, since they typically support relatively
small amounts of RAM per server.

III. TILEPRO64 ARCHITECTURE

Tile processors are a class of general-purpose and power-
efficient many-core processors from Tilera using switched,



Figure 3: High-level overview of the Tilera TILEPro64 architecture. The processor is an 8x8 grid of cores. Each of the cores has a 3-wide VLIW CPU, a
total of 88KB of cache, MMU and six network switches, each a full 5 port 32-bit-wide crossbar. I/O devices and memory controllers connect around the
edge of the mesh network.

on-chip mesh interconnects and coherent caches. The
TILEPro64 is Tilera’s second generation many-core pro-
cessor chip, comprising 64 power efficient general-purpose
cores connected by six 8x8 mesh networks. The mesh net-
works also connect the on-chip Ethernet, PCIe, and memory
controllers. Cache coherence across the cores, the memory,
and I/O allows for standard shared memory programming.
The six mesh networks efficiently move data between cores,
I/O and memory over the shortest number of hops. Packets
on the networks are dynamically routed based on a two-word
header, analogous to the IP and port in network packets,
except the networks are loss-less. Three of the networks
are under hardware control and manage memory movement
and cache coherence. The other three networks are allocated
to software. One is used for I/O and operating system
control. The remaining two are available to applications
in user space, allowing low-latency, low-overhead, direct
communication between processing cores, using a user-level
API to read and write register-mapped network registers.

Each processing core, shown as the small gray boxes
in Fig. 3, comprises a 32-bit 5-stage VLIW pipeline with
64 registers, L1 instruction and data caches, L2 combined
data and instruction cache, and switches for the six mesh
networks. The 64KB L2 caches from each of the cores form
a distributed L3 cache accessible by any core and I/O device.
The short pipeline depth reduces power and the penalty
for a branch prediction miss to two cycles. Static branch
prediction and in-order execution further reduce area and
power required. Translation look-aside buffers support vir-
tual memory and allow full memory protection. The chip can
address up to 64GB of memory using four on-chip DDR2
memory controllers (greater than the 4GB addressable by
a single Linux process). Each memory controller reorders

memory read and write operations to the DIMMs to optimize
memory utilization. Cache coherence is maintained by each
cache-line having a “home” core. Upon a miss in its local L2
cache, a core needing that cache-line goes to the home core’s
L2 cache to read the cache-line into its local L2 cache. Two
dedicated mesh networks manage the movements of data
and coherence traffic in order to speed the cache coherence
communication across the chip. To enable cache coherence,
the home core also maintains a directory of cores sharing
the cache line, removing the need for bus-snooping cache
coherency protocols, which are power-hungry and do not
scale to many cores. Because the L3 cache leverages the
L2 cache at each core, it is extremely power efficient while
providing additional cache resources. Figure 3 shows the I/O
devices, 10G and 1GB Ethernet, and PCI-e, connecting to
the edge of the mesh network. This allows direct writing
of received packets into on-chip caches for processing and
vice-versa for sending.

IV. EXECUTION MODEL

Although TILEPro64 has a different architecture and in-
struction set than the standard x86-based server, it provides a
familiar software development environment with Linux, gcc,
autotools, etc. Consequently, only a few software tweaks
to basic architecture-specific functionality suffice to suc-
cessfully compile and execute Memcached on a TILEPro64
system. However, this naı̈ve port does not perform well and
can hold relatively little data. The problem lies with Mem-
cached’s share-all multithreaded execution model (Fig. 4).
In a standard version of Memcached, one thread acts as
the event demultiplexer, monitoring network sockets for
incoming traffic and dispatching event notifications to one
of the N other threads. These threads execute incoming
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Figure 4: Execution model of standard version of Memcached.

requests and return the responses directly to the client.
Synchronization and serialization are enforced with locks
around key data structures, as well as a global hash table lock
that serializes all accesses to the hash table. This serialization
limits the scalability and benefits we can expect with many
cores.

Moreover, recall that TILEPro64 has a 32-bit instruction
set, limiting each process’ address space to 232 bytes (4GB)
of data. As discussed in Sec. II, packing larger amounts
of data in a single node holds both a cost advantage (by
reducing the overall number of servers) and a performance
advantage (by batching multiple get requests together).

