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ABSTRACT

Application-level protocol analyzers are important compo-
nents in tools such as intrusion detection systems, firewalls,
and network monitors. Currently, protocol analyzers are writ-
ten in an ad-hoc fashion using low-level languages such as C,
incurring a high development cost and security risks inherent
in low-level language programming. Motivated by the large
number of application-level protocols and new ones constantly
emerging, we have architected and prototyped aGeneric
Application-level Protocol Analyzer (GAPA), consisting of
a protocol specification language (GAPAL) and an analysis
engine that operates on network streams and traces. GAPA
allows rapid creation of protocol analyzers, greatly reducing
the development time needed. It uses a syntax similar to that
found in existing specification documents and supports both
binary and text-based protocols. The GAPA design goals in-
clude expressiveness, ease of use, safety, and low overhead; it
is intended to operate well in an adversarial environment. Our
evaluation demonstrates that our GAPA language is expressive
and easy to use for practical protocols, and our GAPA system
is scalable and allows online analysis of protocol traffic. We
have already found GAPA to be useful in intrusion detection,
firewall, and networking monitoring contexts, and we envision
additional applications, such as automatic vulnerability signa-
ture generation.

I. I NTRODUCTION

Protocol analysis is the process of (re)constructing the
protocol contextof communication sessionsfrom an ongoing
network stream or trace. This involves translating a sequence
of packets into protocol messages, grouping them into ses-
sions, and modeling state transitions in the protocol state
machine. The protocol context extracted by a protocol analyzer
refers to a particular traversal of the state machine for a
communication session, as shown in Figure 1. Figure 2 illus-
trates an example of analyzing the RPC-over-HTTP protocol:
the protocol analzyer first analyzes the packets into HTTP
messages, then further parses the HTTP payload into RPC
messages, and finally groups the RPC messages into their
respective sessions according to the RPC protocol’s session
semantics.

Protocol analysis has been widely used in intrusion detec-
tion systems such as Snort [39] and Bro [32] and firewalls such
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 Fig. 2. Protocol Analyzer for RPC-over-HTTP

as Hogwash [22] and Shield [42]. Protocol analysis is crucial
to these systems because precise reconstruction of the protocol
context significantly reduces the number of false positives and
false negatives. Another existing use of protocol analysis is
to label network traffic trace with more protocol semantics,
facilitating network monitoring and distributed system debug-
ging. Ethereal [37] employs numerous protocol analyzers for
this purpose.

Unfortunately, state-of-the-art practice for creating proto-
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col analyzers is ad-hoc. To develop a protocol analyzer,
the protocol specification must first be obtained or written.
Then according to the specification, the protocol analyzer is
developed using general-purpose, low-level languages like C,
sometimes as a plugin to be statically loaded into the base
framework [37]. Such development often requires understand-
ing a large body of source code and involves thousands of
lines of low-level language programming effort followed by
comprehensive testing. This process must be repeated for each
of the protocols to be analyzed. In addition, many protocols
have multiple implementations with differences and extensions
that need to be explicitly modeled in the analyzer. Given
the multitude of the protocols and their variations, applying
traditional development techniques simply does not scale.

In this paper, we tackle the problem of rapid development of
protocol analyzers for application-level protocols that operate
above the transport layer. We target these protocols because
they are numerous, with new ones constantly emerging. Hence,
scaling the development effort for such protocols is a worth-
while goal.

Our work is motivated by the observation that the task of
analyzing various protocols shares a significant number of
common functions, such as session dispatching, state machine
operations, message parsing, protocol layering, and handling
out-of-order or fragmented messages. Our approach is to
architect these common and generic protocol elements into
one analysis engine as part of a Generic Application-level
Protocol Analysis (GAPA) framework. The other part of the
framework is the GAPA language (GAPAL), a special-purpose
language for describing individual protocols by configuring
the common functions and specifying protocol-specific details
such as message layout and state machine transitions. The
configuration and customization semantics reflect the essential
abstractions of protocol analysis. With GAPA, creating a new
analyzer involves only specifying the protocol in GAPAL and
testing its specification, replacing the much more strenuous
process of low-level language development.

Our language, GAPAL, has the following goals and chal-
lenges:
• Flexibility : We should be able to express and analyze

all common protocols in the GAPA framework. This
requires us to encapsulate the full set of common protocol
functions into GAPA and to have a flexible enough
GAPA language for describing both binary and text-based
protocols.

• Ease of use: GAPAL specifications should be easy to
write and to read. This goal is in tension with the previous
one: While the flexibility of the language allows us to
be more expressive, it makes the language richer and
harder to use. Similarly, a low-level language like C can
be quite flexible, but difficult to write and read. The
challenge here is to strike a balance between ease-of-
use and flexibility by having the right set of common
functions implemented in GAPA, while leaving enough
flexibility to accommodate the distinctiveness of each
protocol. A practical guideline we have followed here

is to constrain the level of the details of the protocol
descriptions in GAPAL to be no greater than that of
today’s RFC protocol specifications; and to design the
syntax of GAPAL to naturally reflect various protocol
abstractions for ease of writing.

• Safety: We want to reduce the chance of errors in
protocol analyzers. Safety errors in an analyzer can cause
crashes in the underlying system, or worse, introduce
vulnerabilities exploitable by remote traffic. We therefore
build type-safety into our language. Further, because
GAPAL is special-purpose, we have the luxury to use
static checks to ensure that the protocol analysis logic
is properly specified, and to guarantee termination of
protocol analyzers.

• Modularity : Protocols are often built on top of one
another, and components from one protocol are reused
in others. Modularity is needed to ensure the re-usability
and readability of GAPAL specifications.

In addition, our analysis engine, which interprets the
GAPAL specifications and performs protocol analysis, has the
following goals and challenges:

• Low performance overhead: The overhead incurred by
GAPA should be small in relation to the applications
that implement the protocols being analyzed, in order to
support online analysis.

• Correct operation in an adversarial environment:
We must ensure that GAPA functions well even in the
presence of attackers. When GAPA is used for real-time
protocol analysis — as part of a firewall, for example —
attackers can attempt to launch “state-holding” denial-
of-service attacks [32] [33]. Even when GAPA is used
for offline purposes such as trace analysis, attackers can
respond with large amounts of decoy traffic, delaying
detection of their malicious deeds. We must therefore
protect online, real-time operations of GAPA by min-
imizing the amount of state it maintains for protocol
analysis. Furthermore, we must also ensure that GAPA’s
interpretation of the protocol context is consistent with
that of the application, even in the face of carefully
crafted, malicious traffic [32] [33].

Our work is inspired by Shield [42] which is a vulnerability-
driven end-host firewall. Shield analyzes the exploitable ap-
plication protocols according to a vulnerability signature and
detects then blocks the exploits. Shield’s authors gave a pre-
liminary and incomplete design of a generic protocol analyzer
and a language. Our GAPA language is a new design and our
analysis engine addresses numerous issues, such as timeout,
exception handling, and pre-existing session handling, that
were left out in Shield. GAPA also has numerous applications
beyond application-level firewalls.

While we are the first to design and prototype a compre-
hensive generic application-level protocol analysis language
and framework for creating protocol analyzers, many protocol
specification languages for various purposes have been pro-
posed in the literature or used in practice, although none is
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suitable or specifically designed for the purpose of protocol
analysis. Some languages (e.g., PacketTypes [27], ASN.1 [15],
NDR [35]) specify only binary (but not text-based) packet
formats while some other languages like StateChart [21] and
Esterel [5] express state machines, but not data handling. Many
languages (e.g., Estelle [7], StateChart [21] Promela++ [3],
LOTOS [41], SDL [36], RTAG [1]) have been designed for
formal reasoning and verification of protocol interactions,
which is orthogonal to protocol analysis. There have also
been languages like Prolac [25] proposed for programming
the entire logic of a protocol, but they do not provide special-
purpose abstractions for protocol analysis.

Another alternative approach is a protocol-analysis frame-
work implemented as a C library; however, we believe it is
advantageous to use a special-purpose language for proto-
col analysis. First, by offering appropriate protocol analysis-
specific abstractions, it is easier to program in such a language
and the programs are succinct and easy to read. In some
other contexts, special-purpose languages offerred three- to
four-fold reduction in code size [25], [27]. Second, a special-
purpose language gives opportunities for protocol analysis-
specific safety checks and optimizations.

In comparison with existing languages, our GAPA language
expresses protocol abstractions specific for protocol analysis.
GAPAL contains a number of interesting features to meet the
special needs of protocol analysis. To make payload format
specification easy for binary as well as text-based protocols,
we adopt a syntax that is similar to Backus-Nauer Form (BNF)
grammar, which has been widely used by many protocol
specifications from standard bodies, such as RFCs. We also
introduce the ability to direct parsing using computations
based on previous fields, giving our language much more
expressive power while staying close to the simple BNF
syntax. We create a special “visitor” syntax; this allows easy
access and manipulation on message components embedded
in the grammar. Further, we support protocol analysis-specific
safety checks and optimizations in addition to the traditional
ones.

To achieve scalability and resiliency to state-holding attacks
in the analysis engine, we minimize the memory footprint of
the engine withspeculative execution. Speculative execution
allows us to process partially arrived messages and apply the
analysis logic to them without having to buffer packets until a
complete message arrives. We also carefully manage timeouts,
exceptions, and pre-existing sessions, and minimize the chance
of incorrect interpretation of the protocol context in GAPA. A
particular novel aspect is the use ofoutgoing message clocking
to synchronize the current protocol state of GAPA with that
of the application.

We have prototyped our GAPA system. In our initial evalua-
tion, we have specified a number of application-level protocols
and found that GAPAL is expressive and easy to use, and the
GAPA prototype is scalable for online protocol analysis on
clients and can be potentially scalable for servers.

GAPA, used together with protocol specifications in
GAPAL, provides us with knowledge of the precise protocol

context of a communication session, giving us the ability to
accurately label network traffic or detect intrusions. GAPA can
also be used to “normalize” online communication traffic1 —
that is, ensure some invariants on the traffic that is delivered
to the application. For example, GAPA can be used in an
application-level firewall, such as Shield [42], to ensure that
traffic that exploits vulnerabilities is never delivered to the
application.

The detailed protocol knowledge obtained through GAPA
has other uses as well. For example, GAPA can potentially
enable theautomatic generation of vulnerability signatures
when combined with unknown-attack detection tools, such
as TaintCheck [29], Minos [12], Vigilante [11], Dynamic-
Check [34], or Reactive Immune System [38], and enforce
such signatures.

For the rest of the paper, we first give an overview of the
GAPA system in Section II. Then, we present our GAPAL
language in Section III, and the GAPA analysis engine in
Section IV. We present our evaluations in Section V. We
describe a number of applications of GAPA in Section VI.
In Section VII, we compare and contrast with related work.
We address future work in Section VIII and finally conclude
in Section IX.

II. GAPA SYSTEM OVERVIEW

The set of common protocol functions carried out in the
analysis engine determines the flexibility of the GAPA lan-
guage and the ease of programming in GAPAL. Naturally,
we want to implement protocol-independent functions in the
engine; and GAPAL syntax must support programming (or
configuring and customizing) some of these common func-
tions. We first briefly illustrate these functions and their
respective abstractions that need to be supported by GAPAL;
then we give an overview on how these functions make up
our GAPA system.

The common functions are:

• Session dispatching:
A session is an abstraction common to most protocols.
The session is identified based on either the underlying
transport connection (i.e. the source and destination IP
address and ports), or based on some session identifi-
cation in the message. The GAPA engine will need to
keep track of active sessions and dispatch messages to
the appropriate ones.

• State machine operations:
For each session, GAPA must maintain the current pro-
tocol state. The state affects how the input messages are
processed; arriving messages will cause transitions to a
new state.

• Message parsing:
A protocol analyzer will need to parse messages accord-
ing to a protocol-specific message format. This pars-
ing needs to be done incrementally, since application-

1This is in contrast with other “traffic normalizers” [20][26] that normalize
transport protocols.
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layer messages can be split among several packets. Cor-
rect parsing state must be maintained between pack-
ets, otherwise partial messages will be analyzed incor-
rectly [33][32][20][26].

• Protocol Layering:
Application-level protocols can be layered on one an-
other. For example, RPC can be layered over HTTP.
Layering support needed in the analysis engine involves
not only piping the payload to the next upper layer, but
also maintaining respective session state at each layer.

• Application-Level Datagrams:
Some application-level protocols use UDP as the trans-
port protocol and implement their own datagram frag-
mentation, reassembly, and reordering. The GAPA engine
uses layering to support such datagrams, with a lower
layer directing GAPA how to perform reordering and
reassembly before delivering an in-order byte stream to
the upper layer.

• Timeout handling:
Timeout events are used in many protocols. The analysis
engine needs to have timer supports. (Timer support for
analyzing network traces uses the timing information
in the trace.) Timeout handling is complicated by the
inability to stay completely synchronized with the appli-
cation, hence a timeout event in GAPA may not exactly
correspond to the same event in the application. Here,
we useoutgoing message clocking, which eliminates the
need to maintain timers in the engine for some protocols,
and helps resynchronize with the application in case of a
timing mismatch for other protocols. Section IV-E gives
more details on this.

• Exception handling:
Protocol messages may be malformed, causing a parsing
exception. Other exceptions may include explicit errors
signaled by the protocol analysis, or errors in the buffer-
ing layers of the engine. Depending on the user policy,
the GAPA engine can handle these exceptions by raising
alerts, dropping packets and terminating connections, or
simply ignoring them. We allow separate handling of each
kind of exception.

• Pre-existing session handling:
There may be sessions that have already started before
GAPA’s protocol analysis takes place. In the analysis
engine, we need to handle messages belonging to such
sessions carefully: They should not be treated as mal-
formed messages; otherwise, the exception handling may
undesirably disrupt the pre-existing sessions. Section IV-
F gives more details on this.

Figure 3 shows how a packet (from a live stream or a
trace) traverses through our analysis engine and gets analyzed.
First, Spec Dispatcheruses the process image name that the
packet belongs to (if available) and port numbers to locate the
proper GAPAL specification (short-handed asSpec) from all
the compiled and statically checked Specs that were previously
loaded into the system. Then, the session identification logic
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Fig. 3. GAPA System Architecture Overview

Variable type Lifetime Visibility
message-local vars message entire program
session-local vars session after session dispatching
handler-local vars handler handler, visitor blocks
local vars { } block { } block

TABLE I

THE LIFETIME AND SCOPE OFGAPAL VARIABLES .

in the Spec is interpreted to dispatch the packet to the proper
session. For that session, the packet is parsed according to
some message format specified in the Spec. Based on the
current state and the direction of the packet, the corresponding
handler is invoked to parse and process the payload. The
handler always sets the next state for the session. If protocol
layering is involved as specified in the Spec, the packet is
further piped to the next upper layer going through the same
session dispatching and message processing in that layer.