However, the physical memory limit on the TILEPro64
is currently 64GB, allowing different processes to address
more than 4GB in aggregate. The larger physical address
width suggests a solution to the problem of the 32-bit
address space: extend the multithreading execution model
with multiple independent processes, each having its own
address space. Figure 5 shows the extended model with
new processes and roles. First, two hypervisor cores handle
I/O ingress and egress to the on-chip network interface,
spreading I/O interrupts to the appropriate CPUs and gen-
erating DMA commands. The servicing of I/O interrupts
and network layer processing (such as TCP/UDP) is now
owned by K dedicated cores, managed by the kernel and
generating data for user sockets. These requests arrive to
the main Memcached process as before, which contains a
demultiplexing thread and N worker threads. Note, however,
that these worker threads are statically allocated to handle
either TCP or UDP requests, and each thread is running on
exactly one exclusive core. These threads do not contain KV
data. Rather, they communicate with M distinct processes,
each containing a shard of the KV data table in its own
dedicated address space, as follows:

When a worker thread receives a request, it identifies
the process that owns the relevant table shard with modulo
arithmetic. It then writes the pertinent request information
in a small region of memory that is shared between the
thread and the process, and had been previously allocated
from the global pool using a memory space attribute. The
worker thread then notifies the shard process of the request
via a message over the on-chip user-level network to the

Hash process 1

Event demultiplexing thread

Thread 1 Thread 2 ... Thread N-1 Thread N

Single process

Network core 1 Network core 2 Network core 3 ... Network core K

... Hash process M

Linux

Figure 5: Execution model of Memcached on TILEPro64.

shard process (using a low-latency software interface). On a
STORE request, the shard process copies the data into its pri-
vate memory. For a GET operation, the shard process copies
the requested value from its private hash table memory to
the shared memory, to be returned to the requesting thread
via the user-level network. For multi-GET operations, the
thread merges all the values from the different shards into
on the response packet.

This execution model solves the problem of the 32-bit
address space limitations and that of a global table lock.
Partitioning the table data allows each shard to comfortably
reside within the 32-bit address space. Owning each table
shard by a single process also means that all requests to
mutate it are serialized and therefore require no locking
protection. In a sense, this model adds data parallelism to
what was purely task-parallel.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

This section explores the performance of the modified
Memcached on the TILEPro64 processor, and compares it
to the baseline version on commodity x86-based servers. We
start with a detailed description of the methodology, metrics,
and hardware used, to allow accurate reproduction of these
results. We then establish several workload and configuration
choices by exploring the parameter space and its effect
on performance on the TILEPro64. Having selected these
parameters, we continue with a performance comparison to
the x86-based server and a discussion of the differences.
Finally, we add power to the analysis and look at the
complete picture of performance per Watt at large scale.

A. Methodology and Metrics

We measure the performance of these servers by config-
uring them to run Memcached (only), using the following
command line on x86:



memcached -p 11211 -U 11211 \
-u nobody -m <memory size>

and on the TILEPro64:

memcached -p 11211 -U 11211 -u root \
-m <memory size> -t $tcp -V $part

for the Tilera system, where $tcp and $part are variables
representing how many TCP and hash partitions are re-
quested (with the remaining number of cores allocated to
UDP threads). On a separate client machine we use the open-
source mcblaster tool to stimulate the system under test and
report the measured performance. A single run of mcblaster
consists of two phases. During the initialization phase,
mcblaster stores data in Memcached by sending requests
at a fixed rate λ1, the argument to -W. This phase runs for
100 seconds (initialization requests are sent using the TCP
protocol), storing 1, 000, 000 32-byte objects, followed by 5
seconds of idle time, with the command line:

mcblaster -z 32 -p 11211 -W 50000 -d 100 \
-k 1000000 -c 10 -r 10

<hostname>

During the subsequent phase, mcblaster sends query
packets requesting randomly-ordered keys initialized in the
previous phase and measures their response time using the
command line:

mcblaster -z 32 -p 11211 -d 120 -k 1000000 \
-W 0 -c 20 -r $rate

<hostname>

where $rate is a variable representing offered request rate.
We concentrate on two metrics of responsiveness and

throughput. The first is the median response time (latency)
of GET requests at a fixed offered load. The second,
complementary, metric is the capacity of the system, defined
as the approximate highest offered load (in transactions per
second, or TPS) at which the mean response time remains
under 1msec. Although this threshold is arbitrary, it is in the
same order of magnitude of cluster-wide communications
and well below the human perception level. We do not
measure multi-GET requests because they exhibit the same
read TPS performance as individual GET requests. Finally,
we also measure the power usage of the various systems
using Yokogawa WT210 power meter, measuring the wall
power directly.