III. GAPA L ANGUAGE

In this section, we present our GAPAL design and how we
achieve its goals as described in Section I.

We first walk through the high-level layout of a GAPAL
program, as shown in Figure 4. Most abstractions are enclosed
by curly braces to support modularity and readability. The
particular order in which each abstraction is specified is
unimportant.

A uses statement indicates the next lower layer protocol
from which message payload is piped to the protocol being
specified. This allows a programmer to specify each layer in
a separate GAPAL file and use layering as a means of com-
position. Theinclude is a standard pre-processor directive
that includes the specified file data in-place. Atransport
statement specifies the underlying transport protocols and port
numbers used for base layer protocols.

We define several kinds of variables in GAPAL with differ-
ent lifetimes and scopes. Variables defined beforegrammar
section are used to track data across the lifetime of a session,
spanning multiple messages. They can be accessed by all
code blocks in GAPAL except those that are run before the
session-identifier has run since the session instance is
not yet determined at that point of execution. We do not allow
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protocol <protoName> {
uses <lowerLayerName>;
include <f i leName>;
transport = { ( [ TCP|UDP]/< Por t>)+ } ;

/ / s e s s i o n− l o c a l v a r i a b l e s
(<base type> <varName> ; )∗

grammar {
/ / message− l o c a l v a r i a b l e s
(<base type> <varName> ; )∗

/ / message−p a r s i n g r u l e s
NonTerminal [# maxBytes ]−>
[{<code>}]
([ <name>:]< type>[#maxBytes ] [{<code>} ]) +

( ” | ” [ a l t (< a l t e r n a t i o n name>)] . . . )∗ ;
. . .

} ;

state-machine <name> {
((< s t a t e>, [ IN |OUT|TIMEOUT ] )

−> <s ta teHand lerName>)+

initial-state = <stateName>;
final-state = <stateName>;

} ;

session-identifier (< s ta r tN onT e rm ina l>){
<code>
return <s e s s i o n ID>;

} ;

handler <name>(<s ta r tNo nTe rm i na l>){
/ / handler −scoped v a r i a b l e s
(<base type> <varName> ; )∗

(< v i s i t o r >)∗

<pos t−p a r s i n g code>
return <n e x t S t a t e>;

} ;
} ;

Fig. 4. The high-level layout of a GAPAL protocol specification; items
enclosed in “[]” are optional; “()*” indicates 0 or more of the items enclosed
in “()”, and “()+” indicates 1 or more of the items.

global variables across different sessions: GAPAL sessions
are more flexible than what may be defined in a protocol;
for example, a GAPAL session can be defined to represent
multiple RPC sessions and the respective state machine models
the multiple sessions together; therefore, when a GAPAL
programmer feels the need of sharing variables among several
sessions, those sessions should be defined as a single session
in GAPAL.

Variables defined ingrammar aremessage-localvariables
that are used throughout the lifetime of parsing a message,
which may be composed of multiple packets. These variables
can be accessed by the entire program, including those code
blocks that are executed before thesession-identifier .
These variables are re-initialized with each message and are
intended to be used to assist parsing.

We also allow local variables inside any block, which have

a lifetime of the duration of the block. A special case are
handler-local variables, which are defined within a handler and
are visible so long as the handler is executed; we will explain
these variables in more detail below in Section III-B. Table I
shows the lifetime and scope of each variable type.

Base types for the variable declarations are 8 to 64 bit in-
tegers (both signed and unsigned), uninterpreted bytes, floats,
doubles, strings, and booleans. We also support safe arrays
of base types, but we do not let the programmer manually
allocate or free dynamic memory.

The rest of thegrammar section specifies the protocol mes-
sage formats using BNF-like grammar rules. A non-terminal
refers to either a message component or an entire message.
A non-terminal roughly corresponds to a C structure or union
type name for binary messages, and a BNF non-terminal for
text-based messages. The production rule of a non-terminal
indicates the make-up of the non-terminal and can include
alternation | . Programmers can usealt(<alternation
name> to indicate the name of an alternation which is useful
to visitors (to be explained later). The<type> could be
a base type, a token type, such as a regular expression, or
another non-terminal. The type is used for typing the message
components for type safety in expressions and statements, as
well as for grouping bytes into type instances during parsing.
Programmers can add<symbol> before <type> to refer
to a parsed message field when needed.<maxBytes> is for
programmers to indicate the maximum number of bytes that
symbol:type can take. Alternatively, programmers can also
specify a default upper bound size for all fields (not shown
in the figure) and enforce it at run-time — this is to ensure
the correct GAPA operations in the face of malicious or mal-
formed, runaway payloads.<code> ’s embedded throughout
a grammar rule contain parsing-related logic. At run-time,
the analysis engine usesrecursive descent parsingto parse
an input byte stream according to the grammar. Like typi-
cal recursive-descent parsers, we disallow left-recursion. We
present our design rationale and further details ongrammar
in Section III-A.

A state-machine specifies protocol states and their
respective handlers, and indicates the initial and final state
of a session.IN and OUT indicate the direction of an input
packet, incoming or outgoing. There is one handler per state
per packet direction. We also allow aTIMEOUTtransition to
be specified; timeouts have to be activated dynamically by the
handlers (see Section IV-E).

The session-identifier parses the packet accord-
ing to the grammar rule for<startNonTerminal> and
extracts and returns a session ID. The session ID is used
by the analysis engine to dispatch the input packet to the
correct session instance. A previously unseen ID creates a
new session instance. Each session instance has its own copy
of the handlers, session state machine, and session variables.
In session-identifier section, only message-local vari-
ables can be used, but not session-local ones, since session
dispatching has not finished running.

A handler carries out the customization logic that program-
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mer intended for protocol analysis and always returns the next
state for the current session. The next state is returned by
the handler rather than being specified instate-machine
because it may be dependent on both the message content or
the protocol analysis logic. We support assignment, conditional
statements, common expression operators, and aforeach
iterator in handlers. Theforeach iterator can be used to
iterate through local safe arrays or grammar array elements of
a message. We allow only forward traversal of the arrays, like
DPF [16]. Therefore, infinite loops cannot be created with our
foreach . (Cycles in the grammar are statically detected and
disallowed, which we illustrate in Section III-C.) Further, all
statements and expressions are statically typed for safety. We
also offer a variety of built-in functions. Common functions
include byte order conversion routines (ntohs and ntohl, etc.),
string routines (strlen, strtol, etc), and others. For layering, a
lower-layer protocol can pipe data to the next upper layer via
the send call. We give further details on visitor usage and
scoping in handlers in Section III-B.

A. Message-Parsing Grammar

A key challenge in message parsing is to accommodate both
binary and text-based protocol messages. Much of previous
work (Section VII) addressed only binary protocols.

Binary messages are typically viewed as a C-like con-
structed type (e.g., structs, unions, etc.) overlayed on a byte
stream. Text-based messages, on the other hand, are often
represented by some sort of grammar, often in Backus-Nauer
form (BNF) or some variant thereof.

In GAPAL, we are able to use the same parser for binary and
text-based messages by observing that they follow a similar
recursive structure, hence we use a BNF-like grammar to rep-
resent both. Expressing text-based messages in our grammar
is very natural — in our experience, much of the grammar can
be created by simply copying and pasting the BNF notations
from the RFC or similar specification. Expressing binary
messages is also straightforward: a structure is represented as a
sequence of fields, while nested structures use non-terminals to
refer to the component substructures. Unions are implemented
using alternation, and we include special support for arrays,
specified asname:<type>[s] wheres may be a constant,
a previously defined symbol of type integer, or an executable
expression.