B. Hardware Configuration

The TILEPro64 S2Q system comprises a total of eight
nodes, but we will focus our initial evaluation on a single
node for a fairer comparison to independent commodity
nodes. In practice, all nodes have independent processors,
memory, and networking, so the aggregate performance of
multiple nodes scales linearly, and can be extrapolated from
a single node’s performance (we verified this assumption
experimentally).

Our load-generating host contains a dual-socket quad-
core Intel Xeon L5520 processor clocked at 2.27GHz, with
72GB of ECC DDR3 memory. It is also equipped with an

Intel 82576 Gigabit ET Dual Port Server Adapter network
interface controller that can handle transaction rates of over
500,000 packets/sec.

We used these systems in our evaluation:
• 1U server with single/dual socket quad-core Intel Xeon

L5520 processor clocked at 2.27GHz (65W TDP) and
a varying number of ECC DDR3 8GB 1.35V DIMMs.

• 1U server single/dual socket octa-core AMD Opteron
6128 HE processor clocked at 2.0GHz (85W TDP) and
a varying number of ECC DDR3 RAM DIMMs.

• Tilera S2Q5: a 2U server built by Quanta Com-
puter containing eight TILEPro64 processors clocked
at 866MHz, for a total of 512 cores. The system uses
two power supplies (PSUs), each supporting two trays,
which in turn each hold two TILEPro64 nodes. Each
node holds 32GB of ECC DDR2 memory, a BMC, two
GbE ports (we used one of these for this study), and
two 10 Gigabit XAUI Ethernet ports.

We chose these low-power processors because they de-
liver a good compromise between performance and power
compared to purely performance-oriented processors.

The Xeon server used the Intel 82576 GbE network
controller. We turned hyperthreading off since it empirically
shows little performance benefit for Memcached, while
incurring additional power cost. The Opteron server used
the Intel 82580 GbE controller. Both network controllers
can handle packet rates well above our requirements for this
study.

In all of our tests we used Memcached version 1.2.3h,
running under CentOS Linux with kernel version 2.6.33.

C. Parameter Space Exploration

We begin our exploration by determining the workload
to use, specifically the mix between GET and STORE
requests. In real-world scenarios we often observe that read
requests far outnumber write requests. We therefore typically
concentrate only on measuring read rates, and assume that
the effect of writes on read performance is negligible for
realistic workloads. To verify this assumption we conducted
the following experiment: We set write rates at three levels:
5,000, 30,000, and 200,000 writes/sec, and varied read rates
from 0 to 300,000 reads/sec. The packet size (including
headers) was fixed at 64 bytes, as will be explained shortly.
Fig. 6(a) shows that latency does not change significantly
with increasing read rates for the lowest two curves. We
observe a small change in the top curve, corresponding to
200,000 writes/sec—an unrealistically high rate. This data
confirms that moderate write rates have little effect on read
performance, so we avoid write requests in all subsequent
experiments, after the initialization phase.

We similarly tested the effect of packet size (essentially
value size) on read performance. Packet sizes are limited

5tilera.com/solutions/cloud computing



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200

M
e
d
ia

n
 l
a
te

n
c
y
 (

m
s
e
c
)

Reads/sec x1000

200K writes/s

50K writes/s

5K writes/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000 1200

Packet size (bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350

Reads/sec x1000

TCP

UDP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350

Reads/sec x1000

Tilera
Xeon
Opteron

(a) (b) (c) (d)
Figure 6: Median response time as a function of (a) workload mix; (b) payload size; (c) protocol; (d) architecture (32GB).

to the system’s MTU when using the UDP protocol for
Memcached, which in our system is 1,500 bytes. To test this
parameter, we fixed the read rate at λsize = 100, 000 TPS
and varied the payload size from 8 to 1,200 bytes. The results
are presented in Fig. 6(b). The latency spike at the right
is caused by the network’s bandwidth limitation: sending
1,200-byte sized packets at the rate of λsize translates
to a data rate of 960Mbps, very close to the theoretical
maximum of the 1Gbps channel. Because packet size hardly
affects read performance across most of the range, and
because we typically observe sizes of less than 100 bytes
in real workloads, we set the packet size to 64 bytes in all
experiments.

Another influential parameter is the transmission protocol
for read requests (we always write over TCP). Comparing
the two protocols, as shown in Fig. 6(c), shows a clear
throughput advantage to the UDP protocol. This advantage is
readily explained by the fact that TCP is a transaction-based
protocol and as such, it has a higher overhead associated
with a large number of small packets. We therefore limit
most of our experiments to UDP reads, although we will
revisit this aspect for the next parameter.

Last, but definitely not least, is the static core allocation
to roles. During our experiments, we observed that different
core allocations among the 60 available cores (4 are reserved
for Linux), have substantial impact on performance. We sys-
tematically evaluated over 100 different allocations, testing
for correlations and insights (including partial allocations
that left some cores unallocated). To conserve space, we
reproduce here only a small number of these results, enough
to support the following conclusions:

• The number of hash table processes determines the
node’s total table size, since each process owns an
independent shard. But allocating cores beyond the
memory requirements (in our case, 6 cores for a total
of 24GB, leaving room for Linux and other processes),
does not improve performance (Fig. 7(a),(b)).

• The amount of networking cores does affect perfor-
mance, but only up to a point (Fig. 7(a),(c),(d)). Above
12 networking cores, performance does not improve
significantly, regardless of the number of UDP/TCP

cores.
• TCP cores have little effect on UDP read performance,

and do not contribute much after the initialization
phase. They do affect TCP read capacity, which for
allocations (g) and (h), for example, is 215,000 and
118,000 TPS respectively, so we empirically deter-
mined 12 cores to be a reasonable allocation for oc-
casional writes.

• Symmetrically, UDP cores play a role for UDP read
capacity, so we allocate all available cores to UDP, once
the previous requirements have been met (Fig. 7(e)–(f)).

These experiments served to identify the most appropriate
configuration for the performance comparisons: measuring
UDP read capacity for 64-byte packets with no interfering
writes, at a core allocation of 8 network workers, 6 hash
table processes, 12 TCP cores, and 34 UDP cores (Fig. 7
(a)).

D. Performance Comparison

Fig. 6(d) shows the median response time for the three
architectures under increasing load. The data exposes the
difference between processors optimized for single-threaded
performance vs. multi-threaded throughput. The x86-based
processors, with faster clock speeds and deeper pipelines,
complete individual GET requests ≈ 20% faster than the
TILEPro64 across most load points. (Much of the response
time is related to memory and network performance, where
the differences are less pronounced.) This performance
advantage is not qualitatively meaningful, because these
latency levels are all under the 1msec capacity threshold,
providing adequate responsiveness. On the other hand, fewer
cores, combined with centralized table and network manage-
ment, translate to a lower saturation point and significantly
reduced throughput for the x86-based servers.

This claim is corroborated when we analyze the scalability
of Memcached as we vary the number of cores (Fig. 8).
Here, the serialization in Memcached and the network
stack prevents the x86-based architectures from scaling to
even relatively few cores. The figure clearly shows that
even within a single socket and with just 4 cores, perfor-
mance scales poorly and cannot take advantage of additional



Allocation 8,6,12,34 8,10,12,30 6,6,12,36 12,6,12,30 8,6,42,4 8,6,38,8 8,6,30,16 8,6,14,32
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Figure 7: Read capacity at various core allocations. the numbers in each sequence represent the cores allocated to network workers (light blue), hash table
(dark blue), TCP (green), and UDP (red), respectively. Linux always runs on 4 cores (white).
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Figure 8: Scalability of different architectures under increasing number
of cores. For x86, we simply change the number of Memcached threads
with the -t parameter, since threads are pinned to individual cores. For
TILEPro64, we turn off a number of cores and reallocate threads as in
Fig. 7.

threads. In fact, we must limit the thread count to 4 on the
Opteron to maximize its performance. On the other hand,
the TILEPro64 implementation can easily take advantage of
(and actually requires) more cores for higher performance.
Another aspect of this scaling shows in Fig. 7(e)–(f),(a),
where UDP capacity roughly grows with the number of UDP
cores. We do not know where this scaling would start to
taper off, and will follow up with experiments on the 100-
core TILE-Gx when it becomes available.

The sub-linear scaling on x86 suggests there is room for
improvement in the Memcached software even for commod-
ity servers. This is not a novel claim [14]. But it drives
the point that a different parallel architecture and execution
model can scale much better.