Array support represents a departure from the otherwise
context-free nature of our grammar specification. We find,
however, that they are a common enough idiom in both
text-based and binary protocols that we need to support
them in GAPAL. It is straightforward to integrate array sup-
port into a recursive-descent parser: whenever it encounters
<type>[s] , it first evaluatess and keeps a counter to parse
s copies of<type> .

Figure 5 gives a comparison between our RPC (binary)
message grammar snippet and its corresponding specifica-
tion [35]. Figure 6 shows that of HTTP (text) messages. (Some
of notations such as “?” and “:=” will be explained shortly.)

HTTP message−> Reques t | Response ;
Response−> ResponseL ine HeadersBody ;
HeadersBody−> Headers CRLF Body ;
Body −>

{ i f ( chunked ) {
body := ChunkedBody ;

} e l s e {
body := NormalBody ;

} body : ? ;
NormalBody−> d a t a : by te [c o n t e n t l e n g t h ]
Headers−> Genera lHeader Headers| ;
Genera lHeader−> name : ” [A−Za−z0−9−]+”

” : ” va lue : ” [ ˆ \ r \n ]∗ ” CRLF
{ / / == i s f o r s t r i n g compar ison

i f ( name == ” Content−Length ” ) {
/ / c o n v e r t v a l u e t o base 10

c o n t e n t l e n g t h = s t r t o l (value , 1 0 ) ;
}
. . .

} ;
ChunkedBody−> . . . ;

Fig. 6. GAPAL Code Snippet for HTTP.

1) Code Blocks Embedded in the Grammar:To simplify
writing grammar rules, we allow programmers to embed C-
like code blocks into the grammar to help direct parsing.
This is particularly useful for messages that use a length field
to indicate the size of the following data2. For example,
the length of the body of an HTTP message is specified by
the header fieldContent-Length ; in Figure 6 the content
length value is saved inside a variable and retrieved in the
NormalBody production.

Code blocks are also helpful when the type of a symbol is
best determined at runtime. We introduce aresolveoperator,
denoted:= , which allows the statements to specify how to
parse subsequent fields. A resolve assigns a type (or a non-
terminal), specified on the right-hand side, to a symbol name
on the left hand-side. A dynamically resolved symbol name is
denoted with the ’?’ type. Both of our GAPAL code snippets
in Figure 6 and Figure 5(b) demonstate the usage of the resolve
operator. It is possible to rewrite these grammars to avoid
the resolve operator and be context free, but the resulting
specification is much more awkward.

Code blocks can access message-local variables,
session-vars , and locally defined temporary variables.
When usingsession-vars , it means that message parsing
is dependent on the session context.

To ensure type safety, we statically check that resolved
symbols arenot used in expressions, since we would not be
able to determine their type.

Although these statement blocks are handy, for modularity
and grammar reusability, we advise programmers to only
include parsing-related logic in them and exclude protocol
analysis functions that best belong in handlers.

2A size used to direct parsing of future data is called a synthesized attribute
in automata theory. For this reason grammars such as ours are sometimes
called attribute grammars.
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/∗ b ind heade r ∗ /
t y p e d e f s t r u c t {

/∗ common header∗ /
u i n t 8 r p c v e r s = 5 ;
u i n t 8 r p c v e r s m i n o r ;
/∗ b ind i f f PTYPE == 11 ∗ /
u i n t 8 PTYPE ;
u i n t 8 p f c f l a g s ;
by te packedd rep [ 4 ] ;
u i n t 1 6 f r a g l e n g t h ;
u i n t 1 6 a u t h l e n g t h ;
u i n t 3 2 c a l l i d ;
/∗ end common f i e l d s ∗ /

u i n t 1 6 max xm i t f r ag ;
u i n t 1 6 m a x r e c v f r a g ;
u i n t 3 2 a s s o cg r o u p i d ;

/∗ var−s i z e p r e s e n t a t i o n c o n t e x t l i s t∗ /
p c o n t l i s t t p c o n t e x t e l e m ;
/∗ o p t i o n a l a u t h e n t i c a t i o n v e r i f i e r∗ /
/∗ f o l l o w i n g f i e l d p r e s e n t i f f a u t h l e n g t h !=0 ∗ /
a u t h v e r i f i e r c o t a u t h v e r i f i e r ;

} r p c c o n n b i n d h d r t ;

t y p e d e f s t r u c t {
u i n t 8 n c o n t e x t e l e m ;
u i n t 8 r e s e r v e d ;
u s h o r t r e s e r v e d 2 ;
p c o n t e l e m t [ s i z e i s ( n c o n t e l e m ) ] p c o n t e l e m [ ] ;

} p c o n t l i s t t ;

t y p e d e f s t r u c t { . . . } p c o n t e l e m t ;

t y p e d e f s t r u c t { . . . } a u t h v e r i f i e r c o t ;

(a) The RPC BIND message from the OpenGroup specification [35].

i n t m a u t h l e n ;

commonRPCHeaders−>
r p c v e r s :u in t8
r p c v e r s m i n o r : u in t8
PTYPE :u in t8
p f c f l a g s :u in t8
packed d rep :byte [ 4 ]
f r a g l e n g t h :u in t16
a u t h l e n g h :u in t16 {

m a u t h l e n = a u t h l e n g h ;
}
c a l l i d : u in t32 ;

r p c c o n n b i n d h d r t −>
commonRPCHeaders
max xm i t f r ag : u in t16
m a x r e c v f r a g : u in t16
a s s o c g r o u p i d : u in t32
p c o n t e x t e l e m : p c o n t l i s t t {

i f ( m a u t h l e n !=0 )
a u t h v e r i f i e r := a u t h v e r i f i e r c o t ;

e l s e
a u t h v e r i f i e r := emptyRule ;

}
a u t h v e r i f i e r : ? ;

emptyRule−> ;

p c o n t l i s t t −>
n c o n t e x t e l e m :u in t8
r e s e r v e d :u in t8
r e s e r v e d 2 :u in t16
p c o n t e l e m : p c o n t e l e m t [ n c o n t e x t e l e m ] ;

a u t h v e r i f i e r c o t −> . . . ;
p c o n t e l e m t −> . . . ;

(b) RPC BIND message in GAPAL

Fig. 5. The RPC (over TCP) BIND message layout

B. Visitors in the Handlers

To perform analysis, handlers will need to refer to fields of a
message according to the recursive grammar. In simple cases,
dot notation such asa.b.c could be useful. However, the dot
notation becomes cumbersome in cases with deep recursion
or alternation, which occur in both binary and text-based
protocols. For example, RPC may have up to 11 different
alternations with each alternation 4 levels deep. In the case of
alternation, one must explicitly check which case was chosen
in the current message in order to avoid referring to fields
that are not present. The dot notation essentially requires
duplicating the parsing logic present in the grammar, and can
be tedious and error-prone.

We eliminate re-parsing with a much cleaner and clearer
syntax by allowing the programmer to write grammar visi-
tors [18]. A visitor is a block of code that is executed each
time a rule is visited. The syntax for a visitor is:

@ <non−t e r m i n a l >( . <a l t e r n a t i o n name>)?
−> { . . . <code block> . . . }

The syntax assigns the non-terminal (or its alternation) a
code block to run every time after the non-terminal (or the

alternation) is parsed. Symbol names in the production of the
non-terminal (or the alternation) can be accessed locally by
the visitor. These code blocks work similarly to the blocks
inserted into the grammar, however, we want to enable a
clean separation between the parsing logic and the protocol
analysis so that the same parsing logic can be re-used for
different protocol analyses. Essentially, the visitors in a handler
represent the handler’s customization of message parsing for
the purpose of protocol analysis. Consequently, visitors are
always executed before the rest of the handler code.

Visitors can declare local variables, which exist only for the
duration of each code block. For longer-lived variables, visitors
can refer tohandler-local variables. Handler-local variables
have a lifetime corresponding to the handler execution; they
are initialized before any visitors are called and destroyed once
the handler exits.

The example below counts the number of headers in an
HTTP request for the grammar given in Figure 6:

h a n d l e r hnd l ( HTTPMessage ){
i n t 8 h d r c n t = 0 ;
@GeneralHeader→ { h d r c n t ++; } ;
p r i n t ( ‘ ‘ T o t a l number o f h e a d e r s : %v\n ’ ’ , h d r c n t ) ;

}
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The grammar rule symbols for non-terminal
GeneralHeader are locally available to the visitor.
hdrcnt is a handler-local variable that is initialized
to zero every time the handler is called. Every time
GeneralHeader is traversed during parsing,hdrcnt is
incremented. When the entire message is parsed, the total
number of headers is printed.

C. Safety Checks and Optimizations

GAPAL is type-safe. In addition, we also check for:

• Dynamic safety:We perform array bounds checking at
runtime to avoid memory errors. In addition, we perform
checks that are missing even from some memory-safe
languages like Java [24] and OCaml [30], such as check-
ing for integer math overflow and division by zero to
eliminate logic errors caused by these so that GAPAL
programs are more robust to run in the analysis engine.

• Unreachable grammar rules:A GAPAL author may
inadvertently create unreachable grammar productions. A
non-terminal is unreachable if it can never be reached
during parsing. We warn the author on such productions.

• Correct state machine use:We perform control-flow
analysis to make sure that every handler returns a state.
We also make sure that the returned state is defined
in the state machine abstraction. Furthermore, we alert
programmers of the unreachable states.

• Resolve safety:Resolve statements (Section III-A) are
naturally proceeded by a conditional statement, i.e., if
some condition occurs, resolve the grammar symbol to
some non-terminal. We check to make sure that symbols
are properly resolved along all control paths. Also, we
make sure that resolved symbols are not used in expres-
sions, since we cannot statically determine their type.

• session-identifier safety:
We ensure that only message-local variables are ac-
cessed insession-identifier section. Further,
some of the code fragments that are executed during
parsing may referencesession-vars , and will there-
fore cause an error if they are executed before the
session-identifier (and hence the session dis-
patching) has run. To prevent such errors at run-time,
we perform a static analysis of which code blocks will
be executed before the session dispatcher is complete and
flag error if they refer tosession-vars .

• Ensuring termination:We want to ensure that parsing
will always terminate. We can find cycles in the grammar
using standard techniques to find left recursion. The
code blocks are also guaranteed to terminate because
they cannot include infinite loops. However, with the
resolve feature, it is possible to create a parsing cycle by
combining grammar rules and code blocks. For example,

G −> { s := G; } s : ?

creates a parsing cycle. We detect this by checking the
code blocks and obtaining a list of all possible types that

a symbol may resolve to. We then apply a left-recursion
check to all of those types.

IV. T HE ANALYSIS ENGINE

The analysis engine operates either innormalizing mode,
forwarding potentially modified traffic to the application based
on the handler actions, oranalysis mode, used for monitoring
traffic or processing network logs when no modifications to
the network data are necessary.

Message parsing is used throughout the protocol analysis
process in the engine. From GAPAL Spec dispatching (Sec-
tion II), the analysis engine finds the respective GAPAL Spec
for the current packet to be analyzed. The engine then follows
the grammar that specifies the message format, performs
recursive descent parsing and generates a parse tree. Since the
engine may receive packets containing incomplete messages, it
performs parsing incrementally, saving parsing state between
packets.

The engine also executes code fragments during parsing,
both those embedded in the message grammar and those
resulting from the visitor pattern in the handlers (Section III-
B). The resulting parse tree contains the components of the
message parsed out of the packet. Later on, handlers use the
parse tree, as well as other session state maintained by the
code fragments, to carry out further analysis.

For the rest of section, we present other interesting tech-
niques that we used in designing the engine.

A. Buffering

We want the memory footprint of the engine to be as small
as possible, both to improve performance and to avoid state-
holding attacks. The engine must buffer parts of a parse tree
that will later be referred to by the handlers, incompletely
parsed fields of a message, and packets that are about to be
normalized.

Statically, we compute which parts of the parse tree are
referenced by handlers and automatically discard the unrefer-
enced parts of the parse tree. At parse time, we keep track
of the parse tree variables that the handlers will reference in
the future, as provided by the handler interpreter. As soon as
we know that a variable will no longer be needed, we free
the corresponding memory. This, combined with speculative
handler execution (described in the next section), greatly
reduces the parse tree buffering requirements.

The only kind of normalization that is currently supported is
dropping a packet or a session based on an error. Therefore, we
have optimized the memory management in the GAPA engine
for this case. We buffer a packet in the engine only as long as
its fields are being parsed by the grammar parser, and release
it to the application immediately afterwards. This may cause
potentially malicious packets to the application, however, these
packets will be incomplete. The security assumption we are
making is that if the GAPA engine does not have enough of
the message to make a decision about whether it is malicious
or not, the partial content is not yet dangerous enough to cause
errors in the application. This assumption is made real by the
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speculative execution mechanisms described below; however,
it requires care on the part of the GAPAL programmer.

As described in Section III, message components have a
maximum size by default or GAPAL programmers can explic-
itly specify the maximum size throughmaxBytes (Figure 4).
For example, the URL field of HTTP might be specified
to not exceed 2000 bytes. This gives an upper limit on the
buffering needed for message components. When length of
a field exceeds the limit at runtime, an exception will be
triggered in the analysis engine.

B. Speculative Execution

We use a special technique to execute handlers as early as
possible in the parsing process. In the firewall and intrusion
detection scenario, this allows us to detect attacks earlier and to
avoid buffering incomplete messages. It also helps us optimize
parsing once it is clear that no attack exists.

The engine begins executing handlers as soon as it has
parsed a single packet, even if the message is incomplete.
We speculatively execute the handler until it references a
component of a message that has not yet been processed. At
that point, we save a continuation for the rest of the handler
until the next packet. If the next packet includes the referenced
component, we resume execution of the handler and continue
until either another unreferenced component is encountered or
the handler returns. If the handler is finished, we can switch
to a light parsing mode for the rest of the message, skipping
parsing any fields whose length can be determined in advance.

Early execution works well only if the order in which fields
are referenced matches the order they are parsed. Otherwise, a
lookup for a field that comes late in the message will delay the
execution of the handler. In normalizing mode, this may result
in a security hole, since a partial message may be passed on to
the application even though later checks, blocked by some field
late in the message, will flag it as malicious. However, it is
possible to warn programmers of such scenarios at the compile
time. In simple cases, where there are no data- or control-flow
dependencies between statements, it may be possible to reorder
code statements to avoid this problem. For complex cases with
such dependencies, programmers should be conservative and
block the early arriving field more aggressively, which may
cause false positives, but no false negatives will result.