E. Power

Table I Shows the capacity of each system as we increase
the amount of memory, CPUs, or nodes, as appropriate.
It also shows the measured wall power drawn by each
system while running at capacity throughput. Node-for-node,
the TILEPro64 delivers higher performance than the x86-
based servers at comparable power. But the S2Q server also
aggregates some components over several logical servers
to save power, such as: fans, BMC, and PSU. In a large
data center environment with many Memcached servers, this
feature can be very useful. Let us extrapolate these power

Configuration RAM
(GB)

Capacity
(TPS)

Power
(Watt)

1 × TILEPro64
(one node)

32 335,000 90

2 × TILEPro64
(one PCB)

64 670,000 138

4 × TILEPro64
(one PSU)

128 1,340,000 231

Single Opteron 32 165,000 115
Single Opteron 64 165,000 121
Dual Opteron 32 160,000 165
Dual Opteron 64 160,000 182
Single Xeon 32 165,000 93
Single Xeon 64 188,000 100
Dual Xeon 32 200,000 132
Dual Xeon 64 200,000 140

Table I: Power and capacity at different configurations. Performance dif-
ferences at the single-socket level likely stem from imbalanced memory
channels.

and performance numbers to 256GB worth of data, the
maximum amount in a single S2Q appliance (extrapolating
further involves mere multiplication).

As a comparison basis, we could populate the x86-based
servers with many more DIMMs (up to a theoretical 384GB
in the Opteron’s case, or twice that if using 16GB DIMMs).
But there are two operational limitations that render this
choice impractical. First, the throughput requirement of the
server grows with the amount of data and can easily exceed
the processor or network interface capacity in a single
commodity server. Second, placing this much data in a single
server is risky: all servers fail eventually, and rebuilding the
KV store for so much data, key by key, is prohibitively
slow. So in practice, we rarely place much more than 64GB
of table data in a single failure domain. (In the S2Q case,
CPUs, RAM, BMC, and NICs are independent at the 32GB
level; motherboard are independent and hot-swappable at the
64GB level; and only the PSU is shared among 128GB worth
of data.)

Table II shows power and performance results for these
configurations. Not only is the S2Q capable of higher
throughput per node than the x86-based servers, it also
achieves it at lower power.

The TILEPro64 is limited, however, by the total amount
of memory per node, which means we would need more
nodes than x86-based ones to fill large data requirements.
To compare to a full S2Q box with 256GB, we can an-



Architecture Nodes Capacity Power TPS / Watt
TILEPro64 8 (1 S2Q) 2,680,000 462 5,801

Opteron 4 660,000 484 1,363
Xeon 4 752,000 400 1,880

Table II: Extrapolated power and capacity to 256GB.

alyze a number of combinations of x86-based nodes that
represent different performance and risk trade-offs. But if
we are looking for the most efficient choice—in terms of
throughput/Watt—then the best x86-based configurations in
Table I have one socket with 64GB. Extrapolating these
configurations to 256GB yields the performance in Table II.

Even compared to the most efficient Xeon configuration,
the TILEPro shows a clear advantage in performance/Watt,
and is still potentially twice as dense a solution in the rack
(2U vs. 4U for 256GB).

VI. CONCLUSIONS AND FUTURE WORK

Low-power many-core processors are well suited to KV-
store workloads with large amounts of data. Despite their
low clock speeds, these architectures can perform on-par or
better than comparably powered low-core-count x86 server
processors. Our experiments show that a tuned version of
Memcached on the 64-core Tilera TILEPro64 can yield at
least 67% higher throughput than low-power x86 servers at
comparable latency. When taking power and node integra-
tion into account as well, a TILEPro64-based S2Q server
with 8 processors handles at least three times as many
transactions per second per Watt as the x86-based servers
with the same memory footprint.

The main reasons for this performance are the elimination
or parallelization of serializing bottlenecks using the on-chip
network; and the allocation of different cores to different
functions such as kernel networking stack and application
modules. This technique can be very useful across archi-
tectures, particularly as the number of cores increases. In
our study, the TILEPro64 exhibits near-linear throughput
scaling with the number of cores, up to 48 UDP cores. One
interesting direction to take for future research would be to
reevaluate performance and scalability on the upcoming 64-
bit 100-core TILE-Gx processor, which supports 40 bits of
physical address.

Another interesting direction is to transfer the core tech-
niques learned in this study to other KV stores, port them
to TILEPro64 and measure their performance. Similarly,
we could try to apply the same model to x86 processors
using multiple processes with their own table shard and no
locks. But this would require a very fast communication
mechanism (bypassing main memory) that does not use
global serialization such as memory barriers.
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