Early execution is also used during session dispatch-
ing. When a message is received, we first execute the
session-identifier logic, followed by the appropriate
handler. The transition between the dispatcher and the han-
dler happens automatically at the point when enough of the
message has been parsed for the dispatcher to complete.

C. Layering

An important component of the analysis engine is layering.
Layers are implemented as essentially separate instances of the
GAPA engine (Figure 3). When a lower layer sends data to an
upper layer, it is treated as an incoming packet in the upper
layer GAPA instance and parsed, dispatched, and processed
the same way as regular communications. In particular, all

the buffering and speculative execution mechanisms operate
the same way, defending from malicious traffic and avoiding
state-holding attacks.

In addition to supporting several protocols layered on top of
each other, layering can be used to separate a complex protocol
into component layers. In fact, we use layering to implement
application-level fragmentation and datagram reordering. The
lower layer parses the fragment headers and uses a special
version of thesend call — sendFragment — to indicate
to the engine where in the fragment sequence the current data-
gram appears. The engine then performs fragment reassembly
before passing the data to the upper layer, which parses the
reassembled data into meaningful message components.

When GAPA is used in normalizing mode and it lies on the
forwarding path, the packets must be forwarded at the lowest
layer of the engine. However, upper layers may still signal
errors to the engine, which will cause the underlying packet
to be dropped. Speculative execution at the lower layers will
cause as much data to be passed to the upper layers as possible,
while speculative execution at the upper layers will cause
analysis to proceed as far forward as possible. Once again,
we rely on the assumption that if the GAPAL specifications
do not have enough data to make a decision about the packet,
the packet cannot harm the upper layer of the application.

D. Exception Handling

During message parsing, an exception might occur. This
may be due to a malformed message or because of an
exception in a handler. Another cause is a grammar field being
too long: GAPA allows GAPAL authors to specify a maximum
length for fields to avoid buffering large amounts of data (see
Section III); this is particularly useful when GAPA is used in
adversarial conditions.

The exception can be handled in several ways: by alerting
the user of the error, by dropping the packet or terminating
the communication session (in normalizing mode), or by
simply ignoring it. Exceptions raised in the handlers are never
ignored, however, parsing exceptions are dealt with according
to a policy decision. This decision is made by the user of
GAPA independent of the GAPAL specification, depending on
whether it is more important to be conservative in the analysis
or to avoid disruption. If it is important to be minimally
disruptive, GAPA can be told to pass any packets it does
not understand to the application, optimistically assuming that
they will not cause any harm. However, the more conservative
approach is to reject all such packets, potentially disrupting
the application if there is an error in the grammar. Trace-based
testing can help prevent such errors.

In either case, the session transitions to an error state
after an exception. All future packets for the session will
also cause an exception and will be handled according to
the same policy, effectively terminating the analysis of the
session. In the future, we plan to investigate using outgoing
message clocking (described in the next section) to potentially
resynchronize with the application after a parsing error by
watching its response. (Of course, this is impossible if the
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erroneous packets are discarded, since no response will ever
be sent.)

E. Timeouts

Protocol state machines often have timeout events for retries
or for session state cleanup, in case of remote host or connec-
tivity failures. However, maintaining timing in GAPA is tricky
because a timeout in GAPA maynot correspond a timeout in
the application and vice versa. Such inconsistencies can lead
to incorrect analysis.

To address this challenge, we useoutgoing message clocking
to minimize the timer usage in GAPA and to synchronize
GAPA’s current protocol state with that of the application
(when necessary). The intuition here is that an outgoing mes-
sage (of a firewalled host or a monitored entity in a trace) or
a sequence of outgoing messages reveals the current protocol
state that the application is in. Please note that we cannot
trust incoming messages in an adversarial environment, since
incoming messages could be from an attacker. Furthermore,
we are assuming here that the machine that the application
is running on is not compromised — otherwise, the correct
operations of GAPA cannot be guaranteed in the first place.

In timeout handling, there are two kinds of timeouts: The
first kind triggers a network event, such as a retry message or a
socket-closing event — they are observable from the network
and consequently, by GAPA. The other kind of timeouts is
“network-silent”, such as session-cleanup kinds of timeouts.

For network-observable timeouts, we apply outgoing mes-
sage clocking to eliminate the need to maintain timing in
GAPA — instead of maintaining a timer and transitioning to
a new state upon a timeout, the state transition is triggered by
observable network events.

For network-silent timeouts, GAPA has no choice but to
maintain a timer. In GAPA, a handler can set a timeout using
the timeout (time) built-in function; if no state transition
occurs when specified time has elapsed, a timeout handler
is called. The time can be determined dynamically based on
protocol context. To cope with timing inconsistencies between
the GAPA and the application, one solution (for the normal-
izing mode operation) is to enforce a timeout event in GAPA
with a conservatively early timeout: Even when a waited-for
message arrives before the application times out, GAPA can
discard the message and force timeout in the application. This
solution is undesirable in that it changes application behavior.
Furthermore, it is only applicable to normalizing mode, but not
the analysis mode where such enforcement is not possible.
Another solution is that GAPA maintains a conservatively
long timeout: GAPA may enter an inconsistent state with the
late-arriving, waited-for message, but it may be harmless to
the application since the application would treat the message
as an exception. However, if we are guarding a bug in the
post-timeout exception handling code of the application, this
inconsistency will be a problem.

In our solution, we design our analysis engine to be
acknowledging about its ambiguity on the current protocol
state: We create aMaybeTimeoutstate in the protocol, and

Fig. 7. Application state machine

Fig. 8. GAPA maintained state machine

transition to it conservatively before the application timeout.
From this point on, we once again applyoutgoing message
clocking to infer and synchronize with the current protocol
state in the application. In more detail, a message received
in the MaybeTimeoutstate that would normally transition to
state B would cause a transition to the stateTimeoutOrB,
indicating that there is still an ambiguity about the application
state. The response from the application should resolve this
ambiguity and let GAPA transition to the correct state. If
no traffic is received, the protocol will transition from the
MaybeTimeoutstate to aTimeoutstate after a large enough
wait to account for a margin of synchronization error. If the
GAPA is running on the same machine as the application, this
margin of error can be quite small; in a network setting it may
need to be as large as seconds. Figure 7 and Figure 8 shows the
state machines maintained in the application and the analysis
engine, respectively, for this example. In the general case, it
may take more than one message to resolve the ambiguity in
the application state and more ambiguous states will need to
be introduced.

GAPAL programmers can be agnostic of the timeout han-
dling in the engine and specify the protocol state machine just
as it is described in protocol specification documents using
timeout events for both network-observable and network-
silent timeouts. Then GAPA carries out the state machine
transformation at the compile time.
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F. Pre-Existing Sessions

From time to time, the GAPA policies of a running analyzer
will need to be upgraded. We want to do this with minimal
disturbance to the analysis and the application. We therefore
use the old policy to process existing connections, and only
apply the new policies to newly formed sessions. However, this
becomes complicated if the new policy uses a different user-
defined session identification function (Figure 4) than the old
one. In this case, we perform a two-stage session identification
process: first, the old session identification is used to see
if the message corresponds to an existing session according
to the old policy. If no such session exists, the new session
identification function is run to dispatch the message according
to the new policy. The two-stage identification process remains
in effect as long as any of sessions using the old policy are
active.

There can also be pre-existing sessions before GAPA is
installed and runs on a system. As a compromise between
security and disturbing these pre-existing sessions, we adopt a
grace period when GAPA first starts. During the grace period,
messages belonging to unknown sessions to GAPA are not
treated as exception, but are parsed, observed and used to infer
the current protocol state of the application. Again, we apply
outgoing message clocking here to use a sequence of outgoing
messages to infer the correct state of a pre-existing session.
Certainly, in a normalizing mode, such a grace period gives
opportunities to attacks; such vulnerable time windows can be
eliminated by restarting the application.

V. EVALUATION

We have prototyped the GAPA framework in C++. We use
Lex and Yacc specifications for the syntax. All together, there
is a little over 15000 lines of code, not including comments.
About 56% of the code is for interpreting the type-safe
language, 18% for grammar parsing, 9% for session and state
management, and 17% for the language syntax files (Yacc and
Lex files) and others.

Next, we present our evaluation results on the expressive-
ness of our language and the performance of our prototype.

A. Experience with GAPAL

We have specified a number of protocols using GAPAL:
HTTP [17], RPC [35], SIP [19], DNS [28], BitTorrent [6],
and TLS [14]. This represents a diverse collection, including
text and binary protocols, both stream- and datagram-oriented.
In all cases, we have found the specification process to be
straightforward, as we can start with a BNF specification and
then annotate it with additional parsing and protocol logic.
We were able to specify most protocols within a few hours.
The most difficult task was resolving some unclear parts
of a protocol specification; this task cannot be helped by
tools, and would be easier for someone with detailed protocol
knowledge.

Table II summarizes our specifications. The “GAPAL LoC”
column shows the number of uncommented lines of code
in GAPAL specification. The “Session” column indicates

whether a protocol uses an implicit session identification with
IP addresses and ports or an explicit one with session ID
embedded in the messages. The column of “Layering” indi-
cates whether layering mechanism has been used for protocol
layering, fragmentation, or out-of-order datagram handling.

The complexity of our specifications roughly corresponds
to the complexity of the protocol definition in the RFCs
that we used, as most lines are copied from the BNF-like
specifications in the RFCs. For comparison, we studied the
protocol analyzers included in Ethereal [37]. We found that
Ethereal used about an order of magnitude more lines of code
than GAPAL. The comparison is not entirely accurate, as a lot
of the Ethereal code is dedicated to pretty-printing the protocol
headers, but we expect that even without this functionality
there would be a large difference between both the code size
and the development effort involved in Ethereal and GAPAL.

For most of the protocols, we implemented a simple labeling
analysis to print out the values of some relevant fields. We have
found that the visitor syntax is very useful in this task, since
we can directly reference fields in the grammar as they are
parsed, rather than manually extracting them from the parse
tree.

We also implemented a more complicated analysis to detect
the CodeRed worm [8]. This analysis uses a layered composi-
tion of the HTTP protocol and a CodeRed-specific URL parser.
The HTTP protocol identifies the URLs in the HTTP requests
and passes them on to the URL parser using the layering
mechanism. The URL parser looks for URLs interpreted by
the IDA ISAPI filter and breaks them into their constituent
components. The analysis handler then checks whether the
buffer parameter exceeds a certain length (causing a buffer
overflow), and raises an alert when it does.

The CodeRed URL parser specification is only 25 lines of
GAPAL code. We have tested it with a CodeRed infection
packet and it successfully detected the worm; we also tested
the parser on a 1 GB web trace and did not detect any
false positives. Note that we are able to use detailed protocol
knowledge to specify the exact vulnerability, rather than a
simple web signature. Our CodeRed analysis would have
detected CodeRed II and other potential variants of the worm,
including polymorphic variants that use URL escaping, as the
HTTP protocol analyzer removes the escapes before passing
them to the URL parser.

B. GAPA Performance

To evaluate the GAPA performance, we collected a web
trace in front of a busy web server3. The trace contains 48,755
packets, not counting re-transmitted packets. Then, we ran our
GAPA prototype with a HTTP Version 1.1 GAPAL Spec to
analyze the trace on a 3.06 GHz CPU with 1 GB RAM running
Windows XP. We first evaluate the parsing efficicency, using a
HTTP GAPAL Spec that contains only parsing logic, and no
analysis logic. GAPA parses the HTTP messages at a rate of

3The name of the server is not disclosed for the purpose of double-blind
review.
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Protocol # of States GAPAL LoC Session Layering

HTTP 3 55 Implicit Fragmentation
RPC/TCP 9 122 Explicit Fragmentation
RPC/UDP 6 72 Explicit Fragmentation & out-of-order
SIP 6 276 Explicit SDP
DNS 4 60 Explicit Out of order (with UDP)
BitTorrent 3 38 Implicit No
TLS 5 46 Implicit No
SSH 4 39 Implicit No
DHCP 2 14 Explicit No

TABLE II

EXPERIENCE WITH GAPAL.

3340 packets per second, and a bit rate of 11.7 Mbps. Then,
we further measured the impact of additional protocol analysis
logic, using our CodeRed detector discussed above for the
measurement. We obtained a rate of 3020 packets per second,
and 10.5 Mbps.

Using profiling, we determined that the largest components
contributing to the GAPA overhead were regular expression
matching during the parsing, and execution of the interpreted
language statements. For regular expressions, we plan to use
advanced pattern matching techniques optimized for matching
several regular expressions at once [13]. To speed up inter-
preted language execution, we plan to investigate compiling it
to machine code.

VI. A PPLICATIONS OFGAPA

GAPA can serve as an effective core mechnanism for a
number of interesting applications which we sketch below:

• Intelligent network trace labeling:
GAPA can enable rapid development of new protocol
analyzers for network monitoring tools like Ethereal [37],
allowing network trace to be intelligently labeled with
the right amount of application level protocol semantics
at GAPAL programmer’s discretion.
Further, strong typing and safety checks in GAPAL elimi-
nate many potential software defects such as those discov-
ered fortcpdump and Ethereal. Since year 2000, 15 dif-
ferent vulnerabilities have been identified in tcpdump[10]
and about 45 in Ethereal [9]. Some of these vulnerabilities
are buffer overruns due to C safety issues (caused by
integer overflow, for example), and some are denial-of-
service attacks caused by specially crafted packets trig-
gering infinite loops. Such vulnerabilities are impossible
in GAPAL specifications. (It is possible for the GAPA
engine to have buffer overruns and infinite loops, but
the engine core can be more thoroughly tested than the
constantly evolving body of protocol-specific analyzers.)

• Easy authoring of vulnerability signatures for known
vulnerabilities:
Recent work Shield [42] uses vulnerability signatures to
block known-vulnerability attacks on an endhost. A vul-

nerability signature of an application can be represented
and recognized by a protocol analyzer. The signature en-
codes all possible sequences of the protocol messages that
lead to the protocol state prior any potential exploitations
(i.e., the protocol context), along with message parsing
instructions for exploit detections. Without precise proto-
col specifications, authoring such vulnerability signatures
can be difficult. Further, an application may have multiple
vulnerabilities. Processing these vulnerability signatures
in turn is inefficient; and merging them into one signature
is non-trivial.
With GAPA, authoring vulnerability signatures can be
made easier. We believe it will be beneficial to maintain
a complete and well-tested GAPAL specification of an
application-level protocol, which can be evolved along
with the application changes. (Such a specification can be
useful for testing and debugging the application, as well
as vulnerability signatures.) From that point on, authoring
individual vulnerability signatures based on that protocol
is reduced to annotating the existing specification with
vulnerability-specific checks. For example, checking for
buffer overrun of a protocol message component requires
just adding a couple lines in a handler, checking the
length of the component and reacting to buffer overruns
when they happen. Merging vulnerability signatures also
becomes trivial — it is a matter of customizing state
handlers, adding new visitors to inspect some message
component, for example. Such fast vulnerability signature
authoring can close the critical time window between
vulnerability disclosure and protection even further.

• Automatic vulnerability signature generation for newly
discovered vulnerabilities:
Much research work designs tools for detecting “zero-
day” exploits, and hence discovering the associated
new vulnerabilities. TaintCheck [29], Minos [12], Vig-
ilante [11], DynamicCheck [34], and Reactive Immune
System [38] are recently proposed and prototyped tools
for detecting and tracing “tainted” control flows caused
by external data or buffer overruns at run-time. While
we know exactly where in the binary code a control flow
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violation or buffer overrun occurs, this information is not
sufficient to author a vulnerability signature, since the
protocol context information is missing. Directly extract-
ing protocol semantics (i.e., the protocol state machine
and message formats) from either the binary code or
source code is very difficult.
GAPA can be used to generate accurate vulnerability
signatures. When the attack detection tools identify which
packet caused the run-time violation, GAPA can re-
construct the protocol context and identify the protocol
states and message components involved in causing the
vulnerability. This can be done either by running GAPA
in parallel with the attack detection tools and signaling it
whenever an error occurs, or by having the tools simply
keep a log of all packet sequences (for active sessions)
and passing the sequence causing the violation to GAPA
as a trace. Because of the protocol context reconstructed
by GAPA, the generated signature will be more precise;
they will cause fewer false positives and are more likely
to catch polymorphic worms.

VII. R ELATED WORK

There is much literature on intrusion detection [32], [39]
and firewalls [22]. However, none has addressed the rapid
development of protocol analyzers with ageneric protocol
analysis framework. Packet filters [4] are programmable selec-
tion criteria for classifying or selecting packets from a packet
stream in a generic and reusable fashion; but they are not
meant to analyze protocol context, which requires interpreting
packets into messages and messages into sessions. In Section I,
we gave an overview of how our work compares and contrasts
with other protocol description languages. In this section,
we address each related work in turn and provide detailed
comparisons.

Shield’s [42] generic protocol analysis inspired us to design
and develop a full-fledged GAPA for purposes beyond just
shielding. In fact, Shield’s design appears to be preliminary.
The Shield language was mostly suitable for binary protocols
such as RPC [35], but would be difficult to express text-based
protocols such as HTTP [17]. Shield’s approach was to treat
text messages like binary ones, using a C-likestruct, but to
allow units of “offset” and “size” to be defined aswords(made
of characters), in addition to bytes. While the idea was novel,
converting an existing protocol specification document to one
that is expressed in Shield language becomes a difficult task. In
contrast, the GAPAL design takes a more disciplined approach
– instead of structuring a binary or text-based data stream
rigidly, GAPAL uses BNF-like attribute grammars which are
easy for both text and binary messages. Shield also did not
address a number of issues in its analysis engine design such
as exception, timeout, or pre-existing session handlings.

PacketTypes [27] is a packet specification language that au-
tomatically generate packet recognizers in C and type protocol
messages into the constituent fields. PacketTypes was designed
primarily for binary protocols at layer 3 or 4 (e.g., PacketType
was used to implement a parser for Q.931 [40], an ISDN layer

3 protocol). Unlike GAPAL, text-based protocol messages and
higher layer protocols are hard to express with PacketTypes.

Prolac [25] is a statically-typed, object-oriented language for
network protocol implementation. Prolac provides a compiler
for creating C code from a Prolac specification. The design of
Prolac was driven by making the TCP implementation readable
and extensible with good performance. While Prolac can be
used to implement any network protocols, GAPAL is more
special-purpose with explicit, built-in support for abstractions
needed for protocol analysis. These abstractions would need
to be manually implemented for each protocol implementation
in Prolac.

StateCharts [21] and Esterel [5] are both languages for
programming reactive systems (e.g., real-time systems, control
systems, hardware design, distributed systems, communication
protocols). Esterel also includes a compiler that translates
Esterel programs into finite-state machines. While the protocol
state machine specification part of our language corresponds
to the control handling aspect of Esterel and StateChart,
they offers minimal data handling support and other protocol
analysis abstractions.

The x-Kernel [23] provides an explicit architecture for
constructing and composing network protocols. Although the
infrastructure is written in C, it enforces a minimal object-
oriented style on protocol and session objects. The essential
abstractions supported are protocol, session, and message
objects along with a set of support routines for buffer manage-
ment, identifier mapping, and timer support. Through this uni-
form interface among protocols,x-Kernel aims to improve the
structure and performance of protocol layering. In comparison
to x-Kernel [23], we provide finer-grained and more explicit
protocol abstractions and eliminate redundant implementations
across different protocols: For example, for the protocol object,
we additionally support the abstraction of session dispatching;
for the session object, we additionally support a state machine
automaton that a session is supposed to follow. While a C-like
modular design is possible for protocol analysis, we believe it
is too low-level and unsafe. In contrast, our language GAPAL
supports strong typing, and because it is special-purpose, we
can easily carry out static checking at compile time for specific
properties related to protocol analysis (Section III-C).

ASN.1 [15], NDR [35], and USC [31] are used to specify
binary message formats, but not the protocol logic. These
languages can be considered as a subset of GAPAL. We have
built translators from NDR and ASN.1 into GAPAL.

Formal Description Languages [2] (FDL) such as Es-
telle [7], Promela++ [3], LOTOS [41], RTAG [1], and
SDL [36] are designed to analyze and to reason and verify
the properties of a particular protocol state machine design.
This is orthogonal to our goal of a framework for parsing and
analyzing protocol messages and reassembling messages into
sessions.

In summary, in the arena of protocol analysis, we are the
first to provide a comprehensive generic application protocol
analysis framework; comparing with related work in protocol
description languages, no existing languages offers sufficient
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abstractions needed for analyzing both binary and text-based
protocols.

VIII. F UTURE WORK

Our GAPA analysis engine currently interprets GAPAL pro-
grams. For higher speed, it may be necessary to compile them
to C or machine code. This would involve translating both the
grammar rules and the executable statement blocks; the key
challenge is supporting incremental parsing and speculative
execution in the translated code.

Our GAPA language could benefit from better support for
modularity. We anticipate an inheritance model for refining a
protocol specification with newsession-vars , augmented
handlers, and possibly an extended state machine. Such a
model would better support designing various analyses on top
of a base protocol specification. We are also gaining experi-
ence programming with GAPAL and finetuning its design.

GAPAL programming can be further made easier by having
a “protocol analyzer development kit” (PADK), similar to
some of the GUI design tools, where states and messages can
be drawn on a canvas, from which PADK would generate code
template. Debugging facilities would also facilitate GAPAL
development.

IX. CONCLUDING REMARKS

In this paper, we have presented the design, implementation,
and evaluation of a comprehensive generic application-level
protocol analysis framework, GAPA. Our key contributions
include the design of a novel protocol analysis language that is
safe, easy-to-use, and expressive, and a number of techniques
that we use for our run-time engine, such as speculative
execution, outgoing message clocking for timeout handling
and pre-existing session handling. GAPA is of great utility
for a number of applications: intrusion detection, firewalling,
intelligent network trace labeling, and vulnerability signature
authoring and generation. Our evaluation indicates that our
GAPAL is expressive and easy to use and our GAPA system
prototype is capable of doing online analysis for clients and
has potential for servers as well.
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